首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Xenopus laevis egg extracts cell-free nuclear assembly system was used as an experimental model to study the process of nuclear lamina assembly in nuclear reconstitution in vitro. The experimental results showed that lamin was involved in the nuclear assembly in vitro. The assembly of nuclear lamina was preceded by the assembly of nuclear matrix, and probably, inner nuclear matrix assembly provided the basis for nuclear lamina assembly. Inhibition of normal assembly of nuclear lamina, by preincubating egg extracts cell-free system with anti-lamin antibodies, resulted in abnormal assembly of nuclear envelope, suggesting that nuclear envelope assembly is closely associated with nuclear lamina assembly.  相似文献   

2.
Dramatic changes in cell and nuclear size occur during development and differentiation, and aberrant nuclear size is associated with many disease states. However, the mechanisms that regulate nuclear size are largely unknown. A robust system for investigating nuclear size is early Xenopus laevis development, during which reductions in nuclear size occur without changes in DNA content. To identify cellular factors that regulate nuclear size during development, we developed a novel nuclear resizing assay wherein nuclei assembled in Xenopus egg extract become smaller in the presence of cytoplasmic interphase extract isolated from post-gastrula Xenopus embryos. We show that nuclear shrinkage depends on conventional protein kinase C (cPKC). Increased nuclear cPKC localization and activity and decreased nuclear association of lamins mediate nuclear size reductions during development, and manipulating cPKC activity in vivo during interphase alters nuclear size in the embryo. We propose a model of steady-state nuclear size regulation whereby nuclear expansion is balanced by an active cPKC-dependent mechanism that reduces nuclear size.  相似文献   

3.
Xenopus laevis egg extracts cell-free nuclear assembly system was used as an experimental model to study the process of nuclear lamina assembly in nuclear reconstitutionin vitro. The experimental results showed that lamin was involved in the nuclear assemblyin vitro. The assembly of nuclear lamina was preceded by the assembly of nuclear matrix, and probably, inner nuclear matrix assembly provided the basis for nuclear lamina assembly. Inhibition of normal assembly of nuclear Iknina, by preincubating egg extracts cell-free system with anti-lamin antibodies, resulted in abnormal assembly of nuclear envelope, suggesting that nuclear envelope assembly is closely associated with nuclear lamina assembly.  相似文献   

4.
The nuclear envelope has traditionally been thought of as a barrier that separates the nucleoplasm from the cytoplasm in eukaryotic cells. Increasing evidence shows that the nuclear envelope also links the inside of the nucleus to the cytoskeleton. Here we discuss recent papers showing that this link occurs through complexes of lamins on the inner aspect of the inner nuclear membrane, transmembrane proteins of the inner nuclear membrane called SUNs and large nesprin isoforms localized specifically to the outer nuclear membrane. These discoveries have implications for nuclear positioning, nuclear migration and pathogenesis of inherited diseases that are caused by mutations in nuclear envelope proteins.  相似文献   

5.
Xenopus laevis egg extracts cell-free nuclear assembly system was used as an experimental model to study the process of nuclear lamina assembly in nuclear reconstitutionin vitro. The experimental results showed that lamin was involved in the nuclear assemblyin vitro. The assembly of nuclear lamina was preceded by the assembly of nuclear matrix, and probably, inner nuclear matrix assembly provided the basis for nuclear lamina assembly. Inhibition of normal assembly of nuclear Iknina, by preincubating egg extracts cell-free system with anti-lamin antibodies, resulted in abnormal assembly of nuclear envelope, suggesting that nuclear envelope assembly is closely associated with nuclear lamina assembly. Project supported by the National Natural Science Foundation of China.  相似文献   

6.
Reports of nuclear tRNA aminoacylation and its role in tRNA nuclear export (Lund and Dahlberg, 1998; Sarkar et al., 1999; Grosshans et al., 20001) have led to the prediction that there should be nuclear pools of aminoacyl-tRNA synthetases. We report that in budding yeast there are nuclear pools of tyrosyl-tRNA synthetase, Tys1p. By sequence alignments we predicted a Tys1p nuclear localization sequence and showed it to be sufficient for nuclear location of a passenger protein. Mutations of this nuclear localization sequence in endogenous Tys1p reduce nuclear Tys1p pools, indicating that the motif is also important for nucleus location. The mutations do not significantly affect catalytic activity, but they do cause defects in export of tRNAs to the cytosol. Despite export defects, the cells are viable, indicating that nuclear tRNA aminoacylation is not required for all tRNA nuclear export paths. Because the tRNA nuclear exportin, Los1p, is also unessential, we tested whether tRNA aminoacylation and Los1p operate in alternative tRNA nuclear export paths. No genetic interactions between aminoacyl-tRNA synthetases and Los1p were detected, indicating that tRNA nuclear aminoacylation and Los1p operate in the same export pathway or there are more than two pathways for tRNA nuclear export.  相似文献   

7.
The nuclear matrix is operationally defined as the structure remaining after nuclease-digested nuclei are extracted with high concentrations of salt. The nuclear matrix is thought to have a role in organizing higher order chromatin into loop domains. We determined whether specific regions of the histone H5 gene were very tightly bound to protein of erythrocyte and liver nuclear matrices in vitro. We demonstrate that DNA fragments spanning sequences 5' to the promoter and the 3' enhancer region of the histone H5 gene, but not DNA fragments spanning the promoter, were very tightly bound to protein of nuclear matrices of erythrocytes and liver. The nuclear matrix consists of internal nuclear matrix and nuclear pore-lamina complex. Recently, we demonstrated that histone deacetylase could be used as a marker enzyme of the internal nuclear matrix. We demonstrate that nuclear pore-lamina complex preparations that were depleted of histone deacetylase activity, and thus of internal nuclear matrix, retained the protein that bound very tightly to the beta-globin and histone H5 enhancers. These results provide evidence that specific regions of the histone H5 gene are very tightly bound to nuclear pore-lamina complex protein.  相似文献   

8.
Nucleation of nuclear bodies by RNA   总被引:1,自引:0,他引:1  
  相似文献   

9.
10.
11.
Nuclear shape changes are observed during a variety of developmental processes, pathological conditions, and ageing. The mechanisms underlying nuclear shape changes in the above-mentioned situations have mostly remained unclear. To address the molecular mechanism behind nuclear shape changes, we analyzed how the farnesylated nuclear envelope proteins Kugelkern and lamin Dm0 affect the structure of the nuclear membrane. We found that Kugelkern and lamin Dm0 affect nuclear shape without requiring filament formation or the presence of a classical nuclear lamina. We also could show that the two proteins do not depend on a group of selected inner nuclear membrane proteins for their localization to the nuclear envelope. Surprisingly, we found that farnesylated Kugelkern and lamin Dm0 protein constructs change the morphology of protein-free liposomes. Based on these findings, we propose that farnesylated proteins of the nuclear membrane induce nuclear shape changes by being asymmetrically inserted into the phospholipid bilayer via their farnesylated C-terminal part.  相似文献   

12.
13.
A fundamental question in cell biology concerns the regulation of organelle size. While nuclear size is exquisitely controlled in different cell types, inappropriate nuclear enlargement is used to diagnose and stage cancer. Clarifying the functional significance of nuclear size necessitates an understanding of the mechanisms and proteins that control nuclear size. One structural component implicated in the regulation of nuclear morphology is the nuclear lamina, a meshwork of intermediate lamin filaments that lines the inner nuclear membrane. However, there has not been a systematic investigation of how the level and type of lamin expression influences nuclear size, in part due to difficulties in precisely controlling lamin expression levels in vivo. In this study, we circumvent this limitation by studying nuclei in Xenopus laevis egg and embryo extracts, open biochemical systems that allow for precise manipulation of lamin levels by the addition of recombinant proteins. We find that nuclear growth and size are sensitive to the levels of nuclear lamins, with low and high concentrations increasing and decreasing nuclear size, respectively. Interestingly, each type of lamin that we tested (lamins B1, B2, B3, and A) similarly affected nuclear size whether added alone or in combination, suggesting that total lamin concentration, and not lamin type, is more critical to determining nuclear size. Furthermore, we show that altering lamin levels in vivo, both in Xenopus embryos and mammalian tissue culture cells, also impacts nuclear size. These results have implications for normal development and carcinogenesis where both nuclear size and lamin expression levels change.  相似文献   

14.
15.
16.
beta-Catenin nuclear import has been found to be independent of classical nuclear localization signal (NLS) nuclear import factors. Here, we test the hypothesis that beta-catenin interacts directly with nuclear pore proteins to mediate its own transport. We show that beta-catenin, unlike importin-beta, does not interact detectably with Phe/Gly(FG)-repeat-rich nuclear pore proteins or nucleoporins (Nups). Moreover, unlike NLS-containing proteins, beta-catenin nuclear import is not inhibited by wheat germ agglutinin (WGA) or excess importin-beta. These results suggest beta-catenin nuclear translocation does not involve direct interactions with FG-Nups. However, beta-catenin has two regions that can target it to the nucleus, and its import is cold sensitive, indicating that beta-catenin nuclear import is still an active process. Transport is blocked by a soluble form of the C-cadherin cytoplasmic domain, suggesting that masking of the nuclear targeting signal may be a mechanism of regulating beta-catenin subcellular localization.  相似文献   

17.
We have shown previously that protein kinase Cdelta (PKCdelta) is required for mitochondrial-dependent apoptosis. Here we show that PKCdelta is imported into the nucleus of etoposide-treated cells, that nuclear import is required for apoptosis and that it is mediated by a nuclear localization signal (NLS) in the C-terminus of PKCdelta. Mutation of the caspase cleavage site of PKCdelta inhibits nuclear accumulation in apoptotic cells, indicating that caspase cleavage facilitates this process. Expression of the PKCdelta catalytic fragment (CFdelta) in transfected cells results in nuclear localization and apoptosis. We show that the PKCdelta NLS is required for nuclear import of both full-length PKCdelta and CFdelta, and drives nuclear localization of a multimeric green fluorescent protein. Mutations within the NLS of CFdelta prevent nuclear accumulation and block apoptosis. Conversely, nuclear expression of a kinase-negative catalytic fragment (KN-CFdelta) protects cells from etoposide-induced apoptosis. Mutation of the NLS blocks the ability of KN-CFdelta to protect against etoposide-induced apoptosis. These results indicate that PKCdelta regulates an essential nuclear event(s) that is required for initiation of the apoptotic pathway.  相似文献   

18.
The nuclear transport of the internalised naER is influenced by a 58 kDa protein, p58, that appears to recognize the nuclear localization signals on the naER. At the nuclear pore complex the naER-p58 complex binds to a 62 kDa protein, p62; p58 recognizes p62 in this interaction. It is further observed that p62 gets 'docked' at a 66 kDa nuclear pore complex protein, npcp66. The nuclear entry of naER is an ATP-dependent process. An ATP-dependent biphasic nuclear entry of naER, has been observed. It is possible that the docking of p58-naER complex at the nuclear pore complex and the eventual nuclear entry of naER following its dissociation from the p58 are influenced by two different ranges in the concentration of ATP. In this process, it appears that, the nuclear entry requires an additional quantum of energy, provided by the hydrolysed ATP, in contrast to the energy requirement associated with, the nuclear 'docking' event.  相似文献   

19.
It has been known since the early 1970s that nuclear receptor complexes bind DNA in association with coregulatory proteins. Characterization of these nuclear receptor coregulators has revealed diverse enzymatic activities that temporally and spatially coordinate nuclear receptor activity within the context of local chromatin in response to diverse hormone signals. Chromatin-modifying proteins, which dictate the higher-order chromatin structure in which DNA is packaged, in turn orchestrate orderly recruitment of nuclear receptor complexes. Modifications of histones include acetylation, methylation, phosphorylation, ubiquitylation, sumoylation, ADP ribosylation, deimination, and proline isomerization. At this time, we understand how a subset of these modifications regulates nuclear receptor signaling. However, the effects, particularly of acetylation and demethylation, are profound. The finding that nuclear receptors are directly acetylated and that acetylation in turn directly regulates contact-independent growth has broad therapeutic implications. Studies over the past 7 yr have led to the understanding that nuclear receptor acetylation is a conserved function, regulating diverse nuclear receptor activity. Furthermore, we now know that acetylation of multiple and distinct substrates within nuclear receptor signaling pathways, form an acetylation signaling network from the cell surface to the nucleus. The finding that nicotinamide adenine dinucleotide (NAD)-dependent histone deacetylases, the sirtuins, are capable of deacetylating nuclear receptors provides a new level of complexity in the control of nuclear receptor activity in which local intracellular concentrations of NAD may regulate nuclear receptor physiology.  相似文献   

20.
Changes in nuclear morphology occur during normal development and have been observed during the progression of several diseases. The shape of a nucleus is governed by the balance of forces exerted by nuclear-cytoskeletal contacts and internal forces created by the structure of the chromatin and nuclear envelope. However, factors that regulate the balance of these forces and determine nuclear shape are poorly understood. The SWI/SNF chromatin remodeling enzyme ATPase, BRG1, has been shown to contribute to the regulation of overall cell size and shape. Here we document that immortalized mammary epithelial cells show BRG1-dependent nuclear shape changes. Specifically, knockdown of BRG1 induced grooves in the nuclear periphery that could be documented by cytological and ultrastructural methods. To test the hypothesis that the observed changes in nuclear morphology resulted from altered tension exerted by the cytoskeleton, we disrupted the major cytoskeletal networks and quantified the frequency of BRG1-dependent changes in nuclear morphology. The results demonstrated that disruption of cytoskeletal networks did not change the frequency of BRG1-induced nuclear shape changes. These findings suggest that BRG1 mediates control of nuclear shape by internal nuclear mechanisms that likely control chromatin dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号