首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Roos J  Hummel T  Ng N  Klämbt C  Davis GW 《Neuron》2000,26(2):371-382
We present evidence that Futsch, a novel protein with MAP1B homology, controls synaptic growth at the Drosophila neuromuscularjunction through the regulation of the synaptic microtubule cytoskeleton. Futsch colocalizes with microtubules and identifies cytoskeletal loops that traverse the lateral margin of select synaptic boutons. An apparent rearrangement of microtubule loop architecture occurs during bouton division, and a genetic analysis indicates that Futsch is necessary for this process. futsch mutations disrupt synaptic microtubule organization, reduce bouton number, and increase bouton size. These deficits can be partially rescued by neuronal overexpression of a futsch MAP1B homology domain. Finally, genetic manipulations that increase nerve-terminal branching correlate with increased synaptic microtubule loop formation, and both processes require normal Futsch function. These data suggest a common microtubule-based growth mechanism at the synapse and growth cone.  相似文献   

2.
Fragile X mental retardation gene (FMR1) encodes an RNA binding protein that acts as a negative translational regulator. We have developed a Drosophila fragile X syndrome model using loss-of-function mutants and overexpression of the FMR1 homolog (dfxr). dfxr nulls display enlarged synaptic terminals, whereas neuronal overexpression results in fewer and larger synaptic boutons. Synaptic structural defects are accompanied by altered neurotransmission, with synapse type-specific regulation in central and peripheral synapses. These phenotypes mimic those observed in mutants of microtubule-associated Futsch. Immunoprecipitation of dFXR shows association with futsch mRNA, and Western analyses demonstrate that dFXR inversely regulates Futsch expression. dfxr futsch double mutants restore normal synaptic structure and function. We propose that dFXR acts as a translational repressor of Futsch to regulate microtubule-dependent synaptic growth and function.  相似文献   

3.
4.
The overall size and structure of a synaptic terminal is an important determinant of its function. In a large-scale mutagenesis screen, designed to identify Drosophila mutants with abnormally structured neuromuscular junctions (NMJs), we discovered mutations in Drosophila mical, a conserved gene encoding a multi-domain protein with a N-terminal monooxygenase domain. In mical mutants, synaptic boutons do not sprout normally over the muscle surface and tend to form clusters along synaptic branches and at nerve entry sites. Consistent with high expression of MICAL in somatic muscles, immunohistochemical stainings reveal that the subcellular localization and architecture of contractile muscle filaments are dramatically disturbed in mical mutants. Instead of being integrated into a regular sarcomeric pattern, actin and myosin filaments are disorganized and accumulate beneath the plasmamembrane. Whereas contractile elements are strongly deranged, the proposed organizer of sarcomeric structure, D-Titin, is much less affected. Transgenic expression of interfering RNA molecules demonstrates that MICAL is required in muscles for the higher order arrangement of myofilaments. Ultrastructural analysis confirms that myosin-rich thick filaments enter submembranous regions and interfere with synaptic development, indicating that the disorganized myofilaments may cause the synaptic growth phenotype. As a model, we suggest that the filamentous network around synaptic boutons restrains the spreading of synaptic branches.  相似文献   

5.
The ESCRT protein CHMP2B and the RNA-binding protein TDP-43 are both associated with ALS and FTD. The pathogenicity of CHMP2B has mainly been considered a consequence of autophagy–endolysosomal dysfunction, whereas protein inclusions containing phosphorylated TDP-43 are a pathological hallmark of ALS and FTD. Intriguingly, TDP-43 pathology has not been associated with the FTD-causing CHMP2BIntron5 mutation. In this study, we identify CHMP2B as a modifier of TDP-43–mediated neurodegeneration in a Drosophila screen. Down-regulation of CHMP2B reduces TDP-43 phosphorylation and toxicity in flies and mammalian cells. Surprisingly, although CHMP2BIntron5 causes dramatic autophagy dysfunction, disturbance of autophagy does not alter TDP-43 phosphorylation levels. Instead, we find that inhibition of CK1, but not TTBK1/2 (all of which are kinases phosphorylating TDP-43), abolishes the modifying effect of CHMP2B on TDP-43 phosphorylation. Finally, we uncover that CHMP2B modulates CK1 protein levels by negatively regulating ubiquitination and the proteasome-mediated turnover of CK1. Together, our findings propose an autophagy-independent role and mechanism of CHMP2B in regulating CK1 abundance and TDP-43 phosphorylation.  相似文献   

6.
7.
In a recent paper we addressed the mechanism by which defective autophagy contributes to TARDBP/TDP-43-mediated neurodegenerative disorders. We demonstrated that TARDBP regulates MTORC1-TFEB signaling by targeting RPTOR/raptor, a key component and an adaptor protein of MTORC1. Loss of TARDBP decreased the mRNA stability of RPTOR and this regulation in turn enhanced autophagosomal and lysosomal biogenesis in an MTORC1-dependent manner. Meanwhile, loss of TARDBP could also impair autophagosome-lysosome fusion in an MTORC1-independent manner. Importantly, we found that modulation of MTOR activity by treatment with rapamycin and phosphatidic acid had strong effects on the neurodegenerative phenotypes of TBPH (Drosophila TARDBP)-depleted flies. Taken together, our data reveal that multiple dysfunctions in the autophagic process contribute to TARDBP-linked neurodegeneration and may help to identify potential therapeutic targets in the future.  相似文献   

8.
9.
TAR DNA-binding protein-43 (TDP-43) proteinopathy has been linked to several neurodegenerative diseases, such as frontotemporal lobar degeneration with ubiquitin-positive inclusions and amyotrophic lateral sclerosis. Phosphorylated and ubiquitinated TDP-43 C-terminal fragments have been found in cytoplasmic inclusions in frontotemporal lobar degeneration with ubiquitin-positive inclusions and amyotrophic lateral sclerosis patients. However, the factors and pathways that regulate TDP-43 aggregation are still not clear. We found that the C-terminal 15 kDa fragment of TDP-43 is sufficient to induce aggregation but the aggregation phenotype is modified by additional sequences. Aggregation is accompanied by phosphorylation at serine residues 409/410. Mutation of 409/410 to phosphomimetic aspartic acid residues significantly reduces aggregation. Inhibition of either proteasome or autophagy dramatically increases TDP-43 aggregation. Furthermore, TDP-43 aggregates colocalize with markers of autophagy and the adaptor protein p62/SQSTM1. Over-expression of p62/SQSTM1 reduces TDP-43 aggregation in an autophagy and proteasome-dependent manner. These studies suggest that aggregation of TDP-43 C-terminal fragments is regulated by phosphorylation events and both the autophagy and proteasome-mediated degradation pathways.  相似文献   

10.
Verticillium dahliae is a devastating pathogenic fungus that causes severe vascular wilts in more than 400 dicotyledonous plants. The conidiation of V. dahliae in plant vascular tissues is the key strategy for its adaptation to the nutrient-poor environment and is required for its pathogenicity. However, it remains unclear about the regulatory mechanism of conidium production of V. dahliae in vascular tissues. Here, we found that VdAsp1, encoding an inositol polyphosphate kinase, is indispensable for the pathogenicity of V. dahliae. Loss of VdAsp1 function does not affect the invasion of the host, but it impairs the colonization and proliferation in vascular tissues. The ΔVdAsp1 mutant shows defective initiation of conidiophore formation and reduced expression of genes associated with the central developmental pathway. By live-cell imaging, we observed that some of ΔVdAsp1 mutant hyphae are swollen, and microtubule arrangements at the apical region of these hyphae are disorganized. These results indicate that VdAsp1 regulates the transition from vegetative growth to asexual reproduction by modulating microtubule dynamic organization, which is essential for V. dahliae to colonize and proliferate in vascular tissues. These findings provided a potential new direction in the control of vascular wilt pathogen by targeting conidium production in vascular tissues.  相似文献   

11.
Understanding the control of size is of fundamental biological and clinical importance. Insulin/IGF signaling during development controls growth and size, possibly by coordinating the activities of the Ras and PI 3-kinase signaling pathways. We show that in Drosophila mutating the consensus binding site for the Ras pathway adaptor Drk/Grb2 in Chico/IRS does not interfere with growth whereas mutating the binding sites of the PI 3-kinase adaptor p60 completely abrogates Chico function. Furthermore, we present biochemical and genetic evidence that loss of the homolog of the tumor suppressor gene, Pten, results in increased PtdInsP(3) levels and that these increased levels are sufficient to compensate for the complete loss of the Insulin/insulin-like growth factor receptor function. This reduction of Pten activity is also sufficient to vastly increase organism size. These results suggest that PtdInsP(3) is a second messenger for growth and that levels of PtdInsP(3) during development regulate organismal size.  相似文献   

12.
ABSTRACT

TARDBP/TDP-43 (TAR DNA binding protein) proteinopathies are a common feature in a variety of neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD), and Alzheimer disease (AD). However, the molecular mechanisms underlying TARDBP-induced neurotoxicity are largely unknown. In this study, we demonstrated that TARDBP proteinopathies induce impairment in the ubiquitin proteasome system (UPS), as evidenced by an accumulation of ubiquitinated proteins and a reduction in proteasome activity in neuronal cells. Through kinase inhibitor screening, we identified PTK2/FAK (PTK2 protein tyrosine kinase 2) as a suppressor of neurotoxicity induced by UPS impairment. Importantly, PTK2 inhibition significantly reduced ubiquitin aggregates and attenuated TARDBP-induced cytotoxicity in a Drosophila model of TARDBP proteinopathies. We further identified that phosphorylation of SQSTM1/p62 (sequestosome 1) at S403 (p-SQSTM1 [S403]), a key component in the autophagic degradation of poly-ubiquitinated proteins, is increased upon TARDBP overexpression and is dependent on the activation of PTK2 in neuronal cells. Moreover, expressing a non-phosphorylated form of SQSTM1 (SQSTM1S403A) significantly repressed the accumulation of insoluble poly-ubiquitinated proteins and neurotoxicity induced by TARDBP overexpression in neuronal cells. In addition, TBK1 (TANK binding kinase 1), a kinase that phosphorylates S403 of SQSTM1, was found to be involved in the PTK2-mediated phosphorylation of SQSTM1. Taken together, our data suggest that the PTK2-TBK1-SQSTM1 axis plays a critical role in the pathogenesis of TARDBP by regulating neurotoxicity induced by UPS impairment. Therefore, targeting the PTK2-TBK1-SQSTM1 axis may represent a novel therapeutic intervention for neurodegenerative diseases with TARDBP proteinopathies.Abbreviations: ALP: macroautophagy/autophagy lysosomal pathway; ALS: amyotrophic lateral sclerosis; ATXN2: ataxin 2; BafA1: bafilomycin A1; cCASP3: cleaved caspase 3; CSNK2: casein kinase 2; FTLD: frontotemporal lobar degeneration; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; OPTN: optineurin; PTK2/FAK: PTK2 protein tyrosine kinase 2; SQSTM1/p62: sequestosome 1; TARDBP/TDP-43: TAR DNA binding protein; TBK1: TANK binding kinase 1; ULK1: unc-51 like autophagy activating kinase 1; UPS: ubiquitin-proteasome system.  相似文献   

13.
14.
目的:探索Circ-COL5A1的生物学功能、调控机制和作用机制,进而为HCC转移的干预提供候选分子并进一步了解HCC转移。方法:通过前期工作基础选定目标分子Circ-COL5A1。通过慢病毒转染在HCC细胞系中过表达Circ-COL5A1,进而通过划痕愈合实验、transwell实验观察Circ-COL5A1的生物学功能。通过生物信息学分析、表达干扰实验和RNA免疫共沉淀(RIP)实验探究目标分子的调控机制。通过western blot技术、实时定量PCR(qRT-PCR)技术对目标分子的下游作用机制进行初步探索。结果:Circ-COL5A1在肝癌干细胞中表达下调,而且Circ-COL5A1过表达的HCC细胞系侵袭和迁移能力减弱。在Circ-COL5A1生物学合成过程中,RNA结合蛋白TDP-43可以富集其线性前体,并在环化结构形成后解离。Circ-COL5A1还可以降低其亲本基因V型胶原蛋白α1链(COL5A1)的蛋白质表达水平,这可能会影响多个信号通路进而干预HCC的转移过程。结论:内源性的Circ-COL5A1可以抑制HCC的转移能力,可以为阻断HCC转移提供候选分子。TDP-43的促进环状RNA形成提示RNA结合蛋白是环状RNA生物学合成过程中的重要调控因子。Circ-COL5A1可以通过转录后调控抑制其亲本基因COL5A1的表达。  相似文献   

15.
Human TDP-43 represents the main component of neuronal inclusions found in patients with neurodegenerative diseases, especially frontotemporal lobar degeneration and amyotrophic lateral sclerosis. In vitro and in vivo studies have shown that the TAR DNA-binding protein 43 (TDP-43) Drosophila ortholog (TBPH) can biochemically and functionally overlap the properties of the human factor. The recent direct implication of the human heterogeneous nuclear ribonucleoproteins (hnRNPs) A2B1 and A1, known TDP-43 partners, in the pathogenesis of multisystem proteinopathy and amyotrophic lateral sclerosis supports the hypothesis that the physical and functional interplay between TDP-43 and hnRNP A/B orthologs might play a crucial role in the pathogenesis of neurodegenerative diseases. To test this hypothesis and further validate the fly system as a useful model to study this type of diseases, we have now characterized human TDP-43 and Drosophila TBPH similarity in terms of protein-protein interaction pathways. In this work we show that TDP-43 and TBPH share the ability to associate in vitro with Hrp38/Hrb98DE/CG9983, the fruit fly ortholog of the human hnRNP A1/A2 factors. Interestingly, the protein regions of TDP-43 and Hrp38 responsible for reciprocal interactions are conserved through evolution. Functionally, experiments in HeLa cells demonstrate that TDP-43 is necessary for the inhibitory activity of Hrp38 on splicing. Finally, Drosophila in vivo studies show that Hrp38 deficiency produces locomotive defects and life span shortening in TDP-43 with and without animals. These results suggest that hnRNP protein levels can play a modulatory role on TDP-43 functions.  相似文献   

16.
The peptide hormone CNP has recently been found to positively regulate axon branching and growth via activation of cGMP signaling in embryonic dorsal root ganglion (DRG) neurons, but the cellular mechanisms mediating the regulation of these developmental processes have not been established. In this study, we provide evidence linking CNP/cGMP signaling to microtubule dynamics via the microtubule regulator CRMP2. First, phosphorylation of CRMP2 can be suppressed by cGMP activation in embryonic DRG neurons, and non‐phosphorylated CRMP2 promotes axon branching and growth. In addition, real time analysis of growing microtubule ends indicates a similar correlation of CRMP2 phosphorylation and its activity in promoting microtubule polymerization rates and durations in both COS cells and DRG neuron growth cones. Moreover, direct activation of cGMP signaling leads to increased assembly of dynamic microtubules in DRG growth cones. Finally, low doses of a microtubule depolymerization drug nocodazole block CNP/cGMP‐dependent axon branching and growth. Taken together, our results support a critical role of microtubule dynamics in mediating CNP/cGMP regulation of axonal development. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 73: 673–687, 2013  相似文献   

17.
18.
PTP1B is an important negative regulator of insulin and other signaling pathways in mammals. However, the role of PTP1B in the regulation of RAS-MAPK signaling remains open to deliberation, due to conflicting evidence from different experimental systems. The Drosophila orthologue of mammalian PTP1B, PTP61F, has until recently remained largely uncharacterized. To establish the potential role of PTP61F in the regulation of signaling pathways in Drosophila and particularly to help resolve its fundamental function in RAS-MAPK signaling, we generated a new allele of Ptp61F as well as employed both RNA interference and overexpression alleles. Our results validate recent data showing that the activity of insulin and Abl kinase signaling is increased in Ptp61F mutants and RNA interference lines. Importantly, we establish negative regulation of the RAS/MAPK pathway by Ptp61F activity in whole animals. Of particular interest, our results document the modulation of hyperactive MAP kinase activity by Ptp61F alleles, showing that the phosphatase intervenes to directly or indirectly regulate MAP kinase itself.  相似文献   

19.
20.
MAP1B, a structural microtubule (MT)‐associated protein highly expressed in developing neurons, plays a key role in neurite and axon extension. However, not all molecular mechanisms by which MAP1B controls MT dynamics during these processes have been revealed. Here, we show that MAP1B interacts directly with EB1 and EB3 (EBs), two core ‘microtubule plus‐end tracking proteins’ (+TIPs), and sequesters them in the cytosol of developing neuronal cells. MAP1B overexpression reduces EBs binding to plus‐ends, whereas MAP1B downregulation increases binding of EBs to MTs. These alterations in EBs behaviour lead to changes in MT dynamics, in particular overstabilization and looping, in growth cones of MAP1B‐deficient neurons. This contributes to growth cone remodelling and a delay in axon outgrowth. Together, our findings define a new and crucial role of MAP1B as a direct regulator of EBs function and MT dynamics during neurite and axon extension. Our data provide a new layer of MT regulation: a classical MAP, which binds to the MT lattice and not to the end, controls effective concentration of core +TIPs thereby regulating MTs at their plus‐ends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号