首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
Chloroquine (ClQ) inhibited the repair of DNA damage produced in cultured rat liver cells by methyl methanesulfonate (MMS). MMS caused fragmentation of single-strand DNA in alkaline sucrose gradients. Repair of the damage was followed by observing the restoration of the normal sedimentation pattern at intervals after treatment. Repair was significant by 7 h and nearly complete at 24 h. Addition of ClQ during the repair peiod markedly reduced the rate of repair. Also, ClQ increased the lethality of MMS, which could be due to the inhibition of repair. ClQ was found to inhibit protein synthesis, but the effect on repair is probably not due entirely to this action since comparable inhibition of protein synthesis by cycloheximide produced a lesser degree of delay in repair.  相似文献   

2.
3.
4.
5.
6.
Postreplication repair of DNA in mammalian cells   总被引:2,自引:0,他引:2  
A R Lehmann 《Life sciences》1974,15(12):2005-2016
  相似文献   

7.
DNA damage by agents crosslinking the strands presents a formidable challenge to the cell to repair for survival and to repair accurately for maintenance of genetic information. It appears that repair of DNA crosslinks occurs in a path involving double strand breaks (DSBs) in the DNA. Mammalian cells have multiple systems involved in the repair response to such damage, including the Fanconi anemia pathway that appears to be directly involved, although the mechanisms and site of action remain elusive. A particular finding relating to deficiency of the Fanconi anemia pathway is the observation of chromosomal radial formations after ICL damage. The basis of formation of such chromosomal aberrations is unknown although they appear secondarily to DSBs. Here we review the processes involved in response to DNA interstrand crosslinks which might lead to radial formation and the role of the nucleotide excision repair gene, ERCC1, which is required for a normal response, not just to DNA crosslinks, but also for DSBs at collapsed replication forks caused by substrate depletion. J. Cell. Physiol. 220: 569–573, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
We studied the formation of double strand breaks (DSBs) as intermediates in the repair of DNA interstrand crosslinks (ICLs) by homologous recombination (HR). The plasmid EGFP-N1 was crosslinked with trioxsalen to give one ICL per plasmid on average. HeLa cells were transfected with the crosslinked plasmids and the ICL repair was monitored by following the restoration of the GFP expression. It was accompanied by gamma-H2AX foci formation suggesting that DSBs were formed during the process. However, the same amount of gamma-H2AX foci was observed when cells were transfected with native plasmid, which indicated that gamma-H2AX foci appearance could not be used to determine the amount of DSBs connected with the ICL repair in this system. For this reason we further monitored the DSB formation by determining the amount of linearized plasmids, since having one crosslink per plasmid on average, any ICL-driven DSB formation would lead to plasmid linearization. Native and crosslinked plasmids were incubated in repair-competent cell-free extracts from G1 and S phase HeLa cells. Although a considerable part of the ICLs was repaired, no linearization of the plasmids was observed in the extracts, which was interpreted that DSBs were not formed as intermediates in the process of ICL repair. In another set of experiments HR-proficient HeLa and HR-deficient irs3 cells were transfected with native and crosslinked plasmids, and 6 h and 12 h later the plasmid DNA was isolated and analyzed by electrophoresis. The same amount of linear plasmid molecules was observed in both cell lines, regardless of whether they were transfected with native or crosslinked pEGFP-N1, which further confirmed that DSB formation was not an obligatory step in the process of ICL repair by HR.  相似文献   

9.
Mammalian germ cells encounter several types of DNA damage. This damage is almost completely repaired in a short?period of time to provide the maintenance of genomic integrity. The main repair mechanisms operating in mammalian germline cells are: nucleotide excision repair (NER), base excision repair (BER), mismatch repair (MMR), DNA double strand break repair (DSBR), and post replication repair (PRR). Currently, there are relatively few publications that summarize basic information and new findings?on DNA repair mechanisms used in mammalian germ cells. In the present article, we review the studies that discuss repair mechanisms operating in the female and male germ cells. We then survey some of the recent discoveries made in this field.  相似文献   

10.
DNA double-strand breaks (DSBs) are the most serious DNA damage. Due to a great variety of factors causing DSBs, the efficacy of their repair is crucial for the cell's functioning and prevents DNA fragmentation, chromosomal translocation and deletion. In mammalian cells DSBs can be repaired by non-homologous end joining (NHEJ), homologous recombination (HRR) and single strand annealing (SSA). HRR can be divided into the first and second phase. The first phase is initiated by sensor proteins belonging to the MRN complex, that activate the ATM protein which target HRR proteins to obtain the second response phase--repair. HRR is precise because it utilizes a non-damaged homologous DNA fragment as a template. The key players of HRR in mammalian cells are MRN, RPA, Rad51 and its paralogs, Rad52 and Rad54.  相似文献   

11.
12.
13.
Base excision repair of DNA in mammalian cells   总被引:11,自引:0,他引:11  
Base excision repair (BER) of DNA corrects a number of spontaneous and environmentally induced genotoxic or miscoding base lesions in a process initiated by DNA glycosylases. An AP endonuclease cleaves at the 5' side of the abasic site and the repair process is subsequently completed via either short patch repair or long patch repair, which largely require different proteins. As one example, the UNG gene encodes both nuclear (UNG2) and mitochondrial (UNG1) uracil DNA glycosylase and prevents accumulation of uracil in the genome. BER is likely to have a major role in preserving the integrity of DNA during evolution and may prevent cancer.  相似文献   

14.
Loss of telomere equilibrium and associated chromosome-genomic instability might effectively promote tumour progression. Telomere function may have contrasting roles: inducing replicative senescence and promoting tumourigenesis and these roles may vary between cell types depending on the expression of the enzyme telomerase, the level of mutations induced, and efficiency/deficiency of related DNA repair pathways. We have identified an alternative telomere maintenance mechanism in mouse embryonic stem cells lacking telomerase RNA unit (mTER) with amplification of non-telomeric sequences adjacent to existing short stretches of telomere repeats. Our quest for identifying telomerase-independent or alternative mechanisms involved in telomere maintenance in mammalian cells has implicated the involvement of potential DNA repair factors in such pathways. We have reported earlier on the telomere equilibrium in scid mouse cells which suggested a potential role of DNA repair proteins in telomere maintenance in mammalian cells. Subsequently, studies by us and others have shown the association between the DNA repair factors and telomere function. Mice deficient in a DNA-break sensing molecule, PARP-1 (poly [ADP]-ribopolymerase), have increased levels of chromosomal instability associated with extensive telomere shortening. Ku80 null cells showed a telomere shortening associated with extensive chromosome end fusions, whereas Ku80+/- cells exhibited an intermediate level of telomere shortening. Inactivation of PARP-1 in p53-/- cells resulted in dysfunctional telomeres and severe chromosome instability leading to advanced onset and increased tumour incidence in mice. Interestingly, haploinsufficiency of PARP-1 in Ku80 null cells causes more severe telomere shortening and chromosome abnormalities compared to either PARP-1 or Ku80 single null cells and Ku80+/-PARP-/- mice develop spontaneous tumours. This overview will focus mainly on the role of DNA repair/recombination and DNA damage signalling molecules such as PARP-1, DNA-PKcs, Ku70/80, XRCC4 and ATM which we have been studying for the last few years. Because the maintenance of telomere function is crucial for genomic stability, our results will provide new insights into the mechanisms of chromosome instability and tumour formation.  相似文献   

15.
DNA double strand break repair in mammalian cells   总被引:24,自引:0,他引:24  
Human cells can process DNA double-strand breaks (DSBs) by either homology directed or non-homologous repair pathways. Defects in components of DSB repair pathways are associated with a predisposition to cancer. The products of the BRCA1 and BRCA2 genes, which normally confer protection against breast cancer, are involved in homology-directed DSB repair. Defects in another homology-directed pathway, single-strand annealing, are associated with genome instability and cancer predisposition in the Nijmegen breakage syndrome and a radiation-sensitive ataxia-telangiectasia-like syndrome. Many DSB repair proteins also participate in the signaling pathways which underlie the cell's response to DSBs.  相似文献   

16.
Glycidamide (GA)-induced mutagenesis in mammalian cells is not very well understood. Here, we investigated mutagenicity and DNA repair of GA-induced adducts utilizing Chinese hamster cell lines deficient in base excision repair (BER), nucleotide excision repair (NER) or homologous recombination (HR) in comparison to parent wild-type cells. We used the DRAG assay in order to map pathways involved in the repair of GA-induced DNA lesions. This assay utilizes the principle that a DNA repair deficient cell line is expected to be affected in growth and/or survival more than a repair proficient cell. A significant induction of mutations by GA was detected in the hprt locus of wild-type cells but not in BER deficient cells. Cells deficient in HR or BER were three or five times, respectively, more sensitive to GA in terms of growth inhibition than were wild-type cells. The results obtained on the rate of incisions in BER and NER suggest that lesions induced by GA are repaired by short patch BER rather than long patch BER or NER. Furthermore, a large proportion of the GA-induced lesions gave rise to strand breaks that are repaired by a mechanism not involving PARP. It is suggested that these strand breaks, which might be the results from alkylation of the backbone phosphate, are misrepaired by HR during replication thereby leading to a clastogenic rather than a mutagenic pathway. The type of lesion responsible for the mutagenic effect of GA cannot be concluded from the results presented in this study.  相似文献   

17.
The base excision repair (BER) process removes base damage such as oxidation, alkylation or abasic sites. Two BER sub-pathways have been characterized using in vitro methods, and have been classified according to the length of the repair patch as either 'short-patch' BER (one nucleotide) or 'long-patch' BER (LP-BER; more than one nucleotide). To investigate the occurrence of LP-BER in vivo, we developed an assay using a plasmid containing a single modified base in the transcribed strand of the enhanced green fluorescent protein (EGFP) gene and a stop codon, based on a single-nucleotide mismatch, at varying distances on the 3' side of the lesion. The reversion of the stop codon occurs after DNA repair synthesis and restores EGFP expression after transfection of mismatch-repair-deficient cells. Repair patches longer than one nucleotide were observed for 55-80% or 80-100% of the plasmids with a mean length of 2-6 or 6-12 nucleotides for 8-oxo-7,8-dihydroguanine or a synthetic abasic site, respectively. These data show the existence of LP-BER in vivo, and emphasize the effect of the type of BER substrate lesion on both the yield and the extent of the LP-BER sub-pathway.  相似文献   

18.
19.
Mitochondrial DNA repair of oxidative damage in mammalian cells   总被引:9,自引:0,他引:9  
Bohr VA  Stevnsner T  de Souza-Pinto NC 《Gene》2002,286(1):127-134
Nuclear and mitochondrial DNA are constantly being exposed to damaging agents, from endogenous and exogenous sources. In particular, reactive oxygen species (ROS) are formed at high levels as by-products of the normal metabolism. Upon oxidative attack of DNA many DNA lesions are formed and oxidized bases are generated with high frequency. Mitochondrial DNA has been shown to accumulate high levels of 8-hydroxy-2'-deoxyguanosine, the product of hydroxylation of guanine at carbon 8, which is a mutagenic lesion. Most of these small base modifications are repaired by the base excision repair (BER) pathway. Despite the initial concept that mitochondria lack DNA repair, experimental evidences now show that mitochondria are very proficient in BER of oxidative DNA damage, and proteins necessary for this pathway have been isolated from mammalian mitochondria. Here, we examine the BER pathway with an emphasis on mtDNA repair. The molecular mechanisms involved in the formation and removal of oxidative damage from mitochondria are discussed. The pivotal role of the OGG1 glycosylase in removal of oxidized guanines from mtDNA will also be examined. Lastly, changes in mtDNA repair during the aging process and possible biological implications are discussed.  相似文献   

20.
Glycidamide (GA)-induced mutagenesis in mammalian cells is not very well understood. Here, we investigated mutagenicity and DNA repair of GA-induced adducts utilizing Chinese hamster cell lines deficient in base excision repair (BER), nucleotide excision repair (NER) or homologous recombination (HR) in comparison to parent wild-type cells. We used the DRAG assay in order to map pathways involved in the repair of GA-induced DNA lesions. This assay utilizes the principle that a DNA repair deficient cell line is expected to be affected in growth and/or survival more than a repair proficient cell.A significant induction of mutations by GA was detected in the hprt locus of wild-type cells but not in BER deficient cells. Cells deficient in HR or BER were three or five times, respectively, more sensitive to GA in terms of growth inhibition than were wild-type cells. The results obtained on the rate of incisions in BER and NER suggest that lesions induced by GA are repaired by short patch BER rather than long patch BER or NER. Furthermore, a large proportion of the GA-induced lesions gave rise to strand breaks that are repaired by a mechanism not involving PARP. It is suggested that these strand breaks, which might be the results from alkylation of the backbone phosphate, are misrepaired by HR during replication thereby leading to a clastogenic rather than a mutagenic pathway. The type of lesion responsible for the mutagenic effect of GA cannot be concluded from the results presented in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号