首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 360 毫秒
1.
Zou J  Chen Z  Zhang S  Zhang W  Jiang G  Zhao X  Zhai W  Pan X  Zhu L 《Planta》2005,222(4):604-612
A rice htd-1 mutant, related to tillering and dwarfing, was characterized. We show that the htd-1 mutant increases its tiller number by releasing axillary buds from dormant stage rather than by initiating more axillary buds. The dwarf is caused by averagely reducing each internode and panicle. Based on this dwarfing pattern, the htd-1 mutant could be grouped into dn-type dwarf defined by Takeda (Gamma Field Symp 16:1, 1977). In addition, the dwarfing of the htd-1 mutant was found independent of GA based on the analyses of two GA-mediated processes. Based on the quantitative determination of IAA and ABA and application of the two hormones exogenously to the seedlings, we inferred that the high tillering capacity of the htd-1 mutant should not be attributed to a defect in the synthesis of IAA or ABA. The genetic analysis of the htd-1 mutant indicated that the phenotypes of high tillering and dwarf were controlled by a recessive gene, termed htd1. By map-based cloning, the htd1 gene was fine mapped in a 30-kb DNA region on chromosome 4. Sequencing the target DNA region and comparing the counterpart DNA sequences between the htd-1 mutant and other rice varieties revealed a nucleotide substitution corresponding to an amino acid substitution from prolin to leucine in a predicted rice gene, OsCCD7, the rice orthologous gene of AtMAX3/CCD7. With the evidence of the association between the presence of one amino acid change in OsCCD7 and the abnormal phenotypes of the htd-1 mutant, OsCCD7 was identified as the candidate of the HTD1 gene.  相似文献   

2.
水稻多分蘖矮秆突变体htd1-2的遗传分析和基因定位   总被引:5,自引:1,他引:4  
江海湃  张淑英  包劲松  王伯伦  王术 《遗传》2009,31(5):531-539
文章所采用的多分蘖矮秆突变体为htd1-2(high-tillering dwarf 1-2), 是野生型籼稻品种9311经350Gy的60Co- g射线辐射处理后产生的后代中选育出来的稳定多分蘖矮秆突变体。遗传分析表明, 突变体htd1-2多分蘖矮秆性状是由一对隐性核基因的突变造成的。文章利用简单重复序列(Simple sequence repeat, SSR)、酶切扩增多态性序列(Cleaved amplified polymorphic sequence, CAPS)和衍生型CAPS(derived CAPS, dCAPS)等分子标记的方法, 最终将多分蘖矮秆基因HIGH-TILLERING DWARF1-2(HTD1-2)定位在水稻第4号染色体116 kb的物理区间内。在该物理区间内有一个已经克隆的控制水稻分蘖的基因HIGH-TILLERING DWARF1(HTD1), 经过测序比对和dCAPS特异性分析, 认为HTD1就是HTD1-2基因。尽管突变体htd1与突变体htd1-2是等位基因的不同位点发生突变, 但是由于遗传背景的不同, 两者表型并不完全相同。此外, 通过去除分蘖芽的实验证明了突变体htd1-2的矮化部分是由于分蘖过多造成的。  相似文献   

3.
  • Metabolism of strigolactones (SLs) can improve the efficiency of nutrient use by regulating the development of roots and shoots in crops, making them an important research focus for molecular breeding. However, as a very important plant hormone, the molecular mechanism of SL signal transduction still remains largely unknown.
  • In this study, we isolated an indica high‐tillering dwarf mutant 4 (htd4), a spontaneous mutant of rice, from the restorer line Gui99.
  • Mapping and sequencing analysis showed that htd4 was a novel allelic mutant of D14, in which a single base substitution forms a premature termination codon. Quantitative RT‐PCR analyses revealed that expression levels of the genes D10, D17, D27, D3 and D14 increased significantly, while expression of D53 decreased in htd4, compared with the wild type. A subcellular localisation assay showed that the mutant of D14 in htd4 did not disturb the normal localisation of D14 proteins. However, a BiFC assay suggested that the mutant‐type D14 could not interact with D3. Additionally, compared with other D14 allelic mutants, htd4 was the first mutant of D14 discovered in indica, and the differences in many yield traits such as plant height, seed‐setting rate and grain sizes between htd4 and the wild type were less than those between other D14 allelic mutants and the wild type.
  • Therefore, htd4 is considered a mild phenotype allelic mutant of D14. We conclude that the absence of functional D14 caused the high‐tillering dwarf phenotype of htd4. Our results may provide vital information for research on D14 function and the application of htd4 in molecular breeding.
  相似文献   

4.
5.
6.
A rice (Oryza sativa L.) mutant with an excessive tiller number, designated ext-M1B, was found in the F2 progenies generated from the cross between M1B and GMS-1 (a genetic male sterile), whose number of tillers was 121. The excessive tillering mutant also resulted in significant changes in plant height, flag leaf, stem, filled grains per panicle, and productive panicles per plant. The inbreeding progenies of ext-M1B exhibited the same mutant phenotype. The crosses from ext-M1B/M1B, M1B/ext-M1B, 2480B/ext-M1B, D62B/ext-M1B, G46B/ext-M1B, and G683B/ext-M1B expressed normal tillering in F1, and segregated into two different phenotypes of normal tillering type and excessive tillering type in a ratio of 3:1 in F2. Inheritance analysis indicated that the excessive tillering character was controlled by a single recessive nucleic gene. By BSA (bulked segregants analysis) and microsatellite makers with the F2 population of 2480B/ext-M1B as the mapping population, RM197, RM584, and RM225, all of which were located on the short arm of rice chromosome 6, were identified to be linked with the excessive tillering gene with genetic distance of 3.8 cM, 5.1 cM, and 5.2 cM, respectively. This gene is probably a new excessive tillering gene in rice and is designated tentatively ext-M1B (t).  相似文献   

7.
Plant height and tiller number are indispensible for the establishment of grain production in rice (Oryza sativa L.). A new rice mutant high-tillering dwarf 3 (htd3) exhibiting more tiller number and shorter culm length than the wild-type Guichao 2 (GC2, an indica cultivar) was used to investigate the global gene expression patterns at days after germination 25 (DAG25) and DAG60. In this study, we identified 305 and 987 genes with at least twofold change in gene expression level at DAG25 and DAG60 respectively using the rice microarray chip. Gene ontology enrichment analysis of these twofold change regulated genes revealed that large numbers of genes were involved in binding activity, catalytic activity and metabolic process. The chip results also showed that some of the regulated genes involved in diverse molecular pathways, including gibberellin pathway, brassinosteroid pathway and auxin signal, had significant differences in gene expression abundance at DAG60. This genome-wide gene expression analysis could provide a new opportunity to uncover the regulation mechanisms of the development of culm and tiller, two important components of yields in rice.  相似文献   

8.
9.
Rice architecture is an important agronomic trait that affects grain yield. We characterized a tillering dwarf mutant d88 derived from Oryza sativa ssp. japonica cultivar Lansheng treated with EMS. The mutant had excessive shorter tillers and smaller panicles and seeds compared to the wild-type. A reduction in number and size of parenchyma cells around stem marrow cavity as well as a delay in the elongation of parenchyma cells caused slender tillers and dwarfism in the d88 mutant. The D88 gene was isolated via map-based cloning and identified to encode a putative esterase. The gene was expressed in most rice organs, with especially high levels in the vascular tissues. The mutant carried a nucleotide substitution in the first exon of the gene that led to the substitution of arginine for glycine, which presumably disrupted the functionally conserved N-myristoylation domain of the protein. The function of the gene was confirmed by complementation test and antisense analysis. D88, thus, represents a new category of genes that regulates cell growth and organ development and consequently plant architecture. The potential relationship between the tiller formation associated genes and D88 is discussed and future identification of the substrate for D88 may lead to the characterization of new pathways regulating plant development. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.

Key message

A QTL model for the genetic control of tillering in sorghum is proposed, presenting new opportunities for sorghum breeders to select germplasm with tillering characteristics appropriate for their target environments.

Abstract

Tillering in sorghum can be associated with either the carbon supply–demand (S/D) balance of the plant or an intrinsic propensity to tiller (PTT). Knowledge of the genetic control of tillering could assist breeders in selecting germplasm with tillering characteristics appropriate for their target environments. The aims of this study were to identify QTL for tillering and component traits associated with the S/D balance or PTT, to develop a framework model for the genetic control of tillering in sorghum. Four mapping populations were grown in a number of experiments in south east Queensland, Australia. The QTL analysis suggested that the contribution of traits associated with either the S/D balance or PTT to the genotypic differences in tillering differed among populations. Thirty-four tillering QTL were identified across the populations, of which 15 were novel to this study. Additionally, half of the tillering QTL co-located with QTL for component traits. A comparison of tillering QTL and candidate gene locations identified numerous coincident QTL and gene locations across populations, including the identification of common non-synonymous SNPs in the parental genotypes of two mapping populations in a sorghum homologue of MAX1, a gene involved in the control of tiller bud outgrowth through the production of strigolactones. Combined with a framework for crop physiological processes that underpin genotypic differences in tillering, the co-location of QTL for tillering and component traits and candidate genes allowed the development of a framework QTL model for the genetic control of tillering in sorghum.  相似文献   

11.
The influence of Vrn-B1a and Vrn-B1c alleles on the length of developmental phases in lines of winter cv. Sava with intervarietal substitution of chromosomes 5B and near-isogenic lines (NILs) with these loci in the genetic background of winter cv. Bezostaya 1 is studied. We have confirmed, that effects of Vrn genes appear on the tillering phase and that the response to vernalization and shortening of day length can change the duration of this phase. We have shown that after vernalization and under short-day conditions the Vrn-B1a allele has the strongest effect on the length of the tillering phase. After vernalization in late substitution line Sava (Diamant II 5B) with the Vrn-B1a allele length of the tillering had decreased 6 days stronger, than in the earlier line Sava(Saratovskaya 29 5B) with the Vrn-B1c allele. After shortening of the day length in late NIL i:Bez1Vrn-B1a the length of the tillering phase and of period “stem elongation—heading” had increased stronger, for 13 and 5 days, respectively, than in the early i:Bez1Vrn-B1c line. The study of F1 hybrids between substitution and isogenic lines, the growth habits of which are determined by both Vrn-B1a and Vrn-B1c alleles, had shown the dominance of the trait lateness, which is determined by the Vrn-B1a allele. In F1 hybrids between substitution lines, the length of tillering was similar to that of the line with Vrn-B1a allele, and in F1 hybrids between NILs, the length of tillering was intermediate between parental lines.  相似文献   

12.
Rice blast is one of the most destructive diseases affecting rice worldwide. The adoption of host resistance has proven to be the most economical and effective approach to control rice blast. In recent years, sequence-specific nucleases (SSNs) have been demonstrated to be powerful tools for the improvement of crops via gene-specific genome editing, and CRISPR/Cas9 is thought to be the most effective SSN. Here, we report the improvement of rice blast resistance by engineering a CRISPR/Cas9 SSN (C-ERF922) targeting the OsERF922 gene in rice. Twenty-one C-ERF922-induced mutant plants (42.0%) were identified from 50 T0 transgenic plants. Sanger sequencing revealed that these plants harbored various insertion or deletion (InDel) mutations at the target site. We showed that all of the C-ERF922-induced allele mutations were transmitted to subsequent generations. Mutant plants harboring the desired gene modification but not containing the transferred DNA were obtained by segregation in the T1 and T2 generations. Six T2 homozygous mutant lines were further examined for a blast resistance phenotype and agronomic traits, such as plant height, flag leaf length and width, number of productive panicles, panicle length, number of grains per panicle, seed setting percentage and thousand seed weight. The results revealed that the number of blast lesions formed following pathogen infection was significantly decreased in all 6 mutant lines compared with wild-type plants at both the seedling and tillering stages. Furthermore, there were no significant differences between any of the 6 T2 mutant lines and the wild-type plants with regard to the agronomic traits tested. We also simultaneously targeted multiple sites within OsERF922 by using Cas9/Multi-target-sgRNAs (C-ERF922S1S2 and C-ERF922S1S2S3) to obtain plants harboring mutations at two or three sites. Our results indicate that gene modification via CRISPR/Cas9 is a useful approach for enhancing blast resistance in rice.  相似文献   

13.
Panicle architecture and seed size are important agronomic traits that directly determine grain yield in rice (Oryza sativa L.). Although a number of key genes controlling panicle architecture and seed size have been cloned and characterized in recent years, their genetic and molecular mechanisms remain unclear. In this study, we identified a mutant that produced panicles with fascicled primary branching and reduced seeds in size. We isolated the underlying CLUSTERED PRIMARY BRANCH 1 (CPB1) gene, a new allele of DWARF11 (D11) encoding a cytochrome P450 protein involved in brassinosteroid (BR) biosynthesis pathway. Genetic transformation experiments confirmed that a His360Leu amino acid substitution residing in the highly conserved region of CPB1/D11 was responsible for the panicle architecture and seed size changes in the cpb1 mutants. Overexpression of CPB1/D11 under the background of cpb1 mutant not only rescued normal panicle architecture and plant height, but also had a larger leaf angle and seed size than the controls. Furthermore, the CPB1/D11 transgenic plants driven by panicle‐specific promoters can enlarge seed size and enhance grain yield without affecting other favourable agronomic traits. These results demonstrated that the specific mutation in CPB1/D11 influenced development of panicle architecture and seed size, and manipulation of CPB1/D11 expression using the panicle‐specific promoter could be used to increase seed size, leading to grain yield improvement in rice.  相似文献   

14.
15.

Key message

Thirty significant associations between 22 SNPs and five plant architecture component traits in Chinese upland cotton were identified via GWAS. Four peak SNP loci located on chromosome D03 were simultaneously associated with more plant architecture component traits. A candidate gene, Gh_D03G0922, might be responsible for plant height in upland cotton.

Abstract

A compact plant architecture is increasingly required for mechanized harvesting processes in China. Therefore, cotton plant architecture is an important trait, and its components, such as plant height, fruit branch length and fruit branch angle, affect the suitability of a cultivar for mechanized harvesting. To determine the genetic basis of cotton plant architecture, a genome-wide association study (GWAS) was performed using a panel composed of 355 accessions and 93,250 single nucleotide polymorphisms (SNPs) identified using the specific-locus amplified fragment sequencing method. Thirty significant associations between 22 SNPs and five plant architecture component traits were identified via GWAS. Most importantly, four peak SNP loci located on chromosome D03 were simultaneously associated with more plant architecture component traits, and these SNPs were harbored in one linkage disequilibrium block. Furthermore, 21 candidate genes for plant architecture were predicted in a 0.95-Mb region including the four peak SNPs. One of these genes (Gh_D03G0922) was near the significant SNP D03_31584163 (8.40 kb), and its Arabidopsis homologs contain MADS-box domains that might be involved in plant growth and development. qRT-PCR showed that the expression of Gh_D03G0922 was upregulated in the apical buds and young leaves of the short and compact cotton varieties, and virus-induced gene silencing (VIGS) proved that the silenced plants exhibited increased PH. These results indicate that Gh_D03G0922 is likely the candidate gene for PH in cotton. The genetic variations and candidate genes identified in this study lay a foundation for cultivating moderately short and compact varieties in future Chinese cotton-breeding programs.
  相似文献   

16.
17.

Background

Recently, genome-wide association studies (GWAS) have been reported on various pig traits. We performed a GWAS to analyze 22 traits related to growth and fatness on two pig populations: a White Duroc × Erhualian F2 intercross population and a Chinese Sutai half-sib population.

Results

We identified 14 and 39 loci that displayed significant associations with growth and fatness traits at the genome-wide level and chromosome-wide level, respectively. The strongest association was between a 750 kb region on SSC7 (SSC for Sus scrofa) and backfat thickness at the first rib. This region had pleiotropic effects on both fatness and growth traits in F2 animals and contained a promising candidate gene HMGA1 (high mobility group AT-hook 1). Unexpectedly, population genetic analysis revealed that the allele at this locus that reduces fatness and increases growth is derived from Chinese indigenous pigs and segregates in multiple Chinese breeds. The second strongest association was between the region around 82.85 Mb on SSC4 and average backfat thickness. PLAG1 (pleiomorphic adenoma gene 1), a gene under strong selection in European domestic pigs, is proximal to the top SNP and stands out as a strong candidate gene. On SSC2, a locus that significantly affects fatness traits mapped to the region around the IGF2 (insulin-like growth factor 2) gene but its non-imprinting inheritance excluded IGF2 as a candidate gene. A significant locus was also detected within a recombination cold spot that spans more than 30 Mb on SSCX, which hampered the identification of plausible candidate genes. Notably, no genome-wide significant locus was shared by the two experimental populations; different loci were observed that had both constant and time-specific effects on growth traits at different stages, which illustrates the complex genetic architecture of these traits.

Conclusions

We confirm several previously reported QTL and provide a list of novel loci for porcine growth and fatness traits in two experimental populations with Chinese Taihu and Western pigs as common founders. We showed that distinct loci exist for these traits in the two populations and identified HMGA1 and PLAG1 as strong candidate genes on SSC7 and SSC4, respectively.

Electronic supplementary material

The online version of this article (doi:10.1186/s12711-015-0089-5) contains supplementary material, which is available to authorized users.  相似文献   

18.
Chlorophyll (Chl) and lutein are the two most abundant and essential components in photosynthetic apparatus, and play critical roles in plant development. In this study, we characterized a rice mutant named young leaf chlorosis 1 (ylc1) from a 60Co-irradiated population. Young leaves of the ylc1 mutant showed decreased levels of Chl and lutein compared to those of wild type, and transmission electron microscopy analysis revealed that the thylakoid lamellar structures were obviously loosely arranged. Whereas, the mutant turns green gradually and approaches normal green at the maximum tillering stage. The Young Leaf Chlorosis 1 (YLC1) gene was isolated via map-based cloning and identified to encode a protein of unknown function belonging to the DUF3353 superfamily. Complementation and RNA-interference tests confirmed the role of the YLC1 gene, which expressed in all tested rice tissues, especially in the leaves. Real-time PCR analyses showed that the expression levels of the genes associated with Chl biosynthesis and photosynthesis were affected in ylc1 mutant at different temperatures. In rice protoplasts, the YLC1 protein displayed a typical chloroplast location pattern. The N-terminal 50 amino acid residues were confirmed to be necessary and sufficient for chloroplast targeting. These data suggested that the YLC1 protein may be involved in Chl and lutein accumulation and chloroplast development at early leaf development in rice.  相似文献   

19.
Copper (Cu) is an essential element in plant nutrition, but it inhibits the growth of roots at low concentrations. Accessions of Arabidopsis (Arabidopsis thaliana) vary in their tolerance to Cu. To understand the molecular mechanism of Cu tolerance in Arabidopsis, we performed quantitative trait locus (QTL) analysis and accession studies. One major QTL on chromosome 1 (QTL1) explained 52% of the phenotypic variation in Cu tolerance in roots in a Landsberg erecta/Cape Verde Islands (Ler/Cvi) recombinant inbred population. This QTL regulates Cu translocation capacity and involves a Cu-transporting P1B-1-type ATPase, HMA5. The Cvi allele carries two amino acid substitutions in comparison with the Ler allele and is less functional than the Ler allele in Cu tolerance when judged by complementation assays using a T-DNA insertion mutant. Complementation assays of the ccc2 mutant of yeast using chimeric HMA5 proteins revealed that N923T of the Cvi allele, which was identified in the tightly conserved domain N(x)6YN(x)4P (where the former asparagine was substituted by threonine), is a cause of dysfunction of the Cvi HMA5 allele. Another dysfunctional HMA5 allele was identified in Chisdra-2, which showed Cu sensitivity and low capacity of Cu translocation from roots to shoots. A unique amino acid substitution of Chisdra-2 was identified in another strictly conserved domain, CPC(x)6P, where the latter proline was replaced with leucine. These results indicate that a portion of the variation in Cu tolerance of Arabidopsis is regulated by the functional integrity of the Cu-translocating ATPase, HMA5, and in particular the amino acid sequence in several strictly conserved motifs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号