首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Rickettsia felis, the etiologic agent of spotted fever, is maintained in cat fleas by vertical transmission and resembles other tick-borne spotted fever group rickettsiae. In the present study, we utilized an Ixodes scapularis-derived tick cell line, ISE6, to achieve isolation and propagation of R. felis. A cytopathic effect of increased vacuolization was commonly observed in R. felis-infected cells, while lysis of host cells was not evident despite large numbers of rickettsiae. Electron microscopy identified rickettsia-like organisms in ISE6 cells, and sequence analyses of portions of the citrate synthase (gltA), 16S rRNA, Rickettsia genus-specific 17-kDa antigen, and spotted fever group-specific outer membrane protein A (ompA) genes and, notably, R. felis conjugative plasmids indicate that this cultivatable strain (LSU) was R. felis. Establishment of R. felis (LSU) in a tick-derived cell line provides an alternative and promising system for the expansion of studies investigating the interactions between R. felis and arthropod hosts.  相似文献   

2.
We report the isolation and establishment of Rickettsia felis in the C6/36 cell line. Rickettsial growth was intense, always with 90 to 100% of cells being infected after few weeks. The rickettsial isolate was confirmed by testing infected cells by PCR and sequencing fragments of three major Rickettsia genes (gltA, ompB, and the 17-kDa protein gene).  相似文献   

3.
Morphological differentiation in some arthropod-borne bacteria is correlated with increased bacterial virulence, transmission potential, and/or as a response to environmental stress. In the current study, we utilized an in vitro model to examine Rickettsia felis morphology and growth under various culture conditions and bacterial densities to identify potential factors that contribute to polymorphism in rickettsiae. We utilized microscopy (electron microscopy and immunofluorescence), genomic (PCR amplification and DNA sequencing of rickettsial genes), and proteomic (Western blotting and liquid chromatography-tandem mass spectrometry) techniques to identify and characterize morphologically distinct, long-form R. felis. Without exchange of host cell growth medium, polymorphic R. felis was detected at 12 days postinoculation when rickettsiae were seeded at a multiplicity of infection (MOI) of 5 and 50. Compared to short-form R. felis organisms, no change in membrane ultrastructure in long-form polymorphic rickettsiae was observed, and rickettsiae were up to six times the length of typical short-form rickettsiae. In vitro assays demonstrated that short-form R. felis entered into and replicated in host cells faster than long-form R. felis. However, when both short- and long-form R. felis organisms were maintained in cell-free medium for 12 days, the infectivity of short-form R. felis was decreased compared to long-form R. felis organisms, which were capable of entering host cells, suggesting that long-form R. felis is more stable outside the host cell. The relationship between rickettsial polymorphism and rickettsial survivorship should be examined further as the yet undetermined route of horizontal transmission of R. felis may utilize metabolically and morphologically distinct forms for successful transmission.  相似文献   

4.
We describe the isolation and characterization of Rickettsia monacensis sp. nov. (type strain, IrR/Munich(T)) from an Ixodes ricinus tick collected in a city park, the English Garden in Munich, Germany. Rickettsiae were propagated in vitro with Ixodes scapularis cell line ISE6. BLAST analysis of the 16S rRNA, the citrate synthase, and the partial 190-kDa rickettsial outer membrane protein A (rOmpA) gene sequences demonstrated that the isolate was a spotted fever group (SFG) rickettsia closely related to several yet-to-be-cultivated rickettsiae associated with I. ricinus. Phylogenetic analysis of partial rompA sequences demonstrated that the isolate was genotypically different from other validated species of SFG rickettsiae. R. monacensis also replicated in cell lines derived from the ticks I. ricinus (IRE11) and Dermacentor andersoni (DAE100) and in the mammalian cell lines L-929 and Vero, causing cell lysis. Transmission electron microscopy of infected ISE6 and Vero cells showed rickettsiae within the cytoplasm, pseudopodia, nuclei, and vacuoles. Hamsters inoculated with R. monacensis had immunoglobulin G antibody titers as high as 1:16,384, as determined by indirect immunofluorescence assay. Western blot analyses demonstrated that the hamster sera cross-reacted with peptides from other phylogenetically distinct rickettsiae, including rOmpA. R. monacensis induced actin tails in both tick and mammalian cells similar to those reported for R. rickettsii. R. monacensis joins a growing list of SFG rickettsiae that colonize ticks but whose infectivity and pathogenicity for vertebrates are unknown.  相似文献   

5.
This study investigated rickettsial infection in animals, humans, ticks, and fleas collected in five areas of the state of S?o Paulo. Eight flea species (Adoratopsylla antiquorum antiquorum, Ctenocephalides felis felis, Polygenis atopus, Polygenis rimatus, Polygenis roberti roberti, Polygenis tripus, Rhopalopsyllus lugubris, and Rhopalopsyllus lutzi lutzi), and five tick species (Amblyomma aureolatum, Amblyomma cajennense, Amblyomma dubitatum, Ixodes loricatus, and Rhipicephalus sanguineus) were collected from dogs, cats, and opossums. Rickettsia felis was the only rickettsia found infecting fleas, whereas Rickettsia bellii was the only agent infecting ticks, but no animal or human blood was shown to contain rickettsial DNA. Testing animal and human sera by indirect immunofluorescence assay against four rickettsia antigens (R. rickettsii, R. parkeri, R. felis, and R. bellii), some opossum, dog, horse, and human sera reacted to R. rickettsii with titers at least four-fold higher than to the other three rickettsial antigens. These sera were considered to have a predominant antibody response to R. rickettsii. Using the same criteria, opossum, dog, and horse sera showed predominant antibody response to R. parkeri or a very closely related genotype. Our serological results suggest that both R. rickettsii and R. parkeri infected animals and/or humans in the studied areas.  相似文献   

6.
Until the recent discovery of pRF in Rickettsia felis, the obligate intracellular bacteria of the genus Rickettsia (Rickettsiales: Rickettsiaceae) were thought not to possess plasmids. We describe pRM, a plasmid from Rickettsia monacensis, which was detected by pulsed-field gel electrophoresis and Southern blot analyses of DNA from two independent R. monacensis populations transformed by transposon-mediated insertion of coupled green fluorescent protein and chloramphenicol acetyltransferase marker genes into pRM. Two-dimensional electrophoresis showed that pRM was present in rickettsial cells as circular and linear isomers. The 23,486-nucleotide (31.8% G/C) pRM plasmid was cloned from the transformant populations by chloramphenicol marker rescue of restriction enzyme-digested transformant DNA fragments and PCR using primers derived from sequences of overlapping restriction fragments. The plasmid was sequenced. Based on BLAST searches of the GenBank database, pRM contained 23 predicted genes or pseudogenes and was remarkably similar to the larger pRF plasmid. Two of the 23 genes were unique to pRM and pRF among sequenced rickettsial genomes, and 4 of the genes shared by pRM and pRF were otherwise found only on chromosomes of R. felis or the ancestral group rickettsiae R. bellii and R. canadensis. We obtained pulsed-field gel electrophoresis and Southern blot evidence for a plasmid in R. amblyommii isolate WB-8-2 that contained genes conserved between pRM and pRF. The pRM plasmid may provide a basis for the development of a rickettsial transformation vector.  相似文献   

7.
Rickettsiae are obligate intracellular alphaproteobacteria that include pathogenic species in the spotted fever, typhus, and transitional groups. The development of a standardized cell line in which diverse rickettsiae can be grown and compared would be highly advantageous to investigate the differences among and between pathogenic and nonpathogenic species of rickettsiae. Although several rickettsial species have been grown in tick cells, tick cells are more difficult to maintain and they grow more slowly than insect cells. Rickettsia-permissive arthropod cell lines that can be passaged rapidly are highly desirable for studies on arthropod-Rickettsia interactions. We used two cell lines (Aedes albopictus cell line Aa23 and Anopheles gambiae cell line Sua5B) that have not been used previously for the purpose of rickettsial propagation. We optimized the culture conditions to propagate one transitional-group rickettsial species (Rickettsia felis) and two spotted-fever-group rickettsial species (R. montanensis and R. peacockii) in each cell line. Both cell lines allowed the stable propagation of rickettsiae by weekly passaging regimens. Stable infections were confirmed by PCR, restriction digestion of rompA, sequencing, and the direct observation of bacteria by fluorescence in situ hybridization. These cell lines not only supported rickettsial growth but were also permissive toward the most fastidious species of the three, R. peacockii. The permissive nature of these cell lines suggests that they may potentially be used to isolate novel rickettsiae or other intracellular bacteria. Our results have important implications for the in vitro maintenance of uncultured rickettsiae, as well as providing insights into Rickettsia-arthropod interactions.  相似文献   

8.
Rickettsia are obligate intracellular pathogens transmitted by arthropod vectors. The re-emergence of several rickettsioses imposes severe global health burden. In addition to the well-established rickettsial pathogens, newer rickettsial species and their pathogenic potentials are being uncovered. There are many reports of spotted and typhus fever caused by rickettsiae in India. Hence, in this study we screened the ectoparasites of pet and domestic animals for the presence of rickettsia using polymerase chain reaction. Nine cat flea samples (Ctenocephalides felis felis), that tested positive for the presence of rickettsia were subjected to Multi Locus Sequence Typing. Nucleotide sequencing and Phylogenetic analysis of gltA, ompB and 16rrs genes revealed that the rickettsiae detected in cat fleas was Rickettsia asembonensis. Further studies are required to assess Rickettsia asembonensis pathogenic potential to human and its enzootic maintenance of in various hosts and vectors.  相似文献   

9.
The male-killing ladybird beetle (LB) bacterium (AB bacterium) was analyzed with specific rickettsial molecular biology tools in the LB Adalia bipunctata strains. Eight phenotype-positive LB strains showing mortality of male embryos were amplified with rickettsial genus-specific primers from the gene for citrate synthase (CS) and the gene for a 17-kDa protein and spotted fever group-specific primers from the gene for the 120-kDa outer membrane protein (ompB). The specificity of amplification was confirmed by Southern hybridization and the absence of the above-listed gene products in three phenotype-negative LB strains. Restriction polymorphism patterns of three examined amplicons from the CS gene, 17-kDa-protein gene, and ompB gene were identical among the eight phenotype-positive LB strains and were unique among all known rickettsiae of the spotted fever and typhus groups. Amplified fragments of the CS genes of the AB bacterium, Rickettsia prowazekii Breinl, Rickettsia typhi Wilmington, Rickettsia canada 2678, and Rickettsia conorii 7 (Malish) were sequenced. The greatest differences among the above-listed rickettsial and AB bacterium CS gene sequences were between bp 1078 and 1110. Numerical analysis based on CS gene fragment sequences shows the close relationships of the AB bacterium to the genus Rickettsia. Expanding of knowledge about rickettsial arthropod vectors and participation of rickettsiae in the cytoplasmic maternal inheritance of arthropods is discussed.  相似文献   

10.
This study revealed the presence of various rickettsial agents in mites from wild rodents collected in Southern Jeolla Province, Korea, by nested polymerase chain reaction (PCR) and sequence analysis of a partial citrate synthase and rickettsia outer membrane protein B genes. Rickettsial agents closely related to the Rickettsia species TwKM02, R. australis, and the Rickettsia species Cf15 were successfully identified in this study, for the first time in Korea, and R. japonica, R. akari, R. conorii, R. felis, and R. typhi were also detected, as previously described. The data presented in this paper extend knowledge on the geographic distribution of SFG rickettsiae in eastern Asia and it may necessary to consider the role of mites in rickettsial transmission.  相似文献   

11.
Rickettsia felis is a rickettsial pathogen primarily associated with the cat flea, Ctenocephalides felis. Although laboratory studies have confirmed that R. felis is maintained by transstadial and transovarial transmission in C. felis, distinct mechanisms of horizontal transmission of R. felis among cat fleas are undefined. Based on the inefficient vertical transmission of R. felis by cat fleas and the detection of R. felis in a variety of haematophagous arthropods, we hypothesize that R. felis is horizontally transmitted between cat fleas. Towards testing this hypothesis, flea transmission of R. felis via a bloodmeal was assessed weekly for 4 weeks. Rhodamine B was used to distinguish uninfected recipient and R. felis-infected donor fleas in a rickettsial horizontal transmission bioassay, and quantitative real-time PCR assay was used to measure transmission frequency; immunofluorescence assay also confirmed transmission. Female fleas acquired R. felis infection more readily than male fleas after feeding on a R. felis-infected bloodmeal for 24 h (69.3% and 43.3%, respectively) and both Rickettsia-uninfected recipient male and female fleas became infected with R. felis after cofeeding with R. felis-infected donor fleas (3.3-40.0%). Distinct bioassays were developed to further determine that R. felis was transmitted from R. felis-infected to uninfected fleas during cofeeding and copulation. Vertical transmission of R. felis by infected fleas was not demonstrated in this study. The demonstration of horizontal transmission of R. felis between cat fleas has broad implications for the ecology of R. felis rickettsiosis.  相似文献   

12.
We describe the isolation and characterization of Rickettsia monacensis sp. nov. (type strain, IrR/MunichT) from an Ixodes ricinus tick collected in a city park, the English Garden in Munich, Germany. Rickettsiae were propagated in vitro with Ixodes scapularis cell line ISE6. BLAST analysis of the 16S rRNA, the citrate synthase, and the partial 190-kDa rickettsial outer membrane protein A (rOmpA) gene sequences demonstrated that the isolate was a spotted fever group (SFG) rickettsia closely related to several yet-to-be-cultivated rickettsiae associated with I. ricinus. Phylogenetic analysis of partial rompA sequences demonstrated that the isolate was genotypically different from other validated species of SFG rickettsiae. R. monacensis also replicated in cell lines derived from the ticks I. ricinus (IRE11) and Dermacentor andersoni (DAE100) and in the mammalian cell lines L-929 and Vero, causing cell lysis. Transmission electron microscopy of infected ISE6 and Vero cells showed rickettsiae within the cytoplasm, pseudopodia, nuclei, and vacuoles. Hamsters inoculated with R. monacensis had immunoglobulin G antibody titers as high as 1:16,384, as determined by indirect immunofluorescence assay. Western blot analyses demonstrated that the hamster sera cross-reacted with peptides from other phylogenetically distinct rickettsiae, including rOmpA. R. monacensis induced actin tails in both tick and mammalian cells similar to those reported for R. rickettsii. R. monacensis joins a growing list of SFG rickettsiae that colonize ticks but whose infectivity and pathogenicity for vertebrates are unknown.  相似文献   

13.
Rickettsioses are arthropod-borne diseases caused by parasites from the Order Rickettsiales. The most prevalent rickettsial disease in Brazil is Brazilian Spotted Fever (BSF). This work intends the molecular detection of those agents in ectoparasites from an endemic area of BSF in the state of Espírito Santo. A total of 502 ectoparasites, among them Amblyomma cajennense, Amblyomma dubitatum (A. cooperi), Riphicephalus sanguineus, Anocentor nitens and Ctenocephalides felis, was collected from domestic animals and the environment and separated in 152 lots according to the origin. Rickettsia sp. was detected in pools of all collected species by amplification of 17 kDa protein-encoding gene fragments. The products of PCR amplification of three samples were sequenced, and Rickettsia felis was identified in R. sanguineus and C. felis. These results confirm the presence of Rickettsia felis in areas previously known as endemic for BSF, disease caused by Rickettsia rickettsii. Moreover, they show the needing of further studies for deeper knowledge of R. felis-spotted fever epidemiology and differentiation of these diseases in Brazil.  相似文献   

14.
Rickettsiae, obligate intracellular Gram-negative bacteria, responsible for mild to severe diseases in humans are associated with arthropod vectors. Dermacentor marginatus and Dermacentor reticulatus are known vectors of Rickettsia slovaca and Rickettsia raoultii distributed across Europe. A total of 794 D. marginatus, D. reticulatus and Ixodes ricinus adult ticks were collected from the vegetation, removed from horses, sheep, goats and dogs in Slovakia. The DNA of Rickettsia sp. was found in 229 ticks by PCR amplifying parts of gltA, ompA and sca4 genes. Next analyses of Rickettsia-positive samples by PCR-RFLP and/or sequencing showed D. reticulatus ticks were more infected with R. raoultii and D. marginatus were more infected with R. slovaca. The prevalence of R. raoultii was 8.1-8.6% and 22.3-27% in D. marginatus and D. reticulatus, respectively. The prevalence of R. slovaca was 20.6-24.3% in D. marginatus and 1.7-3.4% in D. reticulatus. Intracellular growth of R. raoultii isolate from D. marginatus tick was evaluated by rOmpA-based quantitative SybrGreen PCR assay. The highest point of multiplication was recorded on the 7th and 8th day postinfection in Vero and L929 cells, respectively. R. raoultii was transmitted during feeding of R. raoultii-positive ticks to guinea pigs and subsequently rickettsial infection was recorded in all organs, the highest infection was in spleen, liver and heart. Our study describes the detection and isolation of tick-borne pathogens R. raoultii and R. slovaca, show that they are spread in Slovakia and highlight their risk for humans.  相似文献   

15.
Rickettsia felis, the etiologic agent of spotted fever, is maintained in cat fleas by vertical transmission and resembles other tick-borne spotted fever group rickettsiae. In the present study, we utilized an Ixodes scapularis-derived tick cell line, ISE6, to achieve isolation and propagation of R. felis. A cytopathic effect of increased vacuolization was commonly observed in R. felis-infected cells, while lysis of host cells was not evident despite large numbers of rickettsiae. Electron microscopy identified rickettsia-like organisms in ISE6 cells, and sequence analyses of portions of the citrate synthase (gltA), 16S rRNA, Rickettsia genus-specific 17-kDa antigen, and spotted fever group-specific outer membrane protein A (ompA) genes and, notably, R. felis conjugative plasmids indicate that this cultivatable strain (LSU) was R. felis. Establishment of R. felis (LSU) in a tick-derived cell line provides an alternative and promising system for the expansion of studies investigating the interactions between R. felis and arthropod hosts.  相似文献   

16.
Free-living adult Amblyomma incisum ticks were collected in an Atlantic rainforest area at Intervales State Park, State of São Paulo, Brazil. From an A. incisum specimen, rickettsiae were successfully isolated in Vero cell culture by the shell vial technique. Rickettsial isolation was confirmed by optical microscopy, transmission electron microscopy, and PCRs targeting portions of the rickettsial genes gltA, htrA, rrs, and sca1 on infected cells. Fragments of 1,089, 457, 1,362, and 443 nucleotides of the gltA, htrA, rrs, and sca1 genes, respectively, were sequenced. By BLAST analysis, the partial sequence of rrs of the A. incisum rickettsial isolate was closest to the corresponding sequence of Rickettsia bellii (99.1% similarity). The gltA partial sequence was closest to the corresponding sequences of “Candidatus Rickettsia tarasevichiae” (96.1% similarity) and Rickettsia canadensis (95.8% similarity). The htrA partial sequence was closest to the corresponding sequence of R. canadensis (89.8% similarity). The sca1 partial sequence was closest to the corresponding sequence of R. canadensis (95.2% similarity). Since our rickettsial isolate was genetically distinct from other Rickettsia species, we propose a new species designated Rickettsia monteiroi sp. nov. Phylogenetic analyses indicated that R. monteiroi belongs to the canadensis group within the genus Rickettsia, together with the species R. canadensis and “Candidatus R. tarasevichiae”. Little or no antibody cross-reaction was observed between sera of R. monteiroi-inoculated guinea pigs and R. bellii-, Rickettsia rickettsii-, or R. canadensis-inoculated guinea pigs.  相似文献   

17.
Twenty Rhipicephalus sanguineus ticks collected in eastern Arizona were tested by PCR assay to establish their infection rate with spotted fever group rickettsiae. With a nested PCR assay which detects a fragment of the Rickettsia genus-specific 17-kDa antigen gene (htrA), five ticks (25%) were found to contain rickettsial DNA. One rickettsial isolate was obtained from these ticks by inoculating a suspension of a triturated tick into monolayers of Vero E6 monkey kidney cells and XTC-2 clawed toad cells, and its cell culture and genotypic characteristics were determined. Fragments of the 16S rRNA, GltA, rOmpA, rOmpB, and Sca4 genes had 100%, 100%, 99%, 99%, and 99%, respectively, nucleotide similarity to Rickettsia massiliae strain Bar29, previously isolated from R. sanguineus in Catalonia, Spain (L. Beati et al., J. Clin. Microbiol. 34:2688-2694, 1996). The new isolate, AZT80, does not elicit cytotoxic effects in Vero cells and causes a persistent infection in XTC-2 cells. The AZT80 strain is susceptible to doxycycline but resistant to rifampin and erythromycin. Whether R. massiliae AZT80 is pathogenic or infectious for dogs and humans or can cause seroconversion to spotted fever group antigens in the United States is unknown.  相似文献   

18.
A new species of rickettsiae with unknown pathogenicity has been detected in ticks Dermacentor silvarum in the region of Baikal Lake. As revealed by the analysis of the primary structure of the gene fragment coding surface membrane protein of 190 kD (rOmpA), the nucleotide sequence of the rickettsiae under study is mostly similar to the sequences of R. sp. MOAa isolate (96%), R. sp. WB-8-2 (96%), R. massiliae strain GS (94%), Rickettsia BAR-29 (94%), R. rhipicephali (94%). Similarity with the sequence of R. sibirica has proved to be 91%. The data thus obtained indicate that the detected rickettsiae represent a new rickettsial species in the territory of East Siberia.  相似文献   

19.
潘慧鹏  张友军 《昆虫学报》2012,55(9):1103-1108
Rickettsia是传播和引起人类与其他脊椎动物疾病的胞内共生菌。引起脊椎动物疾病的这些Rickettsia, 其部分生活史是在节肢动物体内完成的;而另外许多Rickettsia, 其整个生活史都是在宿主节肢动物体内完成。为了叙述方便, 把前者称为脊椎动物Rickettsia, 后者称为节肢动物Rickettsia。过去的研究主要集中在医学上具有重大意义的脊椎动物Rickettsia, 而关于节肢动物Rickettsia的生物学特性等研究则相对较少。近年来, 研究者们加大了对昆虫Rickettsia的研究, 发现昆虫Rickettsia广泛分布于昆虫中, 且有两种存在形式。其可以通过垂直卵传的方式在世代间传递, 也可以通过寄生蜂和寄主植物达到在昆虫之间传播的目的。昆虫Rickettsia可通过诱导孤雌生殖、 诱导杀雄等方式影响宿主的生殖行为。其对不同宿主昆虫可产生对宿主有利或有害的作用;可增强宿主昆虫抵御高温和寄生蜂的能力, 与宿主昆虫对药剂的敏感性相关。最后, 昆虫Rickettsia具有一个简化的基因组, 且存在进一步减小的可能性。  相似文献   

20.
Rickettsia typhi and Rickettsia felis (Rickettsiales: Rickettsiaceae) are two rickettsiae principally transmitted by fleas, but the detection of either pathogen has rarely been attempted in Taiwan. Of 2048 small mammals trapped in eastern Taiwan, Apodemus agrarius Pallas (24.5%) and Mus caroli Bonhote (24.4%) (both: Rodentia: Muridae) were the most abundant, and M. caroli hosted the highest proportion of fleas (63.9% of 330 fleas). Two flea species were identified: Stivalius aporus Jordan and Rothschild (Siphonaptera: Stivaliidae), and Acropsylla episema Rothschild (Siphonaptera: Leptopsyllidae). Nested polymerase chain reaction targeting parts of the ompB and gltA genes showed six fleas to be positive for Rickettsia spp. (3.8% of 160 samples), which showed the greatest similarity to R. felis, Rickettsia japonica, Rickettsia conorii or Rickettsia sp. TwKM01. Rickettsia typhi was not detected in the fleas and Rickettsia co-infection did not occur. Both flea species were more abundant during months with lower temperatures and less rainfall, and flea abundance on M. caroli was not related to soil hardness, vegetative height, ground cover by litter or by understory layer, or the abundance of M. caroli. Our study reveals the potential circulation of R. felis and other rickettsiae in eastern Taiwan, necessitating further surveillance of rickettsial diseases in this region. This is especially important because many novel rickettsioses are emerging worldwide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号