首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ellis JJ  Jones S 《Proteins》2008,70(4):1518-1526
Many protein-RNA recognition events are known to exhibit conformational changes from qualitative observations of individual complexes. However, a quantitative estimation of conformational changes is required if protein-RNA docking and template-based methods for RNA binding site prediction are to be developed. This study presents the first quantitative evaluation of conformational changes that occur when proteins bind RNA. The analysis of twelve RNA-binding proteins in the bound and unbound states using error-scaled difference distance matrices is presented. The binding site residues are mapped to each structure, and the conformational changes that affect these residues are evaluated. Of the twelve proteins four exhibit greater movements in nonbinding site residues, and a further four show the greatest movements in binding site residues. The remaining four proteins display no significant conformational change. When interface residues are found to be in conformationally variable regions of the protein they are typically seen to move less than 2 A between the bound and unbound conformations. The current data indicate that conformational changes in the binding site residues of RNA binding proteins may not be as significant as previously suggested, but a larger data set is required before wider conclusions may be drawn. The implications of the observed conformational changes for protein function prediction are discussed.  相似文献   

2.
Structural studies of the streptavidin binding loop.   总被引:7,自引:5,他引:2       下载免费PDF全文
The streptavidin-biotin complex provides the basis for many important biotechnological applications and is an interesting model system for studying high-affinity protein-ligand interactions. We report here crystallographic studies elucidating the conformation of the flexible binding loop of streptavidin (residues 45 to 52) in the unbound and bound forms. The crystal structures of unbound streptavidin have been determined in two monoclinic crystal forms. The binding loop generally adopts an open conformation in the unbound species. In one subunit of one crystal form, the flexible loop adopts the closed conformation and an analysis of packing interactions suggests that protein-protein contacts stabilize the closed loop conformation. In the other crystal form all loops adopt an open conformation. Co-crystallization of streptavidin and biotin resulted in two additional, different crystal forms, with ligand bound in all four binding sites of the first crystal form and biotin bound in only two subunits in a second. The major change associated with binding of biotin is the closure of the surface loop incorporating residues 45 to 52. Residues 49 to 52 display a 3(10) helical conformation in unbound subunits of our structures as opposed to the disordered loops observed in other structure determinations of streptavidin. In addition, the open conformation is stabilized by a beta-sheet hydrogen bond between residues 45 and 52, which cannot occur in the closed conformation. The 3(10) helix is observed in nearly all unbound subunits of both the co-crystallized and ligand-free structures. An analysis of the temperature factors of the binding loop regions suggests that the mobility of the closed loops in the complexed structures is lower than in the open loops of the ligand-free structures. The two biotin bound subunits in the tetramer found in the MONO-b1 crystal form are those that contribute Trp 120 across their respective binding pockets, suggesting a structural link between these binding sites in the tetramer. However, there are no obvious signatures of binding site communication observed upon ligand binding, such as quaternary structure changes or shifts in the region of Trp 120. These studies demonstrate that while crystallographic packing interactions can stabilize both the open and closed forms of the flexible loop, in their absence the loop is open in the unbound state and closed in the presence of biotin. If present in solution, the helical structure in the open loop conformation could moderate the entropic penalty associated with biotin binding by contributing an order-to-disorder component to the loop closure.  相似文献   

3.
Many protein-protein interactions (PPIs) are compelling targets for drug discovery, and in a number of cases can be disrupted by small molecules. The main goal of this study is to examine the mechanism of binding site formation in the interface region of proteins that are PPI targets by comparing ligand-free and ligand-bound structures. To avoid any potential bias, we focus on ensembles of ligand-free protein conformations obtained by nuclear magnetic resonance (NMR) techniques and deposited in the Protein Data Bank, rather than on ensembles specifically generated for this study. The measures used for structure comparison are based on detecting binding hot spots, i.e., protein regions that are major contributors to the binding free energy. The main tool of the analysis is computational solvent mapping, which explores the surface of proteins by docking a large number of small “probe” molecules. Although we consider conformational ensembles obtained by NMR techniques, the analysis is independent of the method used for generating the structures. Finding the energetically most important regions, mapping can identify binding site residues using ligand-free models based on NMR data. In addition, the method selects conformations that are similar to some peptide-bound or ligand-bound structure in terms of the properties of the binding site. This agrees with the conformational selection model of molecular recognition, which assumes such pre-existing conformations. The analysis also shows the maximum level of similarity between unbound and bound states that is achieved without any influence from a ligand. Further shift toward the bound structure assumes protein-peptide or protein-ligand interactions, either selecting higher energy conformations that are not part of the NMR ensemble, or leading to induced fit. Thus, forming the sites in protein-protein interfaces that bind peptides and can be targeted by small ligands always includes conformational selection, although other recognition mechanisms may also be involved.  相似文献   

4.
Metals play a variety of roles in biological processes, and hence their presence in a protein structure can yield vital functional information. Because the residues that coordinate a metal often undergo conformational changes upon binding, detection of binding sites based on simple geometric criteria in proteins without bound metal is difficult. However, aspects of the physicochemical environment around a metal binding site are often conserved even when this structural rearrangement occurs. We have developed a Bayesian classifier using known zinc binding sites as positive training examples and nonmetal binding regions that nonetheless contain residues frequently observed in zinc sites as negative training examples. In order to allow variation in the exact positions of atoms, we average a variety of biochemical and biophysical properties in six concentric spherical shells around the site of interest. At a specificity of 99.8%, this method achieves 75.5% sensitivity in unbound proteins at a positive predictive value of 73.6%. We also test its accuracy on predicted protein structures obtained by homology modeling using templates with 30%-50% sequence identity to the target sequences. At a specificity of 99.8%, we correctly identify at least one zinc binding site in 65.5% of modeled proteins. Thus, in many cases, our model is accurate enough to identify metal binding sites in proteins of unknown structure for which no high sequence identity homologs of known structure exist. Both the source code and a Web interface are available to the public at http://feature.stanford.edu/metals.  相似文献   

5.
Class I fructose-1,6-bis(phosphate) aldolase is a glycolytic enzyme that catalyzes the cleavage of fructose 1,6-bis(phosphate) through a covalent Schiff base intermediate. Although the atomic structure of this enzyme is known, assigning catalytic roles to the various enzymic active-site residues has been hampered by the lack of a structure for the enzyme-substrate complex. A mutant aldolase, K146A, is unable to cleave the C3-C4 bond of the hexose while retaining the ability to form the covalent intermediate, although at a greatly diminished rate. The structure of rabbit muscle K146A-aldolase A, in complex with its native substrate, fructose 1,6-bis(phosphate), is determined to 2.3 A resolution by molecular replacement. The density at the hexose binding site differs between subunits of the tetramer, in that two sites show greater occupancy relative to the other two. The hexose is bound in its linear, open conformation, but not covalently linked to the Schiff base-forming Lys-229. Therefore, this structure most likely represents the bound complex of hexose just after hemiketal hydrolysis and prior to Schiff base formation. The C1-phosphate binding site involves the three backbone nitrogens of Ser-271, Gly-272, and Gly-302, and the epsilon-amino group of Lys-229. This is the same binding site previously found for the analogous phosphate of the product DHAP. The C6-phosphate binding site involves three basic side chains, Arg-303, Arg-42, and Lys-41. The residues closest to Lys-229 were relatively unchanged in position when compared to the unbound wild-type structure. The major differences between the bound and unbound enzyme structures were observed in the positions of Lys-107, Arg-303, and Arg-42, with the greatest difference in the change in conformation of Arg-303. Site-directed mutagenesis was performed on those residues with different conformations in bound versus unbound enzyme. The kinetic constants of these mutant enzymes with the substrates fructose 1, 6-bis(phosphate) and fructose 1-phosphate are consistent with their ligand interactions as revealed by the structure reported here, including differing effects on k(cat) and K(m) between the two substrates depending on whether the mutations affect C6-phosphate binding. In the unbound state, Arg-303 forms a salt bridge with Glu-34, and in the liganded structure it interacts closely with the substrate C6-phosphate. The position of the sugar in the binding site would require a large movement prior to achieving the proper position for covalent catalysis with the Schiff base-forming Lys-229. The movement most likely involves a change in the location of the more loosely bound C6-phosphate. This result suggests that the substrate has one position in the Michaelis complex and another in the covalent complex. Such movement could trigger conformational changes in the carboxyl-terminal region, which has been implicated in substrate specificity.  相似文献   

6.
Is the whole protein surface available for interaction with other proteins, or are specific sites pre-assigned according to their biophysical and structural character? And if so, is it possible to predict the location of the binding site from the surface properties? These questions are answered quantitatively by probing the surfaces of proteins using spheres of radius of 10 A on a database (DB) of 57 unique, non-homologous proteins involved in heteromeric, transient protein-protein interactions for which the structures of both the unbound and bound states were determined. In structural terms, we found the binding site to have a preference for beta-sheets and for relatively long non-structured chains, but not for alpha-helices. Chemically, aromatic side-chains show a clear preference for binding sites. While the hydrophobic and polar content of the interface is similar to the rest of the surface, hydrophobic and polar residues tend to cluster in interfaces. In the crystal, the binding site has more bound water molecules surrounding it, and a lower B-factor already in the unbound protein. The same biophysical properties were found to hold for the unbound and bound DBs. All the significant interface properties were combined into ProMate, an interface prediction program. This was followed by an optimization step to choose the best combination of properties, as many of them are correlated. During optimization and prediction, the tested proteins were not used for data collection, to avoid over-fitting. The prediction algorithm is fully automated, and is used to predict the location of potential binding sites on unbound proteins with known structures. The algorithm is able to successfully predict the location of the interface for about 70% of the proteins. The success rate of the predictor was equal whether applied on the unbound DB or on the disjoint bound DB. A prediction is assumed correct if over half of the predicted continuous interface patch is indeed interface. The ability to predict the location of protein-protein interfaces has far reaching implications both towards our understanding of specificity and kinetics of binding, as well as in assisting in the analysis of the proteome.  相似文献   

7.
We investigate the extent to which the conformational fluctuations of proteins in solution reflect the conformational changes that they undergo when they form binary protein-protein complexes. To do this, we study a set of 41 proteins that form such complexes and whose three-dimensional structures are known, both bound in the complex and unbound. We carry out molecular dynamics simulations of each protein, starting from the unbound structure, and analyze the resulting conformational fluctuations in trajectories of 5 ns in length, comparing with the structure in the complex. It is found that fluctuations take some parts of the molecules into regions of conformational space close to the bound state (or give information about it), but at no point in the simulation does each protein as whole sample the complete bound state. Subsequent use of conformations from a clustered MD ensemble in rigid-body docking is nevertheless partially successful when compared to docking the unbound conformations, as long as the unbound conformations are themselves included with the MD conformations and the whole globally rescored. For one key example where sub-domain motion is present, a ribonuclease inhibitor, principal components analysis of the MD was applied and was also able to produce conformations for docking that gave enhanced results compared to the unbound. The most significant finding is that core interface residues show a tendency to be less mobile (by size of fluctuation or entropy) than the rest of the surface even when the other binding partner is absent, and conversely the peripheral interface residues are more mobile. This surprising result, consistent across up to 40 of the 41 proteins, suggests different roles for these regions in protein recognition and binding, and suggests ways that docking algorithms could be improved by treating these regions differently in the docking process.  相似文献   

8.
PA4608 is a single PilZ domain protein from Pseudomonas aeruginosa that binds to cyclic dimeric guanosine monophosphate (c-di-GMP). Although the monomeric structure of unbound PA4608 has been studied in detail, the molecular details of c-di-GMP binding to this protein are still uncharacterized. Hence, we determined the solution structure of c-di-GMP bound PA4608. We found that PA4608 undergoes conformational changes to expose the c-di-GMP binding site by ejection of the C-terminal 3(10) helix. A dislocation of the C-terminal tail in the presence of c-di-GMP implies that this region acts as a lid that alternately covers and exposes the hydrophobic surface of the binding site. In addition, mutagenesis and NOE data for PA4608 revealed that conserved residues are in contact with the c-di-GMP molecule. The unique structural characteristics of PA4608, including its monomeric state and its ligand binding characteristics, yield insight into its function as a c-di-GMP receptor.  相似文献   

9.
Rong Liu  Jianjun Hu 《Proteins》2013,81(11):1885-1899
Accurate prediction of DNA‐binding residues has become a problem of increasing importance in structural bioinformatics. Here, we presented DNABind, a novel hybrid algorithm for identifying these crucial residues by exploiting the complementarity between machine learning‐ and template‐based methods. Our machine learning‐based method was based on the probabilistic combination of a structure‐based and a sequence‐based predictor, both of which were implemented using support vector machines algorithms. The former included our well‐designed structural features, such as solvent accessibility, local geometry, topological features, and relative positions, which can effectively quantify the difference between DNA‐binding and nonbinding residues. The latter combined evolutionary conservation features with three other sequence attributes. Our template‐based method depended on structural alignment and utilized the template structure from known protein–DNA complexes to infer DNA‐binding residues. We showed that the template method had excellent performance when reliable templates were found for the query proteins but tended to be strongly influenced by the template quality as well as the conformational changes upon DNA binding. In contrast, the machine learning approach yielded better performance when high‐quality templates were not available (about 1/3 cases in our dataset) or the query protein was subject to intensive transformation changes upon DNA binding. Our extensive experiments indicated that the hybrid approach can distinctly improve the performance of the individual methods for both bound and unbound structures. DNABind also significantly outperformed the state‐of‐art algorithms by around 10% in terms of Matthews's correlation coefficient. The proposed methodology could also have wide application in various protein functional site annotations. DNABind is freely available at http://mleg.cse.sc.edu/DNABind/ . Proteins 2013; 81:1885–1899. © 2013 Wiley Periodicals, Inc.  相似文献   

10.
Mason AC  Jensen JH 《Proteins》2008,71(1):81-91
pK(a) values of ionizable residues have been calculated using the PROPKA method and structures of 75 protein-protein complexes and their corresponding free forms. These pK(a) values were used to compute changes in protonation state of individual residues, net changes in protonation state of the complex relative to the uncomplexed proteins, and the correction to a binding energy calculated assuming standard protonation states at pH 7. For each complex, two different structures for the uncomplexed form of the proteins were used: the X-ray structures determined for the proteins in the absence of the other protein and the individual protein structures taken from the structure of the complex (referred to as unbound and bound structures, respectively). In 28 and 77% of the cases considered here, protein-protein binding is accompanied by a complete (>95%) or significant (>50%) change in protonation state of at least one residue using unbound structures. Furthermore, in 36 and 61% of the cases, protein-protein binding is accompanied by a complete or significant net change in protonation state of the complex relative to the separated monomers. Using bound structures, the corresponding values are 12, 51, 20, and 48%. Comparison to experimental data suggest that using unbound and bound structures lead to over- and underestimation of binding-induced protonation state changes, respectively. Thus, we conclude that protein-protein binding is often associated with changes in protonation state of amino acid residues and with changes in the net protonation state of the proteins. The pH-dependent correction to the binding energy contributes at least one order of magnitude to the binding constant in 45 and 23%, using unbound and bound structures, respectively.  相似文献   

11.
The residue composition of a ligand binding site determines the interactions available for diffusion-mediated ligand binding, and understanding general composition of these sites is of great importance if we are to gain insight into the functional diversity of the proteome. Many structure-based drug design methods utilize such heuristic information for improving prediction or characterization of ligand-binding sites in proteins of unknown function. The Binding MOAD database if one of the largest curated sets of protein-ligand complexes, and provides a source of diverse, high-quality data for establishing general trends of residue composition from currently available protein structures. We present an analysis of 3,295 non-redundant proteins with 9,114 non-redundant binding sites to identify residues over-represented in binding regions versus the rest of the protein surface. The Binding MOAD database delineates biologically-relevant “valid” ligands from “invalid” small-molecule ligands bound to the protein. Invalids are present in the crystallization medium and serve no known biological function. Contacts are found to differ between these classes of ligands, indicating that residue composition of biologically relevant binding sites is distinct not only from the rest of the protein surface, but also from surface regions capable of opportunistic binding of non-functional small molecules. To confirm these trends, we perform a rigorous analysis of the variation of residue propensity with respect to the size of the dataset and the content bias inherent in structure sets obtained from a large protein structure database. The optimal size of the dataset for establishing general trends of residue propensities, as well as strategies for assessing the significance of such trends, are suggested for future studies of binding-site composition.  相似文献   

12.
We have carried out a series of studies on the binding of a substrate mimic to the enzyme lactate dehydrogenase (LDH) using advanced kinetic approaches, which begin to provide a molecular picture of the dynamics of ligand binding for this protein. Binding proceeds via a binding-competent subpopulation of the nonligated form of the protein (the LDH/NADH binary complex) to form a protein-ligand encounter complex. The work here describes the collapse of the encounter complex to form the catalytically competent Michaelis complex. Isotope-edited static Fourier transform infrared studies on the bound oxamate protein complex reveal two kinds of oxamate environments: 1), a major populated structure wherein all significant hydrogen-bonding patterns are formed at the active site between protein and bound ligand necessary for the catalytically productive Michaelis complex and 2), a minor structure in a configuration of the active site that is unfavorable to carry out catalyzed chemistry. This latter structure likely simulates a dead-end complex in the reaction mixture. Temperature jump isotope-edited transient infrared studies on the binding of oxamate with LDH/NADH suggest that the evolution of the encounter complex between LDH/NADH and oxamate collapses via a branched reaction pathway to form the major and minor bound species. The production of the catalytically competent protein-substrate complex has strong similarities to kinetic pathways found in two-state protein folding processes. Once the encounter complex is formed between LDH/NADH and substrate, the ternary protein-ligand complex appears to “fold” to form a compact productive complex in an all or nothing like fashion with all the important molecular interactions coming together at the same time.  相似文献   

13.
The Potato II (Pot II) family of proteinase inhibitors plays important roles in the constitutive and inducible defense of plants against predation by a wide range of pests. The structural basis of inhibition by a multidomain Pot II family inhibitor was revealed recently by the structure of the ternary complex between the two-headed tomato inhibitor-II (TI-II) and two molecules of subtilisin Carlsberg. Here we report the 2.15-A resolution crystal structure of the unbound form of TI-II that reveals significant conformational flexibility in the absence of bound proteinase molecules. The four independent copies of unbound TI-II in the asymmetric unit of the unit cell display a range of different conformations when compared with the bound form of the inhibitor, most strikingly in the orientations of the inhibitory domains and in the conformations of the reactive site loops. One of the two linker segments (residues 74 to 79) between the two domains as well as the adjacent beta-strand in Domain I (residues 80-85) is well ordered in all four copies of the unbound inhibitor, even though this region appeared to be disordered in the structure of the ternary complex. Conformational flexibility seen in the reactive site loops of unbound TI-II suggests a mechanism by which the inhibitor can balance the need for tight binding with the need for broad inhibitory function.  相似文献   

14.
Most protein chains interact with only one ligand but a small number of protein chains can bind several ligands, and many examples are available in the protein-ligand complex database of PDB. Among these proteins, some show preferences for the ligands or types of ligands they bind; however, so far we have only poor understanding of what determines protein-ligand binding and its specificity. Here we investigate the structural and functional properties of proteins in protein-ligand complexes. Analysis of the protein-ligand complex dataset from the PDB structure database reveals that proteins with more interactions have more disordered contact residues. Those proteins containing few disordered contact residues that bind multiple ligands have a tendency to consist of several domains. Analysis of physicochemical properties of hub contact residues binding multiple ligands indicates that they are enriched for hydrophilic, charged, polar and His-Asp catalytic triad residues. Finally, in order to differentiate proteins binding different classes of ligands, we mapped the three most prominent classes of ligands onto different superfamily domains. Our results demonstrate that contact residue disorder and ordered multiple domains are complementary factors that play a crucial role in determining ligand binding specificity and promiscuity.  相似文献   

15.
The albA gene of Klebsiella oxytoca encodes a protein of 221 amino acids that binds the albicidin phytotoxin with a high affinity (dissociation constant = 6.4 x 10(-8) M). For this study, circular dichroism (CD) spectrometry and an alanine scanning mutagenesis approach were used in combination to investigate the molecular and conformational mechanisms of this high-affinity protein-ligand interaction. CD analysis revealed that AlbA contains a high-affinity binding site, and binding of the albicidin ligand to AlbA in a low-ionic-strength environment induced significant conformational changes. The ligand-dependent conformational changes of AlbA were specific and rapid and reached a stable plateau within seconds after the addition of the antibiotic. However, such conformational changes were not detected when AlbA and albicidin were mixed in the high-ionic-strength buffer that is required for maximal binding activity. Based on the conceptual model of protein-ligand interaction, we propose that a threshold ion strength allows AlbA to complete its conformational rearrangement and resume its original stable structure for accommodation of the bound albicidin. Mutagenesis analysis showed that the replacement of Lys106, Trp110, Tyr113, Leu114, Tyr126, Pro134, and Trp162 with alanine did not change the overall conformational structure of AlbA but decreased the albicidin binding activity about 30 to 60%. We conclude that these residues, together with the previously identified essential residue His125, constitute a high-affinity binding pocket for the ligand albicidin. The results also suggest that hydrophobic and electrostatic potentials of these key amino acid residues may play important roles in the AlbA-albicidin interaction.  相似文献   

16.
We present a new method for predicting protein–ligand-binding sites based on protein three-dimensional structure and amino acid conservation. This method involves calculation of the van der Waals interaction energy between a protein and many probes placed on the protein surface and subsequent clustering of the probes with low interaction energies to identify the most energetically favorable locus. In addition, it uses amino acid conservation among homologous proteins. Ligand-binding sites were predicted by combining the interaction energy and the amino acid conservation score. The performance of our prediction method was evaluated using a non-redundant dataset of 348 ligand-bound and ligand-unbound protein structure pairs, constructed by filtering entries in a ligand-binding site structure database, LigASite. Ligand-bound structure prediction (bound prediction) indicated that 74.0 % of predicted ligand-binding sites overlapped with real ligand-binding sites by over 25 % of their volume. Ligand-unbound structure prediction (unbound prediction) indicated that 73.9 % of predicted ligand-binding residues overlapped with real ligand-binding residues. The amino acid conservation score improved the average prediction accuracy by 17.0 and 17.6 points for the bound and unbound predictions, respectively. These results demonstrate the effectiveness of the combined use of the interaction energy and amino acid conservation in the ligand-binding site prediction.  相似文献   

17.
The incidences of infections caused by an aerobic Gram-negative bacterium, Acinetobacter baumannii are very common in hospital environments. It usually causes soft tissue infections including urinary tract infections and pneumonia. It is difficult to treat due to acquired resistance to available antibiotics is well known. In order to design specific inhibitors against one of the important enzymes, peptidyl-tRNA hydrolase from Acinetobacter baumannii, we have determined its three-dimensional structure. Peptidyl-tRNA hydrolase (AbPth) is involved in recycling of peptidyl-tRNAs which are produced in the cell as a result of premature termination of translation process. We have also determined the structures of two complexes of AbPth with cytidine and uridine. AbPth was cloned, expressed and crystallized in unbound and in two bound states with cytidine and uridine. The binding studies carried out using fluorescence spectroscopic and surface plasmon resonance techniques revealed that both cytidine and uridine bound to AbPth at nanomolar concentrations. The structure determinations of the complexes revealed that both ligands were located in the active site cleft of AbPth. The introduction of ligands to AbPth caused a significant widening of the entrance gate to the active site region and in the process of binding, it expelled several water molecules from the active site. As a result of interactions with protein atoms, the ligands caused conformational changes in several residues to attain the induced tight fittings. Such a binding capability of this protein makes it a versatile molecule for hydrolysis of peptidyl-tRNAs having variable peptide sequences. These are the first studies that revealed the mode of inhibitor binding in Peptidyl-tRNA hydrolases which will facilitate the structure based ligand design.  相似文献   

18.
The role played by the degree of folding of protein backbones in explaining the binding energetics of protein-ligand interactions has been studied. We analyzed the protein/peptide interactions in the RNase-S system in which amino acids at two positions of the peptide S have been mutated. The global degree of folding of the protein S correlates in a significant way with the free energy and enthalpy of the protein-peptide interactions. A much better correlation is found with the local contribution to the degree of folding of one amino acid residue: Thr36. This residue is shown to have a destabilizing interaction with Lys41, which interacts directly with peptide S. Another system, consisting of the interactions of small organic molecules with HIV-1 protease was also studied. In this case, the global change in the degree of folding of the protease backbone does not explain the binding energetics of protein-ligand interactions. However, a significant correlation is observed between the free energy of binding and the contribution of two amino acid residues in the HVI-1 protease: Gly49 and Ile66. In general, it was observed that the changes in the degree of folding are not restricted to the binding site of the protein chain but are distributed along the whole protein backbone. This study provides a basis for further consideration of the degree of folding as a parameter for empirical structural parametrizations of the binding energetics of protein folding and binding.  相似文献   

19.
The RNA-dependent RNA polymerase (NS5B) from hepatitis C virus (HCV) is a key enzyme in HCV replication. NS5B is a major target for the development of antiviral compounds directed against HCV. Here we present the structures of three thiophene-based non-nucleoside inhibitors (NNIs) bound non-covalently to NS5B. Each of the inhibitors binds to NS5B non-competitively to a common binding site in the "thumb" domain that is approximately 35 Angstroms from the polymerase active site located in the "palm" domain. The three compounds exhibit IC(50) values in the range of 270 nM to 307 nM and have common binding features that result in relatively large conformational changes of residues that interact directly with the inhibitors as well as for other residues adjacent to the binding site. Detailed comparisons of the unbound NS5B structure with those having the bound inhibitors present show that residues Pro495 to Arg505 (the N terminus of the "T" helix) exhibit some of the largest changes. It has been reported that Pro495, Pro496, Val499 and Arg503 are part of the guanosine triphosphate (GTP) specific allosteric binding site located in close proximity to our binding site. It has also been reported that the introduction of mutations to key residues in this region (i.e. Val499Gly) ablate in vivo sub-genomic HCV RNA replication. The details of NS5B polymerase/inhibitor binding interactions coupled with the observed induced conformational changes provide new insights into the design of novel NNIs of HCV.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号