首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Porosities in the outer table of the cranial vault (porotic hyperostosis) and orbital roof (cribra orbitalia) are among the most frequent pathological lesions seen in ancient human skeletal collections. Since the 1950s, chronic iron‐deficiency anemia has been widely accepted as the probable cause of both conditions. Based on this proposed etiology, bioarchaeologists use the prevalence of these conditions to infer living conditions conducive to dietary iron deficiency, iron malabsorption, and iron loss from both diarrheal disease and intestinal parasites in earlier human populations. This iron‐deficiency‐anemia hypothesis is inconsistent with recent hematological research that shows iron deficiency per se cannot sustain the massive red blood cell production that causes the marrow expansion responsible for these lesions. Several lines of evidence suggest that the accelerated loss and compensatory over‐production of red blood cells seen in hemolytic and megaloblastic anemias is the most likely proximate cause of porotic hyperostosis. Although cranial vault and orbital roof porosities are sometimes conflated under the term porotic hyperostosis, paleopathological and clinical evidence suggests they often have different etiologies. Reconsidering the etiology of these skeletal conditions has important implications for current interpretations of malnutrition and infectious disease in earlier human populations. Am J Phys Anthropol 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
Palaeopathological studies of the middle Pleistocene cranium from Florisbad (Free State, South Africa) document the presence of extensive cortical lesions and areas of thinning, a widened medullary cavity with destruction of the diploë, orbital roof lesions, a benign ectocranial neoplasm, and evidence for alveolar destruction, resorption, and antemortem tooth loss. Differential diagnosis suggests one or more possible aetiologies, including a haematological disorder, metabolic condition(s), Paget’s disease of bone, or non-specific infection perhaps following trauma. Moreover, if not directly associated with those on the external vault, orbital lesions alone could have been caused by infection or an indeterminable factor such as pressure from an enlarged organ. Multiple parasagittal lesions on the internal vault cortex probably represent expansile lesions left by enlarged arachnoid granulations. A multifactorial model of pathogenesis may be most appropriate to account for dentoalveolar lesions and antemortem tooth loss. Additionally, there are clear indications of diagenetic alteration deep within the vault, as well as multiple signs of degeneration on the cranium. These complicate the assessment of pathological alterations and identification of their possible aetiology. The Florisbad cranium is the latest specimen to join the growing sample of Pleistocene hominin remains with non-fatal and non-trivial pathological disorders adding to understanding of early human ecology and lifestyle.  相似文献   

3.
Rigid stabilization of sagittal fractures of the maxilla and palate   总被引:2,自引:0,他引:2  
Rigid stabilization of sagittal fractures of the palate is described that utilizes plate and screw fixation in the palatal vault. Accurate reduction of facial width is obtained, and stability is significantly enhanced. An existing laceration or a longitudinal incision in the palatal mucoperiosteum provides exposure for maxillary adaption plate application. The transpalatal reduction should be supplemented by fixation at the piriform aperture, the zygomaticomaxillary and nasomaxillary buttresses, and by the use of an arch bar. Since slower bone healing may be observed following palatoalveolar fractures, the occlusion must be observed for deviation throughout a full 16-week period even though early motion and soft diet are permitted. Removal of the plate and screws in the roof of the mouth is sometimes required and utilizes local anesthesia.  相似文献   

4.
Three morphologically distinct populations of Peruvian crania (n = 130) were metrically analysed to quantify changes resulting from intentional artificial vault deformation. Two of these samples are artificially deformed (anteroposterior [AP] and circumferential [C] types). Measurements taken from lateral radiographs demonstrated that alternative forms of the cranial base angle (N-S-Ba, planum angle, planum sphenoidale to plane of the clivus and PANG angle, planum sphenoidale to basion-sella plane) and the orbital and OANG angles (orbital roof to plane of the clivus and basion-sella plane, respectively) of both deformed groups increased while the angle S-Ba-O decreased significantly with respect to the undeformed (N) sample. Changes in the AP group are largely due to anteroinferior displacement of the basion-sella plane. Similar changes in group C are amplified by this group's posterosuperior frontal migration. This migration results in a relatively shallow orbit at the orbital plate/frontal squama interface. Unlike the deformation experienced by the external vault plates, the basion-sella plane orientation remains stable with respect to the Frankfort Horizontal. Additionally, nasal region measurements such as maximum nasal aperture breadth and nasal height were largely stable between each deformed group and the undeformed group. However, facial (bimaxillary and bizygomatic), basicranial, cranial, and frontal breadths decreased significantly from group AP to group N to group C. Thus, gross morphological facial changes between each undeformed group and the control group are largely accounted for by dimensional changes in peripheral structures. These results stress the importance of the dynamic interrelationship between the cranial vault and base in the development of the craniofacial complex.  相似文献   

5.
BACKGROUND: The vault is a ubiquitous and highly conserved ribonucleoprotein particle of approximately 13 MDa. This particle has been shown to be upregulated in certain multidrug-resistant cancer cell lines and to share a protein component with the telomerase complex. Determination of the structure of the vault was undertaken to provide a first step towards understanding the role of this cellular component in normal metabolism and perhaps to shed some light on its role in mediating drug resistance. RESULTS: Over 1300 particle images were combined to calculate an approximately 31 A resolution structure of the vault. Rotational power spectra did not yield a clear symmetry peak, either because of the thin, smooth walls or inherent flexibility of the vault. Although cyclic eightfold (C8) symmetry was imposed, the resulting reconstruction may be partially cylindrically averaged about the eightfold axis. Our results reveal the vault to be a hollow, barrel-like structure with two protruding caps and an invaginated waist. CONCLUSIONS: Although the normal cellular function of the vault is as yet undetermined, the structure of the vault is consistent with either a role in subcellular transport, as previously suggested, or in sequestering macromolecular assemblies.  相似文献   

6.
The vault is a highly conserved ribonucleoprotein particle found in all higher eukaryotes. It has a barrel-shaped structure and is composed of the major vault protein (MVP); vault poly(ADP-ribose) polymerase (VPARP); telomerase-associated protein 1 (TEP1); and small untranslated RNA (vRNA). Although its strong conservation and high abundance indicate an important cellular role, the function of the vault is unknown. In humans, vaults have been implicated in multidrug resistance during chemotherapy. Recently, assembly of recombinant vaults has been established in insect cells expressing only MVP. Here, we demonstrate that co-expression of MVP with one or both of the other two vault proteins results in their co-assembly into regularly shaped vaults. Particles assembled from MVP with N-terminal peptide tags of various length are compared. Cryoelectron microscopy (cryoEM) and single-particle image reconstruction methods were used to determine the structure of nine recombinant vaults of various composition, as well as wild-type and TEP1-deficient mouse vaults. Recombinant vaults with MVP N-terminal peptide tags showed internal density that varied in size with the length of the tag. Reconstruction of a recombinant vault with a cysteine-rich tag revealed 48-fold rotational symmetry for the vault. A model is proposed for the organization of MVP within the vault with all of the MVP N termini interacting non-covalently at the vault midsection and 48 copies of MVP forming each half vault. CryoEM difference mapping localized VPARP to three density bands lining the inner surface of the vault. Difference maps designed to localize TEP1 showed only weak density inside of the caps, suggesting that TEP1 may interact with MVP via a small interaction region. In the absence of atomic-resolution structures for either VPARP or TEP1, fold recognition methods were applied. A total of 21 repeats were predicted for the TEP1 WD-repeat domain, suggesting an unusually large beta-propeller fold.  相似文献   

7.
Vaults are highly conserved ubiquitous ribonucleoprotein particles with an undefined function. Three protein species (p240/TEP1, p193/VPARP, and p100/MVP) and a small RNA comprise the 13-MDa vault particle. The expression of the unique 100-kDa major vault protein is sufficient to form the basic vault structure. Previously, we have shown that stable association of the vault RNA with the vault particle is dependent on its interaction with the p240/TEP1 protein. To identify other proteins that interact with the vault RNA, we used a UV-cross-linking assay. We find that a portion of the vault RNA is complexed with the La autoantigen in a separate smaller ribonucleoprotein particle. La interacts with the vault RNA (both in vivo and in vitro) presumably through binding to 3'-uridylates. Moreover, we also demonstrate that the La autoantigen is the 50-kDa protein that we have previously reported as a protein that co-purifies with vaults.  相似文献   

8.
An algorithm for the management of sagittal synostosis in older children who underwent delayed cranial vault reconstruction is presented. This algorithm tailors the surgical approach to the specific craniofacial deformity present in each case. The scaphocephalic deformity characteristic of sagittal synostosis varies significantly when presentation is delayed beyond the first year of life, the time during which reconstruction is usually performed. Sixteen patients with sagittal synostosis who presented after 12 months of age, and were a mean of 3.2 years of age at the time of cranial vault reconstruction, were reviewed. Four patients demonstrated preoperative symptoms and objective findings indicative of increased intracranial pressure, including frequent headaches and emesis, papilledema, or digital markings on computed tomographic scan. Each of the 16 patients underwent either (1) single-stage total vault reconstruction with or without concomitant fronto-orbital expansion; (2) two-stage total vault reconstruction with anterior two-thirds vault expansion followed by transverse occipital expansion and recession a mean of 8.7 months later; or (3) anterior two-thirds vault reconstruction with or without fronto-orbital expansion. In each case, the extent of the scaphocephalic deformity determined the procedure used. The presence of severe frontal bossing associated with transverse restriction of the orbitotemporal region was an indication for fronto-orbital expansion in addition to vault reconstruction, whereas significant occipital protrusion was an indication for transverse posterior vault expansion and recession in addition to anterior two-thirds vault reconstruction. Excellent aesthetic results were obtained in all cases regardless of the type of reconstruction performed. However, it is essential that the extent of the deformity be carefully evaluated preoperatively to permit selection of the appropriate technique for reconstruction.  相似文献   

9.
RNA location and modeling of a WD40 repeat domain within the vault   总被引:8,自引:0,他引:8       下载免费PDF全文
The vault complex is a ubiquitous 13-MDa ribonucleoprotein assembly, composed of three proteins (TEP1, 240 kDa; VPARP, 193 kDa; and MVP, 100 kDa) that are highly conserved in eukaryotes and an untranslated RNA (vRNA). The vault has been shown to affect multidrug resistance in cancer cells, and one particular component, MVP, is thought to play a role in the transport of drug from the nucleus. To locate the position of the vRNA, vaults were treated with RNases, and cryo-electron microscopy (cryo-EM) was performed on the resulting complexes. Using single-particle reconstruction techniques, 3,476 particle images were combined to generate a 22-A-resolution structure. Difference mapping between the RNase-treated vault and the previously calculated intact vault reconstructions reveals the vRNA to be at the ends of the vault caps. In this position, the vRNA may interact with both the interior and exterior environments of the vault. The finding of a 16-fold density ring at the top of the cap has allowed modeling of the WD40 repeat domain of the vault TEP1 protein within the cryo-EM vault density. Both stoichiometric considerations and the finding of higher resolution for the computationally selected and refined "barrel only" images indicate a possible symmetry mismatch between the barrel and the caps. The molecular architecture of the complex is emerging, with 96 copies of MVP composing the eightfold symmetric barrel, and the vRNA together with one copy of TEP1 and four predicted copies of VPARP comprising each cap.  相似文献   

10.
Vaults are the largest (13 megadalton) cytoplasmic ribonucleoprotein particles known to exist in eukaryotic cells. They have a unique barrel-shaped structure with 8-fold symmetry. Although the precise function of vaults is unknown, their wide distribution and highly conserved morphology in eukaryotes suggests that their function is essential and that their structure must be important for their function. The 100-kDa major vault protein (MVP) constitutes approximately 75% of the particle mass and is predicted to form the central barrel portion of the vault. To gain insight into the mechanisms for vault assembly, we have expressed rat MVP in the Sf9 insect cell line using a baculovirus vector. Our results show that the expression of the rat MVP alone can direct the formation of particles that have biochemical characteristics similar to endogenous rat vaults and display the distinct vault-like morphology when negatively stained and examined by electron microscopy. These particles are the first example of a single protein polymerizing into a non-spherically, non-cylindrically symmetrical structure. Understanding vault assembly will enable us to design agents that disrupt vault formation and hence aid in elucidating vault function in vivo.  相似文献   

11.
Artificial modification of the cranial vault was practiced by a number of prehistoric and protohistoric populations, frequently during an infant's first year of life. We test the hypothesis that, in addition to its direct effects on the cranial vault, annular cranial vault modification has a significant indirect effect on cranial base and facial morphology. Two skeletal series from the Pacific Northwest Coast, which include both nonmodified and modified crania, were used: the Kwakiutl (62 nonmodified, 45 modified) and Nootka (28 nonmodified, 20 modified). Three-dimensional coordinates of 53 landmarks were obtained using a diagraph, and 36 landmarks were used to define nine finite elements in the cranial vault, cranial base, and face. Finite element scaling was used to compare average nonmodified and average modified crania, and the significance of the results were evaluated using a bootstrap test. Annular modification of the cranial vault produces significant effects on the morphology of the cranial base and face. Annular modification in the Kwakiutl resulted in restrictions of the cranial vault in the medial-lateral and superior-inferior dimensions and an increase in anterior-posterior growth. Similar dimensional changes are observed in the cranial base. The Kwakiutl face is increased anterior-posteriorly and reduced anterior-laterally to posterior-medially. Similar effects of modification are observed in the Nootka cranial vault and cranial base, though not in the face. These results demonstrate the developmental interdependence of the cranial vault, cranial base, and face. © 1993 Wiley-Liss, Inc.  相似文献   

12.
Nonmetric cranial traits have been commonly used in evolutionary relationship studies. They develop during the growth and development of an individual, and for this reason its expression presents different sources of genetic and nongenetic variation. However, the use of these features in evolutionary relationship studies carries the implicit assumption that much of the nonmetric trait variation is essentially genetic. Among the nonheritable factors, cranial vault deformation has been the most studied in human populations. Because of the widespread distribution and elevated rate of artificial cranial vault deformation found in America, and the importance of nonmetric traits in evolutionary relationship studies in this area, the objectives of this paper are as follows: (a) to study the influence of artificial cranial vault deformation on the presence of nonmetric traits within samples of human craniofacial remains; and (b) to establish artificial cranial vault deformation influence on evolutionary relationships between local populations on a regional scale. Our results indicate that artificial cranial vault deformations alter the variation and covariation of metric and nonmetric traits in some samples. Wormian bones, placed in cranial vault sutures, are the most influenced by this factor. However, our results suggest that when all nonmetric traits were used the artificial cranial vault deformation did not influence the basic pattern of variation among samples. The exclusion or inclusion of wormians bones in evolutionary relationships analysis did not modify the results, but using only wormians bones lead to inconsistent results indicating that these traits have little value on these kind of studies.  相似文献   

13.
Vaults are ubiquitous ribonucleoprotein complexes involved in a diversity of cellular processes, including multidrug resistance, transport mechanisms and signal transmission. The vault particle shows a barrel‐shaped structure organized in two identical moieties, each consisting of 39 copies of the major vault protein MVP. Earlier data indicated that vault halves can dissociate at acidic pH. The crystal structure of the vault particle solved at 8 Å resolution, together with the 2.1‐Å structure of the seven N‐terminal domains (R1–R7) of MVP, reveal the interactions governing vault association and provide an explanation for a reversible dissociation induced by low pH. The structural comparison with the recently published 3.5 Å model shows major discrepancies, both in the main chain tracing and in the side chain assignment of the two terminal domains R1 and R2.  相似文献   

14.
Vaults are barrel-shaped cytoplasmic ribonucleoprotein particles composed of three proteins: the major vault protein (MVP), the vault poly(ADP-ribose)polymerase (VPARP), and the telomerase-associated protein 1, together with one or more small untranslated RNAs. To date, little is known about the process of vault assembly or about the stability of vault components. In this study, we analyzed the biosynthesis of MVP and VPARP, and their half-lives within the vault particle in human ACHN renal carcinoma cells. Using an immunoprecipitation assay, we found that it took more than 4h for newly synthesized MVPs to be incorporated into vault particles but that biosynthesized VPARPs were completely incorporated into vaults within 1.5h. Once incorporated into the vault complex, both MVP and VPARP were very stable. Expression of human MVP alone in Escherichia coli resulted in the formation of particles that had a distinct vault morphology. The C-terminal region of VPARP that lacks poly(ADP-ribose)polymerase activity co-sedimented with MVP particles. This suggests that the activity of VPARP is not essential for interaction with MVP-self-assembled vault-like particles. In conclusion, our findings provide an insight into potential mechanisms of physiological vault assembly.  相似文献   

15.
A 104-kD protein was coimmunoprecipitated with the estrogen receptor from the flowtrough of a phosphocellulose chromatography of MCF-7 cell nuclear extract. mAbs to this protein identified several cDNA clones coding for the human 104-kD major vault protein. Vaults are large ribonucleoprotein particles of unknown function present in all eukaryotic cells. They have a complex morphology, including several small molecules of RNA, but a single protein species, the major vault protein, accounts for >70% of their mass. Their shape is reminiscent of the nucleopore central plug, but no proteins of known function have been described to interact with them. Western blot analysis of vaults purified on sucrose gradient showed the presence of estrogen receptor co-migrating with the vault peak. The AER317 antibody to estrogen receptor coimmunoprecipitated the major vault protein and the vault RNA also in the 20,000 g supernatant fraction. Reconstitution experiments of estrogen receptor fragments with the major vault protein mapped the site of the interaction between amino acids 241 and 280 of human estrogen receptor, where the nuclear localization signal sequences are located. Estradiol treatment of cells increased the amount of major vault protein present in the nuclear extract and coimmunoprecipitated with estrogen receptor, whereas the anti-estrogen ICI182,780 had no effect. The hormone-dependent interaction of vaults with estrogen receptor was reproducible in vitro and was prevented by sodium molybdate. Antibodies to progesterone and glucocorticoid receptors were able to coimmunoprecipitate the major vault protein. The association of nuclear receptors with vaults could be related to their intracellular traffic.  相似文献   

16.
The postnatal development of the cranial vault is reviewed with special emphasis upon the rabbit in respect to longitudinal, volumetric, and kinematic growth. Also, the calvarial growth relative to long bone growth is discussed. The cranial vault suture is a multifunctional syndesmosis with variable structure and a rich variability of local behavior.  相似文献   

17.
The flat bones of the vertebrate skull vault develop from two migratory mesenchymal cell populations, the cranial neural crest and paraxial mesoderm. At the onset of skull vault development, these mesenchymal cells emigrate from their sites of origin to positions between the ectoderm and the developing cerebral hemispheres. There they combine, proliferate and differentiate along an osteogenic pathway. Anomalies in skull vault development are relatively common in humans. One such anomaly is familial calvarial foramina, persistent unossified areas within the skull vault. Mutations in MSX2 and TWIST are known to cause calvarial foramina in humans. Little is known of the cellular and developmental processes underlying this defect. Neither is it known whether MSX2 and TWIST function in the same or distinct pathways. We trace the origin of the calvarial foramen defect in Msx2 mutant mice to a group of skeletogenic mesenchyme cells that compose the frontal bone rudiment. We show that this cell population is reduced not because of apoptosis or deficient migration of neural crest-derived precursor cells, but because of defects in its differentiation and proliferation. We demonstrate, in addition, that heterozygous loss of Twist function causes a foramen in the skull vault similar to that caused by loss of Msx2 function. Both the quantity and proliferation of the frontal bone skeletogenic mesenchyme are reduced in Msx2-Twist double mutants compared with individual mutants. Thus Msx2 and Twist cooperate in the control of the differentiation and proliferation of skeletogenic mesenchyme. Molecular epistasis analysis suggests that Msx2 and Twist do not act in tandem to control osteoblast differentiation, but function at the same epistatic level.  相似文献   

18.
Human vaults are intracellular ribonucleoprotein particles believed to be involved in multidrug resistance. The complex consists of a major vault protein (MVP), two minor vault proteins (VPARP and TEP1), and several small untranslated RNA molecules. Three human vault RNA genes (HVG1-3) have been described, and a fourth was found in a homology search (HVG4). In the literature only the association of hvg1 with vaults was shown in vivo. However, in a yeast three-hybrid screen the association of hvg1, hvg2, and hvg4 with TEP1 was demonstrated. In this study we investigated the expression and vault association of different vault RNAs in a variety of cell lines, including pairs of drug-sensitive and drug-resistant cells. HVG1-3 are expressed in all cell lines examined, however, none of the cell lines expressed HVG4. This probably is a consequence of the absence of essential external polymerase III promoter elements. The bulk of the vault RNA associated with vaults was hvg1. Interestingly, an increased amount of hvg3 was bound to vaults isolated from multidrug-resistant cell lines. Our findings suggest that vaults bind the RNA molecules with different affinities in different situations. The ratio in which the vault RNAs are associated with vaults might be of functional importance.  相似文献   

19.
20.
Multi-drug-resistant cancer cells frequently express elevated levels of ribonucleoprotein complexes termed vaults. The increased expression of vault proteins and their mRNAs has led to the suggestion that vaults may play a direct role in preventing drug toxicity. To further understand vault component up-regulation, the three proteins that comprise the vault, the major vault protein (MVP), vault poly(ADP-ribose) polymerase (VPARP), and telomerase-associated protein-1 (TEP1), were examined with respect to gene amplification and drug-induced chromatin remodeling. Gene amplification was not responsible for increased vault component levels in multi-drug-resistant cancer cell lines. The TATA-less murine MVP and human VPARP promoters were identified and functionally characterized. There was no significant activation of either the MVP or VPARP promoters in drug-resistant cell lines in comparison to their parental, drug-sensitive counterparts. Treatment of various cell lines with sodium butyrate, an inhibitor of histone deacetylase (HDAC), led to an increase in vault component protein levels. Furthermore, treatment with trichostatin A (TSA), a more specific inhibitor of HDAC, caused an increase in MVP protein, mRNA, and promoter activity. These results suggest that up-regulation of MVP in multi-drug resistance (MDR) may involve chromatin remodeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号