首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract. Objectives: Human amnion is an easy‐to‐obtain novel source of human mesenchymal stem cells, which poses little or no ethical dilemmas. We have previously shown that human amnion‐derived mesenchymal (HAM) cells exhibit certain mesenchymal stem cell‐like characteristics with respect to expression of stem cell markers and differentiation potentials. Materials and methods: In this study, we further characterized HAM cells’ potential for in vivo therapeutic application. Results: Flow cytometric analyses of HAM cells show that they express several stem cell‐related cell surface markers, including CD90, CD105, CD59, CD49d, CD44 and HLA‐ABC, but not CD45, CD34, CD31, CD106 or HLA‐DR. HAM cells at the 10th passage showed normal karyotype. More interestingly, the AbdB‐like HOXA genes HOXA9, HOXA10 and HOXA11 that are expressed in the mesenchyme of the developing female reproductive tract and pregnant uteri are also expressed in HAM cells, suggesting similarities between these two mesenchymal cell types. Progesterone receptor is also highly expressed in HAM cells and expression of genes or proteins in HAM cells could be manipulated with the aid of lentivirus technology or cell‐permeable peptides. To test potentials of HAM cells for in vivo application, we introduced enhanced green fluorescence protein (EGFP)‐expressing HAM cells to mice by intrauterine infusion (into uteri) or by intravenous injection (into the circulation). Presence of EGFP‐expressing cells within the uterine mesenchyme after intrauterine infusion or in lungs after intravenous injection was noted within 1–4 weeks. Conclusions: Collectively, these results suggest that HAM cells are a potential source of mesenchymal stem cells with therapeutic potential.  相似文献   

2.
Mesenchymal stem cells (MSCs) are capable of self-renewal and differentiation into multiple cell lineages. Presently, bone marrow is considered as a prime source of MSCs; however, there are some drawbacks and limitations in use of these MSCs for cell therapy. In this study, we demonstrate that human gingival tissue-derived MSCs have several advantages over bone marrow-derived MSCs. Gingival MSCs are easy to isolate, homogenous and proliferate faster than bone marrow MSCs without any growth factor. Importantly, gingival MSCs display stable morphology and do not loose MSC characteristic at higher passages. In addition, gingival MSCs maintain normal karyotype and telomerase activity in long-term cultures, and are not tumorigenic. Thus, we reveal that human gingiva is a better source of MSCs than bone marrow, and large number of functionally competent clinical grade MSCs can be generated in short duration for cell therapy in regenerative medicine and tissue engineering.  相似文献   

3.
4.
5.
During the last decade, many strategies for cartilage engineering have been emerging. Stem cell induction is one of the possible approaches for cartilage engineering. The mesenchymal stem cells (MSCs) with their pluripotency and availability have been demonstrated to be an attractive cell source. It needs the stimulation with cell growth factors to make the multipluripotent MSCs differentiate into chondrogenic lineage. We have shown particular patterns of in vitro chondrogenesis induction on human bone marrow MSCs (hBMSCs) by cycling the growth factors. The pellet cultures of hBMSCs were prepared for chondrogenic induction. Growth factors: TGF-beta3, BMP-6, and IGF-1 were used in combination for cell induction. Gene expression, histology, immunohistology, and real-time PCR methods were measured on days 21 after cell induction. As shown by histology and immunohistology, the induced cells have shown the feature of chondrocytes in their morphology and extracellular matrix in both inducing patterns of combination and cycling induction. Moreover, the real-time PCR assay has shown the expression of gene markers of chondrogenesis, collagen type II and aggrecan. This study has demonstrated that cartilage tissue can be created from bone marrow mesenchymal stem cells. Interestingly, the combined growth factors TGF-beta3 and BMP-6 or TGF-beta3 and IGF-1 were more effective for chondrogenesis induction as shown by the real-time PCR assay. The combination of these growth factors may be the important key for in vitro chondrogenesis induction.  相似文献   

6.
Among the various kinds of fibroblasts existing in the human body, the periodontal ligament (PDL) fibroblasts have been suggested as multipotent cells. Periodontal ligament fibroblasts are characterized by rapid turnover, a high remodeling capacity and remarkable capacity for renewal and repair. They also differentiate into osteoblasts and cementoblasts. We established iPS cells from human PDL fibroblasts by introducing the ES cell markers Oct3/4, Sox2, Nanog, Klf4 and Lin28 by retrovirus transduction, even without the oncogene c-Myc. The iPS cells established in this study expressed the ES cell markers and formed teratomas in SCID mice. The c-Myc expression level in the PDL fibroblasts was higher than that in the iPS cells by quantitative RT-PCR. Therefore, we have concluded that PDL fibroblasts could be an optimal cell source for iPS cells.  相似文献   

7.
Diabetic retinopathy (DR), a leading cause of vision loss and a significant source of morbidity, is the most common ocular complication of prolonged diabetes mellitus. Most therapeutic approaches address DR by preventing or destroying neovasculature; however, this fails to eliminate pathogenic causes. Mesenchymal stem cells (MSCs) are a promising candidate for cell therapy because they have unique regenerative potential and provide an option to manage retinal injuries. Transplantation of MSCs in rats with diabetes induced by streptozocin administration was shown to ameliorate DR. However, the poor viability and homing of MSCs after transplantation may reduce the efficacy of cell therapy. Intravitreal transplantation of MSCs was shown to augment vascular endothelial growth factor (VEGF). More recent studies have found a central role for VEGF in vascular lesion formation in DR and proposed blockage of VEGF as an effective approach to manage DR. Atorvastatin, a 3-hydroxy-3-methyl-glutaryl coenzyme A reductase inhibitor, has been proven to decrease VEGF production of MSCs under hypoxic conditions. It has also been demonstrated that atorvastatin increases the viability of MSCs through the adenosine monophosphate-activated protein kinase-endothelial nitric oxide synthase signaling pathway. There is also evidence that nitric oxide improves homing of MSCs by increasing chemokine-related receptor CXCR4 expression. It could be hypothesized that co-administration of MSCs with atorvastatin may be a significant step forward in development of an efficient MSC therapy of DR through preventing excess VEGF production by MSCs under hypoxic conditions as well as increasing the viability and homing of transplanted MSCs.  相似文献   

8.
Stem cell therapy is not a new field, as indicated by the success of hematopoietic stem cell reconstitution for various hematological malignancies and immune-mediated disorders. In the case of tissue repair, the major issue is whether stem cells should be implanted, regardless of the type and degree of injury. Mesenchymal stem cells have thus far shown evidence of safety, based on numerous clinical trials, particularly for immune-mediated disorders. The premise behind these trials is to regulate the stimulatory immune responses negatively. To apply stem cells for other disorders, such as acute injuries caused by insults from surgical trauma and myocardial infarction, would require other scientific considerations. This does not imply that such injuries are not accompanied by immune responses. Indeed, acute injuries could accompany infiltration of immune cells to the sites of injuries. The implantation of stem cells within a milieu of inflammation will establish an immediate crosstalk among the stem cells, microenvironmental molecules, and resident and infiltrating immune cells. The responses at the microenvironment of tissue injury could affect distant and nearby organs. This editorial argues that the microenvironment of any tissue injury is a key consideration for effective stem cell therapy.  相似文献   

9.
Mesenchymal stem cells (MSCs) have been isolated based on the ability of adherence to plastic surfaces. The potential of these cells to differentiate along multiple lineages is the key to identifying stem cell populations in the absence of molecular markers. Here we describe a homogenous population of MSCs from mouse bone marrow isolated using a relatively straightforward and novel approach. This method is based on the combination of frequent medium change (FMC) and treatment of the primary cultures with trypsin. Cells isolated using this method demonstrated the MSCs characteristics including their ability to differentiate into mesenchymal lineages. MSCs retained the differentiation potentials in expanded cultures up to 10 passages. Isolated MSCs were reactive to the CD44, Sca-1, and CD90 cell surface markers. MSCs were negative for the hematopoietic surface markers such as CD34, CD11b, CD45, CD31, CD106, CD117 and CD135. The data presented in this report indicated that this method can result in efficient isolation of homogenous populations of MSCs from mouse bone marrow.  相似文献   

10.
Cell therapy is one of the important therapeutic approaches in the treatment of many diseases such as cancer, degenerative diseases, and cardiovascular diseases. Among various cell types, which could be used as cell therapies, stem cell therapy has emerged as powerful tools in the treatment of several diseases. Multipotent stem cells are one of the main classes of stem cells that could originate from different parts of the body such as bone marrow, adipose, placenta, and tooth. Among several types of multipotent stem cells, tooth-derived stem cells (TDSCs) are associated with special properties such as accessible, easy isolation, and low invasive, which have introduced them as a good source for using in the treatment of several diseases such as neural injuries, liver fibrosis, and Cohrn’s disease. Here, we provided an overview of TDSCs particular stem cells from human exfoliated deciduous teeth and clinical application of them. Moreover, we highlighted molecular mechanisms involved in the regulation of dental stem cells fate.  相似文献   

11.
12.
Adipose tissue is an abundantly available source of proliferative and multipotent mesenchymal stem cells with promising potential for regenerative therapeutics. We previously demonstrated that both human and mouse adipose-derived stem cells (ASCs) can be reprogrammed into induced pluripotent stem cells (iPSCs) with efficiencies higher than those that have been reported for other cell types. The ASC-derived iPSCs can be generated in a feeder-independent manner, representing a unique model to study reprogramming and an important step toward establishing a safe, clinical grade of cells for therapeutic use. In this study, we provide a detailed protocol for isolation, preparation and transformation of ASCs from fat tissue into mouse iPSCs in feeder-free conditions and human iPSCs using feeder-dependent or feeder/xenobiotic-free processes. This protocol also describes how ASCs can be used as feeder cells for maintenance of other pluripotent stem cells. ASC derivation is rapid and can be completed in <1 week, with mouse and human iPS reprogramming times averaging 1.5 and 2.5 weeks, respectively.  相似文献   

13.
14.
Mesenchymal stem cells (MSC) fail to induce allogeneic responses in mixed lymphocyte reaction assays. Because MSC express HLA class I molecules, here we investigated whether they could be recognized as allogeneic targets by cytolytic T lymphocytes (CTL). With this aim, CTL precursor (CTLp) frequencies were measured following stimulation of T cells with either allogeneic mononuclear cells (MNC) or MSC originated from the same human bone marrow donor. Lysis of MSC was measured at day 10 of culture in standard chromium release assays. In addition, allogeneic PHA blast T cells or B-EBV lymphoblastoid cell lines (LCLs) generated from the same donor were used as positive controls of lysis. Our results showed that when allogeneic MNC were used to stimulate T cells, a high CTLp frequency was detected towards MSC targets. However, when MSC were used as stimulators, CTLp frequencies were markedly altered whatever the targets used, i.e.: MSC, PHA blast T cells or EBV-B LCLs. Moreover, when graded concentrations of MSC were added together with MNC upon stimulation of alloreactive T cells, we observed a dose-dependent decrease in CTLp frequencies towards MSC targets. This inhibition of MSC lysis was partially overcome by adding exogenous rh-IL-2 from the beginning of cultures. In addition, this suppressive effect was totally reproduced when, instead of MSC, supernatant harvested from MSC cultures was added to allogeneic MNC, upon stimulation of alloreactive T cells. In conclusion, our results demonstrate that MSC which can be recognized as targets by pre-activated alloreactive CTLs, may be able to suppress differentiation of CTL precursors into CTL effectors through secretion of suppressive factors.  相似文献   

15.
We examined the morphological, phenotypic, and functional characteristics of human amniotic fluid mesenchymal stem cells (AF-MSCs) differentiated towards a Schwann cell lineage. Initially, we induced human AF-MSCs into nestin-positive AF-MSCs. And then, these nestin-positive AF-MSCs were induced into floating neurospheres. After that, neurospheres were induced to differentiate into Schwann-like cells using glia growth factors. In comparison with AF-MSCs, nestin-positive AF-MSCs significantly increased the ratio of neurosphere formation and the percentage of nestin expression in the neurosphere. Differentiated AF-MSCs showed morphological changes similar to those found in Schwann cells. Expression of the Schwann cell markers was determined by immunocytochemical staining and western blotting. Furthermore, differentiated AF-MSCs could promote neurite outgrowth in co-culture with dorsal root ganglia neurons. These results suggest that conversion of human nestin-positive AF-MSCs into cells with Schwann-like cell characteristics is possible and that these cells may have the potential for future cellular therapy for peripheral neurological disorders.  相似文献   

16.
诱导多能干细胞(iPS细胞)可以用于定向分化、动物发育、药物筛选和疾病治疗等研究和应用领域,可以避免ES细胞产生的免疫排斥和伦理道德问题.因此,iPS细胞的产生具有里程碑的意义,并迅速成为生物科学领域中的研究热点.然而,iPS细胞并非非常完美,没有任何瑕疵.研究过程中发现iPS细胞存在诱导频率过低、致瘤性、临床应用安全等一系列问题.本文主要综述有关iPS细胞前期研究成果和iPS细胞存在的一些问题以及iPS细胞与肿瘤细胞之间的联系.  相似文献   

17.
Efficient generation of iPS cells from skeletal muscle stem cells   总被引:1,自引:0,他引:1  
Reprogramming of somatic cells into inducible pluripotent stem cells generally occurs at low efficiency, although what limits reprogramming of particular cell types is poorly understood. Recent data suggest that the differentiation status of the cell targeted for reprogramming may influence its susceptibility to reprogramming as well as the differentiation potential of the induced pluripotent stem (iPS) cells that are derived from it. To assess directly the influence of lineage commitment on iPS cell derivation and differentiation, we evaluated reprogramming in adult stem cell and mature cell populations residing in skeletal muscle. Our data using clonal assays and a second-generation inducible reprogramming system indicate that stem cells found in mouse muscle, including resident satellite cells and mesenchymal progenitors, reprogram with significantly greater efficiency than their more differentiated daughters (myoblasts and fibroblasts). However, in contrast to previous reports, we find no evidence of biased differentiation potential among iPS cells derived from myogenically committed cells. These data support the notion that adult stem cells reprogram more efficiently than terminally differentiated cells, and argue against the suggestion that "epigenetic memory" significantly influences the differentiation potential of iPS cells derived from distinct somatic cell lineages in skeletal muscle.  相似文献   

18.
The term mesenchymal stem cell (MSCs) was adopted in the 1990s to describe a population of bone-marrow-derived cells that demonstrated the capacity for tri-lineage differentiation at a clonal level. Research conducted during the ensuing decades has demonstrated that MSCs fulfill many functions in addition to connective tissue progenitors including contributing to the HSC niche and regulating the function of immune effector cells of both the innate and adaptive immune system. Despite these advances, fundamental aspects of MSC biology remain indeterminate. For example, the embryonic origin of MSCs and their niche in vivo remains a highly debated topic. More importantly, the mechanisms that regulate self-renewal and lineage specification have also been largely unexplored. The later is significant in that MSC population's exhibit considerable donor-to-donor and intra-population heterogeneity but knowledge regarding how different functional attributes of MSCs are specified at the population level is unknown. This poses significant obstacles in research and in efforts to develop clinical manufacturing protocols that reproducibly generate functionally equivalent MSC populations. Herein, I discuss data demonstrating that MSC populations are intrinsically heterogeneous, elaborate on the molecular basis for this heterogeneity, and discuss how heterogeneity impacts clinical manufacturing and the therapeutic potency of MSCs.  相似文献   

19.
Mesenchymal stem cells (MSCs) are multipotent cells capable of differentiating into a wide range of cell types and provide a potential to transfer therapeutic protein in vivo, making them valuable candidates for gene therapy and cell therapy. However, using MSCs in in vivo is limited due to the low rate of transfection and transduction efficacy. Therefore, developing methods to efficiently transfer genes into MSCs would provide a number of opportunities for using them in the clinic. Here, we introduce a simple and robust method for efficient transduction of human adipose-derived MSCs by modification under the culture condition of human embryonic kidney cells 293 (HEK293T) and MSCs. Moreover, as a transduction enhancer, polybrene was replaced with Lipofectamine, a cationic lipid. Therefore, we showed that transduction of primary cells can be increased efficiently by modifying the culture condition.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号