首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Haynes GD  Latch EK 《PloS one》2012,7(5):e36536
Single nucleotide polymorphisms (SNPs) are growing in popularity as a genetic marker for investigating evolutionary processes. A panel of SNPs is often developed by comparing large quantities of DNA sequence data across multiple individuals to identify polymorphic sites. For non-model species, this is particularly difficult, as performing the necessary large-scale genomic sequencing often exceeds the resources available for the project. In this study, we trial the Bovine SNP50 BeadChip developed in cattle (Bos taurus) for identifying polymorphic SNPs in cervids Odocoileus hemionus (mule deer and black-tailed deer) and O. virginianus (white-tailed deer) in the Pacific Northwest. We found that 38.7% of loci could be genotyped, of which 5% (n = 1068) were polymorphic. Of these 1068 polymorphic SNPs, a mixture of putatively neutral loci (n = 878) and loci under selection (n = 190) were identified with the F(ST)-outlier method. A range of population genetic analyses were implemented using these SNPs and a panel of 10 microsatellite loci. The three types of deer could readily be distinguished with both the SNP and microsatellite datasets. This study demonstrates that commercially developed SNP chips are a viable means of SNP discovery for non-model organisms, even when used between very distantly related species (the Bovidae and Cervidae families diverged some 25.1-30.1 million years before present).  相似文献   

2.
3.
Two Theileria cervi SSU rRNA gene sequence Types, F and G, from white-tailed deer (Odocoileus virginianus) and elk (Cervus elaphus canadensis) isolates in North America were confirmed. Previously, nucleotide sequencing through a single variable (V4) region showed the presence of SSU rRNA gene Types F and G in T. cervi isolates from white-tailed deer and an elk. In this study, both sequence types were found in four T. cervi isolates (two from deer and two from elk). Microheterogeneity only appeared in the Type G gene, resulting in Subtypes G1, G2 and G3. Subtype G1 was found in two elk and one white-tailed deer T. cervi isolate; Subtypes G2 and G3 were found in a white-tailed deer T. cervi isolate. The Type F SSU rRNA genes were identical in nucleotide sequence in both elk and white-tailed deer T. cervi isolates. The high degree of conservation in the Type F variable regions may be exploited to design specific oligonucleotide primers for parasite detection by the polymerase chain reaction in cervine or tick hosts.  相似文献   

4.
High-density single-nucleotide polymorphism (SNP) arrays have revolutionized the ability of genome-wide association studies to detect genomic regions harboring sequence variants that affect complex traits. Extensive numbers of validated SNPs with known allele frequencies are essential to construct genotyping assays with broad utility. We describe an economical, efficient, single-step method for SNP discovery, validation and characterization that uses deep sequencing of reduced representation libraries (RRLs) from specified target populations. Using nearly 50 million sequences generated on an Illumina Genome Analyzer from DNA of 66 cattle representing three populations, we identified 62,042 putative SNPs and predicted their allele frequencies. Genotype data for these 66 individuals validated 92% of 23,357 selected genome-wide SNPs, with a genotypic and sequence allele frequency correlation of r = 0.67. This approach for simultaneous de novo discovery of high-quality SNPs and population characterization of allele frequencies may be applied to any species with at least a partially sequenced genome.  相似文献   

5.
Recent advances in next-generation DNA sequencing (NGS) have enhanced the development of genomic resources such as contigs or single-nucleotide polymorphisms (SNPs) for evolutionary studies of a nonmodel species with a complex and unsequenced genome. This study presents an application of a NGS technique in combination with genomic reduction and advanced bioinformatics tools to identify contigs and SNPs from multiple samples of two Linum species. A full Roche 454 GS FLX run of 16 diverse Linum samples representing cultivated flax (Linum usitatissimum L.) and its wild progenitor (Linum bienne Mill.) generated approximately 1.6 million sequence reads with a total length of 498 Mbp. Application of the computational pipeline de novo identification of alleles identified 713 contigs and 1067 SNPs. A blast search revealed alignments of all 713 contigs with 491 existing Linum scaffolds and gene annotations associated with 512 contigs. Sanger sequencing confirmed 95% of 79 selected contigs and 94% of 272 SNPs and identified 211 new SNPs and 19 new indels. The scored 454 SNP data were highly imbalanced for assayed samples. These findings not only are useful for evolutionary studies of Linum species but also help to illustrate the utility of NGS technologies in SNP discovery for nonmodel organisms.  相似文献   

6.
7.
ABSTRACT: BACKGROUND: A genome-wide set of single nucleotide polymorphisms (SNPs) is a valuable resource in genetic research and breeding and is usually developed by re-sequencing a genome. If a genome sequence is not available, an alternative strategy must be used. We previously reported the development of a pipeline (AGSNP) for genome-wide SNP discovery in coding sequences and other single-copy DNA without a complete genome sequence in self-pollinating (autogamous) plants. Here we updated this pipeline for SNP discovery in outcrossing (allogamous) species and demonstrated its efficacy in SNP discovery in walnut (Juglans regia L.). RESULTS: The first step in the original implementation of the AGSNP pipeline was the construction of a reference sequence and the identification of single-copy sequences in it. To identify single-copy sequences, multiple genome equivalents of short SOLiD reads of another individual were mapped to shallow genome coverage of long Sanger or Roche 454 reads making up the reference sequence. The relative depth of SOLiD reads was used to filter out repeated sequences from single-copy sequences in the reference sequence. The second step was a search for SNPs between SOLiD reads and the reference sequence. Polymorphism within the mapped SOLiD reads would have precluded SNP discovery; hence both individuals had to be homozygous. The AGSNP pipeline was updated here for using SOLiD or other type of short reads of a heterozygous individual for these two principal steps. A total of 32.6X walnut genome equivalents of SOLiD reads of vegetatively propagated walnut scion cultivar 'Chandler' were mapped to 48,661 'Chandler' bacterial artificial chromosome (BAC) end sequences (BESs) produced by Sanger sequencing during the construction of a walnut physical map. A total of 22,799 putative SNPs were initially identified. A total of 6,000 Infinium II type SNPs evenly distributed along the walnut physical map were selected for the construction of an Infinium BeadChip, which was used to genotype a walnut mapping population having 'Chandler' as one of the parents. Genotyping results were used to adjust the filtering parameters of the updated AGSNP pipeline. With the adjusted filtering criteria, 69.6% of SNPs discovered with the updated pipeline were real and could be mapped on the walnut genetic map. A total of 13,439 SNPs were discovered by BES re-sequencing. BESs harboring SNPs were in 677 FPC contigs covering 98% of the physical map of the walnut genome. CONCLUSION: The updated AGSNP pipeline is a versatile SNP discovery tool for a high-throughput, genome-wide SNP discovery in both autogamous and allogamous species. With this pipeline, a large set of SNPs were identified in a single walnut cultivar.  相似文献   

8.
We examined the parasites and physical condition of coexisting white-tailed deer (Odocoileus virginianus), axis deer (Axis axis), fallow deer (Dama dama), and sika deer (Cervus nippon) on the YO Ranch (Kerr County, Texas, USA) during December 1982 to January 1984. White-tailed deer harbored 12 species of parasites. Exotic deer were infected with nine species of parasites. All parasites recovered from exotic deer and white-tailed deer have been reported from white-tailed deer. Exotic deer had higher condition ratings than white-tailed deer.  相似文献   

9.
10.
Given the low intraspecific chloroplast diversity detected in northern red oak (Quercus rubra L.), more powerful genetic tools are necessary to accurately characterize Q. rubra chloroplast diversity and structure. We report the sequencing, assembly, and annotation of the chloroplast genome of northern red oak via pyrosequencing and a combination of de novo and reference-guided assembly (RGA). Chloroplast DNA from 16 individuals was separated into four MID-tagged pools for a Genome Sequencer 20 quarter-run (Roche Life Sciences, Indianapolis, IN, USA). A four-step assembly method was used to generate the Q. rubra chloroplast consensus sequence: (1) reads were assembled de novo into contigs, (2) de novo contigs were aligned to a reference genome and merged to produce a consensus sequence, (3) the consensus sequence was aligned to the reference sequence and gaps between contigs were filled with reference sequence to generate a "pseudoreference", and (4) reads were mapped to the pseudoreference using RGA to generate the draft chloroplast genome. One hundred percent of the pseudoreference sequence was covered with a minimum coverage of 2× and an average coverage of 43.75×. The 161,304-bp Q. rubra chloroplast genome draft sequence contained 137 genes and one rps19 pseudogene. The sequence was compared to that of Quercus robur and Q. nigra with 951 and 186 insertion/deletion or SNP polymorphisms detected, respectively. A total of 51 intraspecific polymorphisms were detected among four northern red oak individuals. The fully sequenced and annotated Q. rubra chloroplast genome containing locations of interspecific and intraspecific polymorphisms will be essential for studying population differentiation, phylogeography, and evolutionary history of this species as well as meeting management goals such as monitoring reintroduced populations, tracking wood products, and certifying seed lots and forests.  相似文献   

11.
Next-generation sequencing has transformed the fields of ecological and evolutionary genetics by allowing for cost-effective identification of genome-wide variation. Single nucleotide polymorphism (SNP) arrays, or “SNP chips”, enable very large numbers of individuals to be consistently genotyped at a selected set of these identified markers, and also offer the advantage of being able to analyse samples of variable DNA quality. We used reduced representation restriction-aided digest sequencing (RAD-seq) of 31 birds of the threatened hihi (Notiomystis cincta; stitchbird) and low-coverage whole genome sequencing (WGS) of 10 of these birds to develop an Affymetrix 50 K SNP chip. We overcame the limitations of having no hihi reference genome and a low quantity of sequence data by separate and pooled de novo assembly of each of the 10 WGS birds. Reads from all individuals were mapped back to these de novo assemblies to identify SNPs. A subset of RAD-seq and WGS SNPs were selected for inclusion on the chip, prioritising SNPs with the highest quality scores whose flanking sequence uniquely aligned to the zebra finch (Taeniopygia guttata) genome. Of the 58,466 SNPs manufactured on the chip, 72% passed filtering metrics and were polymorphic. By genotyping 1,536 hihi on the array, we found that SNPs detected in multiple assemblies were more likely to successfully genotype, representing a cost-effective approach to identify SNPs for genotyping. Here, we demonstrate the utility of the SNP chip by describing the high rates of linkage disequilibrium in the hihi genome, reflecting the history of population bottlenecks in the species.  相似文献   

12.
We identified ~13 000 putative single nucleotide polymorphisms (SNPs) by comparison of repeat‐masked BAC‐end sequences from the cattle RPCI‐42 BAC library with whole‐genome shotgun contigs of cattle genome assembly Btau 1.0. Genotyping of a subset of these SNPs was performed on a panel containing 186 DNA samples from 18 cattle breeds including 43 trios. Of 1039 SNPs confirmed as polymorphic in the panel, 998 had minor allele frequency ≥0.25 among unrelated individuals of at least one breed. When Btau 4.0 became available, 974 of these validated SNPs were assigned in silico to known cattle chromosomes, while 41 SNPs were mapped to unassigned sequence scaffolds, yielding one SNP every ~3 Mbp on average. Twenty‐four SNPs identified in Btau 1.0 were not mapped to Btau 4.0. Of the 1015 SNPs mapped to Btau 4.0, 959 SNPs had nucleotide bases identical in Btau 4.0 and Btau 1.0 contigs, whereas 56 bases were changed, resulting in the loss of the in silico SNP in Btau 4.0. Because these 1039 SNPs were all directly confirmed by genotyping on the multi‐breed panel, it is likely that the original polymorphisms were correctly identified. The 1039 validated SNPs identified in this study represent a new and useful resource for genome‐wide association studies and applications in animal breeding.  相似文献   

13.
Mungbean [Vigna radiata (L.) Wilczek], a self-pollinated diploid plant with 2n = 22 chromosomes, is an important legume crop with a high-quality amino acid profile. Sequence variation at the whole-genome level was examined by comparing two mungbean cultivars, Sunhwanokdu and Gyeonggijaerae 5, using Illumina HiSeq sequencing data. More than 40 billion bp from both mungbean cultivars were sequenced to a depth of 72×. After de novo assembly of Sunhwanokdu contigs by ABySS 1.3.2 (N50 = 9,958 bp), those longer than 10 kb were aligned with Gyeonggijaerae 5 reads using the Burrows–Wheeler Aligner. SAMTools was used for retrieving single nucleotide polymorphisms (SNPs) between Sunhwanokdu and Gyeonggijaerae 5, defining the lowest and highest depths as 5 and 100, respectively, and the sequence quality as 100. Of the 305,504 single-base changes identified, 40,503 SNPs were considered heterozygous in Gyeonggijaerae 5. Among the remaining 265,001 SNPs, 65.9 % (174,579 cases) were transitions and 34.1 % (90,422 cases) were transversions. For SNP validation, a total of 42 SNPs were chosen among Sunhwanokdu contigs longer than 10 kb and sharing at least 80 % sequence identity with common bean expressed sequence tags as determined with est2genome. Using seven mungbean cultivars from various origins in addition to Sunhwanokdu and Gyeonggijaerae 5, most of the SNPs identified by bioinformatics tools were confirmed by Sanger sequencing. These genome-wide SNP markers could enrich the current molecular resources and might be of value for the construction of a mungbean genetic map and the investigation of genetic diversity.  相似文献   

14.
15.
Molecular cloning and nucleotide sequence of deer papillomavirus.   总被引:17,自引:10,他引:7       下载免费PDF全文
The genome of deer papillomavirus (DPV) isolated from American white-tailed deer was cloned into pBR322, and the entire nucleotide sequence of 8,374 base pairs was determined. The overall genetic organization of the DPV genome was similar to that of other papillomaviruses. All significant open reading frames were located on one strand, and the locations of putative promoters and polyadenylation signals were similar to those identified in the closely related bovine papillomavirus type 1 (BPV-1) genome. The DPV genome was approximately colinear with BPV-1 except for a noncoding region separating the early and late regions. The regions of highest nucleotide sequence homology between DPV and BPV-1 were found in the E1 open reading frame coding for BPV-1 DNA replication function and in the L1 open reading frame, which encodes the major capsid protein of BPV-1.  相似文献   

16.
Differences in innate disease resistance at the sub-species level have major implications for wildlife management. Two subspecies of white-tailed deer, Odocoileus virginianus borealis and O. virginianus texanus were infected with epizootic hemorrhagic disease (EHD) viruses. These viruses are highly virulent pathogens of white-tailed deer and are endemic within the range of O. virginianus texanus but not within the range of O. virginianus borealis. Two experimental infections were performed. Five O. virginianus texanus fawns and five O. virginianus borealis fawns were infected with 10(7.1) median tissue culture infective doses (TCID50) of EHD virus, serotype 1 and five of each subspecies were infected with 10(7.1) TCID50 of EHD virus, serotype 2. Infections with both EHD virus serotypes caused severe clinical disease and mortality in O. virginianus borealis fawns, whereas disease was mild or nondetectable in O. virginianus texanus fawns. Virus titers and humoral immune response were similar in both subspecies suggesting that differences in innate disease resistance explain the differences seen in clinical disease severity. In white-tailed deer, innate disease resistance may vary at the subspecies level. Should this phenomenon occur in other species, these findings have major implications for managing wildlife populations, both endangered and non-endangered, using tools such as translocation and captive propagation.  相似文献   

17.
18.
From December 1983 to December 1984 a study on parasites, diseases and health status was conducted on sympatric populations of sambar deer (Cervus unicolor) and white-tailed deer (Odocoileus virginianus) from St. Vincent Island, Franklin County, Florida. Ten sambar and six white-tailed deer were examined. White-tailed deer had antibodies to epizootic hemorrhagic disease virus and bluetongue virus. Serologic tests for antibodies to the etiologic agents of bovine virus diarrhea, infectious bovine rhinotracheitis, vesicular stomatitis, parainfluenza 3, brucellosis, and leptospirosis were negative in both species of deer. White-tailed deer harbored 19 species of parasites; all were typical of the parasite fauna of this species in coastal regions of the southeastern United States. Sambar deer harbored 13 species of parasites, which apparently were derived largely from white-tailed deer. The only exception was Dermacentor variabilis which occurs frequently on wild swine on the island. The general health status of sambar deer appeared to be better than that of white-tailed deer. This was hypothesized to result from the sambar deer's utilization of food resources unavailable or unacceptable to white-tailed deer and to the absence and/or lower frequency of certain pathogens in sambar deer.  相似文献   

19.
The benefits from recent improvement in sequencing technologies, such as the Roche GS FLX (454) pyrosequencing, may be even more valuable in non-model organisms, such as many plant pathogenic fungi of economic importance. One application of this new sequencing technology is the rapid generation of genomic information to identify putative single-nucleotide polymorphisms (SNPs) to be used for population genetic, evolutionary, and phylogeographic studies on non-model organisms. The focus of this research was to sequence, assemble, discover and validate SNPs in a fungal genome using 454 pyrosequencing when no reference sequence is available. Genomic DNA from eight isolates of Ophiognomonia clavigignenti-juglandacearum was pooled in one region of a four-region sequencing run on a Roche 454 GS FLX. This yielded 71 million total bases comprising 217,000 reads, 80% of which collapsed into 16,125,754 bases in 30,339 contigs upon assembly. By aligning reads from multiple isolates, we detected 298 SNPs using Roche's GS Mapper. With no reference sequence available, however, it was difficult to distinguish true polymorphisms from sequencing error. Eagleview software was used to manually examine each contig that contained one or more putative SNPs, enabling us to discard all but 45 of the original 298 putative SNPs. Of those 45 SNPs, 13 were validated using standard Sanger sequencing. This research provides a valuable genetic resource for research into the genus Ophiognomonia, demonstrates a framework for the rapid and cost-effective discovery of SNP markers in non-model organisms and should prove especially useful in the case of asexual or clonal fungi with limited genetic variability.  相似文献   

20.
In the absence of a reference genome, single-nucleotide polymorphisms (SNP) discovery in a group of abalone species was undertaken by random sequence assembly. A web-based interface was constructed, and 11 932 DNA sequences from the genus Haliotis were assembled, with 1321 contigs built. Of these, 118 contigs that consisted of at least ten annotation groups were selected. The 1577 putative SNPs were identified from the 118 contigs, with SNPs in several HSP70 gene contigs confirmed by PCR amplification of an 809-bp DNA fragment. SNPs in the HSP70 gene were compared across eight abalone species. A total of 129 polymorphic sites, including heterozygote sites within and among species, were observed. Phylogenetic analysis of the partial HSP70 gene region showed separation of the tested abalone into two groups, one reflecting the southern hemisphere species and the other the northern hemisphere species. Interestingly, Haliotis iris from New Zealand showed a closer relationship to species distributed in the northern Pacific region. Although HSP genes are known to be highly conserved among taxa, the validation of polymorphic SNPs from HSP70 in this mollusc demonstrates the applicability of cross-species SNP markers in abalone and the first step towards universal nuclear markers in Haliotis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号