首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 2 毫秒
1.
2.
3.
Small interfering RNA (siRNA) has been widely used for suppressing gene expression in various organisms. Here, we describe efficient methods to suppress target genes (EGFP or Oct4) using siRNA in mouse and monkey ES cells, and differentiation. In mouse ES cells, FACS analysis revealed that EGFP expression was suppressed in 97% of transfected cells at 48 h after transfection. In addition, cells expressed Hand1 and Cdx2, which are the marker genes of trophoblast lineage by the transient suppression of Oct4. In the case of monkey ES cells, highly efficient suppression was achieved in 98% of cells at 96 h post-transfection using the Sendai virus (hemagglutinating virus of Japan, HVJ) envelope as a carrier of siRNA. These efficient transfection methods using synthetic siRNA should contribute to evaluate specific gene function in ES cells and can be used to differentiate ES cells into desired cell lineages.  相似文献   

4.
5.
Embryonic stem cells (ES) can self-replicate and differentiate into all cell types including insulin-producing, beta-like cells and could, therefore, be used to treat diabetes mellitus. To date, results of stem cell differentiation into beta cells have been debated, largely due to difficulties in defining the identity of a beta cell. We have recently differentiated non-human primate (rhesus) embryonic stem (rES) cell lines into insulin producing, beta-like cells with the beta cell growth factor, Exendin-4 and using C-peptide as a phenotype marker. Cell development was characterized at each stage by gene and protein expression. Insulin, NKX6.1 and glucagon mRNA were expressed in stage 4 cells but not in early undifferentiated cells. We concluded that rES cells could be differentiated ex vivo to insulin producing cells. These differentiated rES cells could be used to develop a non-human primate model for evaluating cell therapy to treat diabetes. To facilitate the identification of beta-like cells and to track the cells post-transplantation, we have developed a marker gene construct: fusing the human insulin promoter (HIP) to the green fluorescent protein (GFP) gene. This construct was transfected into stage 3 rES derived cells and subsequent GFP expression was identified in C-peptide positive cells, thereby substantiating endogenous insulin production by rES derived cells. Using this GFP detection system, we will enrich our population of insulin producing rES derived cells and track these cells post-transplantation in the non-human primate model.  相似文献   

6.
Carbamazepine (CBZ) is one of the most commonly prescribed antiepileptic drugs (AEDs). However, a higher rate of congenital anomalies has been found in infants of mothers treated with CBZ during early pregnancy. Here, we characterize the effects of CBZ using a mouse ES cell differentiation system. The analysis of tissue-specific gene markers showed that CBZ induced early endodermal and mesodermal differentiation but inhibited differentiation of later stages. CBZ also induced ectodermal development, and there was evidence of neural differentiation as ES cells with an immature neuronal phenotype were observed. In contrast, valproic acid (VPA), another anticonvulsant drug, was previously shown to be able to induce ES cells to differentiate into neurons with a mature appearance. CBZ was less cytotoxic to ES cells than VPA. The in vitro ES cell assay system has the potential to provide a rapid and accurate approach for estimating the in vivo embryotoxicity of therapeutic drugs.  相似文献   

7.
The potential use of embryonic stem (ES) cells for cell therapy of diabetes requires improved methods for differentiation and isolation of insulin-producing beta-cells. The signal transduction protein SHB may be involved in both angiogenesis and beta-cell development. Here we show that cells expressing the pancreatic endodermal marker PDX-1 appear in the vicinity of vascular structures in ES cell-derived embryoid bodies (EBs) cultured in vitro. Moreover, overexpression of SHB as well as culture of EBs in presence of the angiogenic growth factors PDGF or VEGF enhanced the expression of PDX-1 and/or insulin mRNA. Finally, expression of GFP under control of the PDX-1 promoter in EBs allowed for the enrichment by FACS of cells expressing PDX-1, C-peptide, and insulin as determined by immunofluorescence. It is concluded that SHB and angiogenic factors promote the development of cells expressing PDX-1 and insulin in EBs and that such cells can be separated by FACS.  相似文献   

8.
Among six actin isoforms, α-skeletal and α-cardiac actins have similar amino acid components and are highly conserved. Although skeletal muscles essentially express α-skeletal actins in the adult tissue, α-cardiac isoform actin is prominent in the embryonic muscle tissue. Switching of actin isoforms from α-cardiac to α-skeletal actin occurs during skeletal muscle differentiation. The cardiac type α-actin is expressed in the regeneration and patho-physiological states of the skeletal muscles as well. In the present study, we demonstrate the morphological switching of α-type actin isoforms from α-cardiac to α-skeletal actin in vitro using mouse ES cells for the first time. Immunofluorescent double staining with two specific antibodies revealed that α-cardiac actin appeared first in myoblasts. After cell fusion to form myotubes, the cardiac type actin decreased and α-skeletal actin conversely increased. Finally, the α-skeletal isoform remained as a main actin component in the fully mature skeletal muscle fibers. The exchange of isoforms is not directly linked to the sarcomere formation. As a result, ES cells provide a useful in vitro system for exploring skeletal muscle differentiation.  相似文献   

9.
Valproic acid (VPA), which has a wide range of therapeutic applications, is known as a potent teratogen that induces neural tube defects in vertebrates. Here, we have characterized the tissue-specific, embryotoxic effects of VPA on developmental processes using a novel system with differentiating mouse ES cells. Under our cultivating condition, ES cells differentiated into cardiomyocytes, although various cell types can be differentiated. VPA affected cell viability and differentiation from undifferentiated ES cells to cardiomyocytes in a dose-dependent manner. The analysis of tissue-specific markers also revealed that VPA potently inhibited mesodermal and endodermal development but promoted neuronal differentiation in a lineage-specific manner. Taking the in vivo teratogenicity of VPA into account, this assay system could be useful in predicting the degree of embryotoxicity of VPA. We, thus, propose that the in vivo embryotoxic effects of various medicines can be estimated fast and accurately using this in vitro cell differentiation system.  相似文献   

10.
Recently, a new approach to reprogram somatic cells into pluripotent stem cells was shown by fusion of somatic cells with embryonic stem (ES) cells, which results in a tetraploid karyotype. Normal hepatocytes are often polyploid, so we decided to investigate the differentiation potential of fusion hybrids into hepatic cells. We chose toxic milk mice (a model of Wilson's disease) and performed initial transplantation experiments using this potential cell therapy approach. Mononuclear bone marrow cells from Rosa26 mice were fused with OG2 (Oct4-GFP transgenic) ES cells. Unfused ES cells were eliminated by selection with G418 for OG2-Rosa26 hybrids and fusion-derived colonies could be subcloned. Using an endodermal differentiation protocol, hepatic precursor cells could be generated. After FACS depletion of contaminating Oct4-GFP-positive cells, the hepatic precursor cells were transplanted into immunosuppressed toxic milk mice by intrasplenic injection. However, five out of eight mice showed teratoma formation within 3-6 weeks after transplantation in the spleen and liver. In conclusion, a hepatic precursor cell type was achieved from mononuclear bone marrow cell-ES cell hybrids and preliminary transplantation experiments confirmed engraftment, but also showed teratoma formation, which needs to be excluded by using more stringent purification strategies.  相似文献   

11.
 The developmental potential of parthenogenetic embryonic stem (P-ES) cells was studied in teratomas and mouse chimaeras. Teratomas derived from P-ES cells contained a mixture of tissue types with variable proportions of specific tissues. Three of the eight P-ES cell lines analysed showed high proportions of striated muscle in teratomas, similar to teratomas from normal embryos or ES cell lines derived from fertilised embryos (F-ES cells). Our study also revealed that one P-ES cell line showed little lineage restriction in injection chimaeras. Descendants of the P-ES cells contributed to most tissues of chimaeric fetuses in patterns similar to F-ES cells. Normal colonisation of muscle, liver and pancreas was found in adult chimaeras. P-ES cells also showed similar haematopoietic differentiation and maturation as F-ES cells. However, extensive P-ES cell contribution was associated with a reduction in body size. These findings suggest that, while P-ES cells display more extensive developmental potential than the cells of parthenogenetic embryos from which they were derived, they only retained properties related to the presence of the maternal genome. To elucidate the molecular basis for the lack of lineage restriction during in vivo differentiation, the expression of four imprinted genes, H19, Igf2r, Igf2 and Snrpn was compared among five P-ES and two F-ES cell lines. Expression levels of these genes varied among the different ES cell lines, both in undifferentiated ES cells and in embryoid bodies.  相似文献   

12.
Mitochondrial DNA (mtDNA) is a 16.6 kb genome that encodes for 13 of the 100+ subunits of the electron transfer chain (ETC), whilst the other subunits are encoded by chromosomal DNA. The ETC is responsible for the generation of the majority of cellular ATP through the process of oxidative phosphorylation (OXPHOS). mtDNA is normally inherited from the population present in the mature oocyte just prior to fertilisation. However, following somatic cell nuclear transfer (SCNT), mtDNA can be transmitted from both the donor cell and the recipient oocyte. This heteroplasmic transmission of mtDNA is a random event and does not appear to be related to the amount of mtDNA contributed by the donor cell. The distribution of mtDNA is randomly segregated between blastomeres and differentiating tissues, and therefore the mtDNA complement transmitted to offspring tissue cannot be predicted. mtDNA divergence between the cytoplast and the donor cell in intra- and inter-specific crosses favours a slightly more diverse mtDNA haplotype. However, this is limited as interspecies SCNT (iSCNT) genetic divergence contributes to developmental failure. SCNT embryos demonstrate a plethora of aberrantly reprogrammed characteristics including the uncoordinated regulation of the mtDNA replication factors. This results in increased mtDNA copy number during preimplantation development and propagates the replication of donor cell mtDNA. These failures are likely to be a consequence of incompatible nuclear- and mtDNA -encoded proteins interacting within the ETC thus reducing ATP production. The outcomes would be similar to the severely debilitating or even fatal mtDNA diseases associated with genetic rearrangements to mtDNA or mtDNA depletion type syndromes and have serious implications for any form of karyoplast transfer approach. The only method to overcome the problems of heteroplasmy in SCNT embryos is to completely deplete the donor cell of its mtDNA prior to SCNT.  相似文献   

13.
14.
The regulatory factor Differentiation Inhibiting Activity/Leukaemia Inhibitory Factor (DIA/LIF) suppresses the differentiation of cultured embryonic stem (ES) cells. In the present study, it is shown that ES cell lines can be derived and maintained in the absence of feeder layers using medium supplemented with purified DIA/LIF. These cells can differentiate normally in vitro and in vivo and they retain the capacity for germ-line transmission. DIA/LIF therefore fulfils the essential function of feeders in the isolation of pluripotential stem cells.  相似文献   

15.
In vitro osteogenic differentiation of human ES cells   总被引:1,自引:0,他引:1  
Since their isolation in 1998, human embryonic stem (hES) cells have been shown to be capable of adopting various cell fates in vitro. Here, we present in vitro data demonstrating the directed commitment of human embryonic stem cells to the osteogenic lineage. Human ES cells are shown to respond to factors that promote osteogenesis, leading to activation of the osteogenic markers osteocalcin, parathyroid hormone receptor, bone sialoprotein, osteopontin, cbfa1, and collagen 1. Moreover, the mineralized nodules obtained are composed of hydroxyapatite, further establishing the similarity of osteoblasts in culture to bone. These results show that osteoblasts can be derived from human ES cultures in vitro and provide the basis for comparison of adult and embryonic-derived osteogenesis, and for an investigation of potential applications for hES cells in orthopaedic tissue repair.  相似文献   

16.
Pluripotent murine embryonic stem (ES) cells can differentiate into all cell types both in vivo and in vitro. Based on their capability to proliferate and differentiate, these ES cells appear as a very promising tool for cell therapy. The understanding of the molecular mechanisms underlying the neural differentiation of the ES cells is a pre-requisite for selecting adequately the cells and conditions which will be able to correctly repair damaged brain and restore altered cognitive functions. Different methods allow obtaining neural cells from ES cells. Most of the techniques differentiate ES cells by treating embryoid bodies in order to keep an embryonic organization. More recent techniques, based on conditioned media, induce a direct differentiation of ES cells into neural cells, without going through the step of embryonic bodies. Beyond the fact that these techniques allow obtaining large numbers of neural precursors and more differentiated neural cells, these approaches also provide valuable information on the process of differentiation of ES cells into neural cells. Indeed, sequential studies of this process of differentiation have revealed that globally ES cells differentiating into neural cells in vitro recapitulate the molecular events governing the in vivo differentiation of neural cells. Altogether these data suggest that murine ES cells remain a highly valuable tool to obtain large amounts of precursor and differentiated neural cells as well as to get a better understanding of the mechanisms of neural differentiation, prior to a potential move towards the use of human ES cells in therapy.  相似文献   

17.
Mouse embryonic fibroblasts (MEFs) have been used as feeder cells to support the growth of mouse embryonic stem cell (mESC) and primordial germ cells (PGC) in culture for many years. However, MEF preparation is a complex and tedious task. Recently, there are reports indicating that the microenvironment provided by bone marrow stromal cells could support the survival of embryonic-like stem cells in bone marrow. In this report, rat bone marrow derived mesenchymal progenitor cells (MPC) were used as feeder cells to culture mouse Oct4-GFP ES cell and ES cell derived germ cells. FACS results show that similar to MEF, rat MPC could efficiently support growth of the mouse Oct4-GFP ES cell line in culture (MPC 85.5 ± 5.1% vs MEF 84.1 ± 6.2%). ES cells could be subcultured for >15 passages without losing morphological characteristics. The cultured cells expressed stem cell marker alkaline phosphatase, Oct4, Sox2, and SSEA-1. Furthermore, rat MPC cells were able to support survival of germ cells isolated from mouse Oct4-GFP ES cell formed embryoid bodies (EB). After induction by retinoic acid for 7 days, some isolated cells differentiated to spermatogonial stem-like cells, expressing Mvh, Stra-8, Hsp90-α, integrinβ1 and α6. Compared with traditional MEF culture systems, the rat MPC culture system is effective in supporting ES cell growth and is easy to prepare.  相似文献   

18.

Background  

Understanding how lineage choices are made during embryonic stem (ES) cell differentiation is critical for harnessing strategies for controlled production of therapeutic somatic cell types for cell transplantation and pharmaceutical drug screens. The in vitro generation of dopaminergic neurons, the type of cells lost in Parkinson's disease patients' brains, requires the inductive molecules sonic hedgehog and FGF8, or an unknown stromal cell derived inducing activity (SDIA). However, the exact identity of the responding cells and the timing of inductive activity that specify a dopaminergic fate in neural stem/progenitors still remain elusive.  相似文献   

19.
Human embryonic stem (ES) cell lines are one of the possible sources of cardiac myocytes to be transplanted in patients with end-staged heart failure. However, prior to the application of human of ES cells for heart failure therapy, it is critical to validate their clinical use in large animals such as primates. Cynomolgus monkey ES cells have similar properties to human ES cells and can be used for primate studies. We demonstrate that 24-h stimulation by a histone deacetylase inhibitor, trichostatin A (TSA) facilitated myocardial differentiation of monkey ES cells with embryonic bodies that were seeded on gelatin-coated dishes. TSA-induced acetylating of histone-3/4 and expression of p300, one of the intrinsic histone acetyltransferases. Thus, such induction as well as inhibition of histone deacetylase may be involved in TSA-induced differentiation of cynomolgus monkey ES cells into cardiomyocytes.  相似文献   

20.
Hepatic differentiation of mouse ES cells into BE cells in vitro   总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号