首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

Whole genome amplification (WGA) and laser assisted micro-dissection represent two recently developed technologies that can greatly advance biological and medical research. WGA allows the analysis of multiple genomic loci from a single genome and has been performed on single cells from cell suspensions and from enzymatically-digested tissues. Laser micro-dissection makes it possible to isolate specific single cells from heterogeneous tissues.  相似文献   

2.
3.
Lu Z  Moraes C  Ye G  Simmons CA  Sun Y 《PloS one》2010,5(10):e13542
Integrating single-cell manipulation techniques in traditional and emerging biological culture systems is challenging. Microfabricated devices for single cell studies in particular often require cells to be spatially positioned at specific culture sites on the device surface. This paper presents a robotic micromanipulation system for pick-and-place positioning of single cells. By integrating computer vision and motion control algorithms, the system visually tracks a cell in real time and controls multiple positioning devices simultaneously to accurately pick up a single cell, transfer it to a desired substrate, and deposit it at a specified location. A traditional glass micropipette is used, and whole- and partial-cell aspiration techniques are investigated to manipulate single cells. Partially aspirating cells resulted in an operation speed of 15 seconds per cell and a 95% success rate. In contrast, the whole-cell aspiration method required 30 seconds per cell and achieved a success rate of 80%. The broad applicability of this robotic manipulation technique is demonstrated using multiple cell types on traditional substrates and on open-top microfabricated devices, without requiring modifications to device designs. Furthermore, we used this serial deposition process in conjunction with an established parallel cell manipulation technique to improve the efficiency of single cell capture from ~80% to 100%. Using a robotic micromanipulation system to position single cells on a substrate is demonstrated as an effective stand-alone or bolstering technology for single-cell studies, eliminating some of the drawbacks associated with standard single-cell handling and manipulation techniques.  相似文献   

4.
Only few selected cancer cells drive tumor progression and are responsible for therapy resistance. Their specific genomic characteristics, however, are largely unknown because high-resolution genome analysis is currently limited to DNA pooled from many cells. Here, we describe a protocol for array comparative genomic hybridization (array CGH), which enables the detection of DNA copy number changes in single cells. Combining a PCR-based whole genome amplification method with arrays of highly purified BAC clones we could accurately determine known chromosomal changes such as trisomy 21 in single leukocytes as well as complex genomic imbalances of single cell line cells. In single T47D cells aberrant regions as small as 1–2 Mb were identified in most cases when compared to non-amplified DNA from 106 cells. Most importantly, in single micrometastatic cancer cells isolated from bone marrow of breast cancer patients, we retrieved and confirmed amplifications as small as 4.4 and 5 Mb. Thus, high-resolution genome analysis of single metastatic precursor cells is now possible and may be used for the identification of novel therapy target genes.  相似文献   

5.
Genomic methods are used increasingly to interrogate the individual cells that compose specific tissues. However, current methods for single cell isolation struggle to phenotypically differentiate specific cells in a heterogeneous population and rely primarily on the use of fluorescent markers. Many cellular phenotypes of interest are too complex to be measured by this approach, making it difficult to connect genotype and phenotype at the level of individual cells. Here we demonstrate that microraft arrays, which are arrays containing thousands of individual cell culture sites, can be used to select single cells based on a variety of phenotypes, such as cell surface markers, cell proliferation and drug response. We then show that a common genomic procedure, RNA-seq, can be readily adapted to the single cells isolated from these rafts. We show that data generated using microrafts and our modified RNA-seq protocol compared favorably with the Fluidigm C1. We then used microraft arrays to select pancreatic cancer cells that proliferate in spite of cytotoxic drug treatment. Our single cell RNA-seq data identified several expected and novel gene expression changes associated with early drug resistance.  相似文献   

6.
Microvessels isolated from mouse forebrain were used as the source material for the derivation of cerebral vascular endothelium and smooth-muscle cells in culture. The microvessels were isolated by a mechanical dispersion and filtration technique, and were maintained in vitro as organoid cultures. A microvessel classification system was developed and proved to be useful as a tool in monitoring culture progress and in predicting the type(s) of microvessel(s) that would give rise to migrating and/or proliferating cells. The isolated cerebral microvessels were heterogeneous in diameter, size of individual vascular isolate, and proliferative potential. The isolated microvessels ranged in diameter from 4 micron to 25 micron and in size from a single microvascular segment to a large multibranched plexus with mural cells. The initial viability, determined by erythrosin B exclusion, was approximately 50% on a per cell basis. All microvessel classes had proliferative potential although the rate and extent of proliferation were both microvessel class- and density-dependent. The smaller microvessels gave rise to endothelial cells, whereas the large microvessels gave rise to endothelial and smooth-muscle cells. The viability and progress of a microvessel toward derived cell proliferation seemed to be directly proportional to the number of mural cells present.  相似文献   

7.
Moon S  Ceyhan E  Gurkan UA  Demirci U 《PloS one》2011,6(7):e21580
High throughput drop-on-demand systems for separation and encapsulation of individual target cells from heterogeneous mixtures of multiple cell types is an emerging method in biotechnology that has broad applications in tissue engineering and regenerative medicine, genomics, and cryobiology. However, cell encapsulation in droplets is a random process that is hard to control. Statistical models can provide an understanding of the underlying processes and estimation of the relevant parameters, and enable reliable and repeatable control over the encapsulation of cells in droplets during the isolation process with high confidence level. We have modeled and experimentally verified a microdroplet-based cell encapsulation process for various combinations of cell loading and target cell concentrations. Here, we explain theoretically and validate experimentally a model to isolate and pattern single target cells from heterogeneous mixtures without using complex peripheral systems.  相似文献   

8.
During development, oligodendrocytes are generated from oligodendrocyte precursor cells (OPCs), a cell type that is a significant proportion of the total cells (3-8%) in the adult central nervous system (CNS) of both rodents and humans. Adult OPCs are responsible for the spontaneous remyelination that occurs in demyelinating diseases like Multiple Sclerosis (MS) and they constitute an interesting source of cells for regenerative therapy in such conditions. However, there is little data regarding the neurobiology of adult OPCs isolated from mice since an efficient method to isolate them has yet to be established. We have designed a protocol to obtain viable adult OPCs from the cerebral cortex of different mouse strains and we have compared its efficiency with other well-known methods. In addition, we show that this protocol is also useful to isolate functional OPCs from human brain biopsies. Using this method we can isolate primary cortical OPCs in sufficient quantities so as to be able to study their survival, maturation and function, and to facilitate an evaluation of their utility in myelin repair.  相似文献   

9.
周彦  王超杰  朱纯超  陈江荣  程酩  邓宇亮  郭妍 《遗传》2017,39(8):753-762
从单细胞尺度进行细胞异质性的分析是深度理解细胞群体关系的关键。组织中的单细胞由于细胞类型不同,尺寸往往相差很大,但是目前常用的基于微孔板和Fluidigm公司的微流控的单细胞组学研究方法,需要入口的单细胞大小相近。本研究以胃组织为例,建立了一种组织单细胞的基因变异分析方法,实现了尺寸差异较大的单细胞的基因变异分析。在该方法中,先将胃组织裂解获得单个腺体,再将单个腺体酶解得到不同大小的腺体内单细胞,然后把这些单细胞铺在聚乙烯萘膜载玻片上,进行激光显微切割分选、全基因组放大,最后测其微卫星的长度。利用该方法,成功在肠上皮化生腺体内部检测到微卫星长度的变化,并灵活地对尺寸差异大的组织细胞以及肠化生腺体细胞进行了精细分析。此外,这种单细胞分析方法还可以对带有不同标记的细胞进行低通量和高通量的基因组分析,为单细胞尺度上的组织异质性研究提供了一种高度灵活的分析方法。  相似文献   

10.
Summary Microvessels isolated from mouse forebrain were used as the source material for the derivation of cerebral vascular endothelium and smooth-muscle cells in culture. The microvessels were isolated by a mechanical dispersion and filtration technique, and were maintained in vitro as organoid cultures. A microvessel classification system was developed and proved to be useful as a tool in monitoring culture progress and in predicting the type(s) of microvessel(s) that would give rise to migrating and/or proliferating cells. The isolated cerebral microvessels were heterogeneous in diameter, size of individual vascular isolate, and proliferative potential. The isolated microvessels ranged in diameter from 4 μm to 25 μm and in size from a single microvascular segment to a large multibranched plexus with mural cells. The initial viability, determined by erythrosin B exclusion, was approximately 50% on a per cell basis. All microvessel classes had proliferative potential although the rate and extent of proliferation were both microvessel class- and density-dependent. The smaller microvessels gave rise to endothelial cells, whereas the large microvessels gave rise to endothelial and smooth-muscle cells. The viability and progress of a microvessel toward derived cell proliferation seemed to be directly proportional to the number of mural cells present. This work was supported in part by an Arteriosclerosis Specialized center of Research grant from the National Heart, Lung and Blood Institute, National Institutes of Health (HL-14230) and Grant 584-127703 from the Veterans Administration.  相似文献   

11.
Human jaw periosteum tissue contains osteoprogenitors that have potential for tissue engineering applications in oral and maxillofacial surgeries. To isolate osteoprogenitor cells from heterogeneous cell populations, we used the specific mesenchymal stem cell antigen-1 (MSCA-1) antibody and compared two magnetic separation methods. We analyzed the obtained MSCA-1+ and MSCA-1 fractions in terms of purity, yield of positive/negative cells and proliferative and mineralization potentials. The analysis of cell viability after separation revealed that the EasySep method yielded higher viability rates, whereas the flow cytometry results showed a higher purity for the MACS-separated cell fractions. The mineralization capacity of the osteogenic induced MSCA-1+ cells compared with the MSCA-1 controls using MACS was 5-fold higher, whereas the same comparison after EasySep showed no significant differences between both fractions. By analyzing cell proliferation, we detected a significant difference between the proliferative potential of the osteogenic cells versus untreated cells after the MACS and EasySep separations. The differentiated cells after MACS separation adjusted their proliferative capacity, whereas the EasySep-separated cells failed to do so. The protein expression analysis showed small differences between the two separation methods. Our findings suggest that MACS is a more suitable separation method to isolate osteoprogenitors from the entire jaw periosteal cell population.  相似文献   

12.
Abstract

Embryonic stem (ES) cells are pluripotent cells isolated from early embryos. They proliferate in culture and retain the capacity to differentiate both in vitro and In vivo, including contributing to chimeric tissues after injection into normal blastocysts. Over the past decade ES cells have been used extensively as a model for embryogenesis. More recently they have been shown to be capable of stable integration of exogenous DNA and used for numerous studies involving genomic manipulation. ES cells provide many opportunities for genetic engineering of domestic livestock species, but to date their isolation from embryos has been documented only for the mouse and perhaps the hamster. Efforts to isolate pluripotent ES cells from embryos of domestic livestock species are described, including some of the problems encountered.  相似文献   

13.
Embryonic stem cells (ESCs) are capable of unlimited self-renewal and differentiation into multiple cell types. Recent large-scale analyses have identified various cell surface molecules on ESCs. Some of them are considered to be beneficial markers for characterization of cellular phenotypes and/or play an essential role for regulating the differentiation state. Thus, it is desired to efficiently produce affinity reagents specific to these molecules. In this study, to develop such reagents for mouse ESCs (mESCs), we selected RNA aptamers against intact, live mESCs using several selection strategies. The initial selection provided us with several anti-mESC aptamers of distinct sequences, which unexpectedly react with the same molecule on mESCs. Then, to isolate aptamers against different surface markers on mESCs, one of the selected aptamers was used as a competitor in the subsequent selections. In addition, one of the selections further employed negative selection against differentiated mouse cells. Consequently, we successfully isolated three classes of anti-mESC aptamers that do not compete with one another. The isolated aptamers were shown to distinguish mESCs from differentiated mouse cell lines and trace the differentiation process of mESCs. These aptamers could prove useful for developing molecular probes and manipulation tools for mESCs.  相似文献   

14.
S100β-protein-positive cells in the anterior pituitary gland appear to possess multifunctional properties. Because of their pleiotropic features, S100β-positive cells are assumed to be of a heterogeneous or even a non-pituitary origin. The observation of various markers has allowed these cells to be classified into populations such as stem/progenitor cells, epithelial cells, astrocytes and dendritic cells. The isolation and characterization of each heterogeneous population is a prerequisite for clarifying the functional character and origin of the cells. We attempt to isolate two of the subpopulations of S100β-positive cells from the anterior lobe. First, from transgenic rats that express green fluorescent protein (GFP) driven by the S100β protein promoter, we fractionate GFP-positive cells with a cell sorter and culture them so that they can interact with laminin, a component of the extracellular matrix. We observe that one morphological type of GFP-positive cells possesses extended cytoplasmic processes and shows high adhesiveness to laminin (process type), whereas the other is round in shape and exhibits low adherence to laminin (round type). We successfully isolate cells of the round type from the cultured GFP-positive cells by taking advantage of their low affinity to laminin and then measure mRNA levels of the two cell types by real-time polymerase chain reaction. The resultant data show that the process type expresses vimentin (mesenchymal cell marker) and glial fibrillary acidic protein (astrocyte marker). The round type expresses dendritic cell markers, CD11b and interleukin-6. Thus, we found a method for isolating dendritic-cell-like S100β-positive cells by means of their property of adhering to laminin.  相似文献   

15.
Since only a small fraction of environmental bacteria are amenable to laboratory culture, there is great interest in genomic sequencing directly from single cells. Sufficient DNA for sequencing can be obtained from one cell by the Multiple Displacement Amplification (MDA) method, thereby eliminating the need to develop culture methods. Here we used a microfluidic device to isolate individual Escherichia coli and amplify genomic DNA by MDA in 60-nl reactions. Our results confirm a report that reduced MDA reaction volume lowers nonspecific synthesis that can result from contaminant DNA templates and unfavourable interaction between primers. The quality of the genome amplification was assessed by qPCR and compared favourably to single-cell amplifications performed in standard 50-μl volumes. Amplification bias was greatly reduced in nanoliter volumes, thereby providing a more even representation of all sequences. Single-cell amplicons from both microliter and nanoliter volumes provided high-quality sequence data by high-throughput pyrosequencing, thereby demonstrating a straightforward route to sequencing genomes from single cells.  相似文献   

16.
《Cytotherapy》2014,16(3):381-391
Background aimsAdipose-derived stem/progenitor cells (ASCs) are typically obtained from the lipoaspirates; however, a smaller number of ASCs can be isolated without enzymatic digestion from the infranatant liposuction aspirate fluid (LAF). We evaluated the effectiveness of an adherent column, currently used to isolate mesenchymal stromal cells from bone marrow, to isolate LAF cells.MethodsWe applied peripheral blood (PB), PB mixed with cultured ASCs (PB-ASC), and LAF solution to the column and divided it into two fractions, the adherent (positive) and the non-adherent (negative) fractions. We compared this method with hypotonic hemolysis (lysis) for the red blood cell count, nucleated cells count and cell compositions as well as functional properties of isolated mesenchymal cells.ResultsThe column effectively removed red blood cells, though the removal efficiency was slightly inferior to hemolysis. After column processing of PB-ASC, 60.5% of ASCs (53.2% by lysis) were selectively collected in the positive fraction, and the negative fraction contained almost no ASCs. After processing of LAF solution, nucleated cell yields were comparable between the column and hemolysis; however, subsequent adherent culture indicated that a higher average ASC yield was obtained from the column-positive samples than from the lysis samples, suggesting that the column method may be superior to hemolysis for obtaining viable ASCs. Mesenchymal differentiation and network formation assays showed no statistical differences in ASC functions between the lysis and column-positive samples.ConclusionsOur results suggest that a column with non-woven rayon and polyethylene fabrics is useful for isolating stromal vascular fraction cells from LAF solutions for clinical applications.  相似文献   

17.
Bone marrow stroma contains a unique cell population, referred to as marrow stromal cells (MSCs), capable of differentiating along multiple mesenchymal cell lineages. A standard liquid culture system has been developed to isolate MSCs from whole marrow by their adherence to plastic wherein the cells grow as clonal populations derived from a single precursor termed the colony-forming-unit fibroblast (CFU-F). Using this liquid culture system, we demonstrate that the relative abundance of MSCs in the bone marrow of five commonly used inbred strains of mice varies as much as 10-fold, and that the cells also exhibit markedly disparate levels of alkaline phosphatase expression, an early marker of osteoblast differentiation. For each strain examined, the method of isolating MSCs by plastic adherence yields a heterogeneous cell population. These plastic adherent cells also exhibit widely varying growth kinetics between the different strains. Importantly, of three inbred strains commonly used to prepare transgenic mice that we examined, only cells derived from FVB/N marrow readily expand in culture. Further analysis of cultures derived from FVB/N marrow showed that most plastic adherent cells express CD11b and CD45, epitopes of lymphohematopoietic cells. The later consists of both pre-B-cell progenitors, granulocytic and monocytic precursors, and macrophages. However, a subpopulation of the MSCs appear to represent bona fide mesenchymal progenitors, as cells can be induced to differentiate into osteoblasts and adipocytes after exposure to dexamethasone and into myoblasts after exposure to amphotericin B. Our results point to significant strain differences in the properties of MSCs and indicate that standard methods cannot be applied to murine bone marrow to isolate relatively pure populations of MSCs.  相似文献   

18.
The applications of human pluripotent stem cell (hPSC)-derived cells in regenerative medicine has encountered a long-standing challenge: how can we efficiently obtain mature cell types from hPSCs? Attempts to address this problem are hindered by the complexity of controlling cell fate commitment and the lack of sufficient developmental knowledge for guiding hPSC differentiation. Here, we developed a systematic strategy to study hPSC differentiation by labeling sequential developmental genes to encompass the major developmental stages, using the directed differentiation of pancreatic β cells from hPSCs as a model. We therefore generated a large panel of pancreas-specific mono- and dual-reporter cell lines. With this unique platform, we visualized the kinetics of the entire differentiation process in real time for the first time by monitoring the expression dynamics of the reporter genes, identified desired cell populations at each differentiation stage and demonstrated the ability to isolate these cell populations for further characterization. We further revealed the expression profiles of isolated NGN3-eGFP+ cells by RNA sequencing and identified sushi domain-containing 2 (SUSD2) as a novel surface protein that enriches for pancreatic endocrine progenitors and early endocrine cells both in human embryonic stem cells (hESC)-derived pancreatic cells and in the developing human pancreas. Moreover, we captured a series of cell fate transition events in real time, identified multiple cell subpopulations and unveiled their distinct gene expression profiles, among heterogeneous progenitors for the first time using our dual reporter hESC lines. The exploration of this platform and our new findings will pave the way to obtain mature β cells in vitro.  相似文献   

19.
Miao J  Cui L 《Nature protocols》2011,6(2):140-146
Malaria research often requires isolation of individually infected red blood cells (RBCs) or of a homogenous parasite population derived from a single parasite (clone). Traditionally, isolation of individual, parasitized RBCs or parasite cloning is achieved by limiting dilution or micromanipulation. This protocol describes a method for more efficient cloning of the malaria parasite; the method uses a cell sorter to rapidly isolate Plasmodium falciparum-infected RBCs singly. By gating the parameters of forward-angle light scatter and side-angle light scatter in a cell sorter, singly infected RBCs can be isolated and automatically deposited into a 96-well culture plate within 1 min. Including a Percoll purification step; the entire procedure to seed a 96-well plate with singly infected RBCs can take <40 min. This highly efficient single-cell sorting protocol should be useful for cloning of both laboratory parasite populations from genetic manipulation experiments and clinical samples.  相似文献   

20.
Chryseobacterium meningosepticum causes severe infections in infants or adults with underlying illness. The species is highly heterogeneous, genetically composed of subgroups with different pathogenicity. Eight strains of C. meningosepticum, representing four different genomic subgroups, were evaluated for their ability to penetrate Madin-Darby Canine Kidney (MDCK) epithelial cell monolayers and serum resistance. None of the strains showed cytotoxicity or penetration to the MDCK cells. All displayed resistance to the bactericidal activity of various normal human sera. A murine pulmonary infection model was used to compare the pathogenicity between a clinical isolate and an environmental isolate. C. meningosepticum were cleared from the lung of infected mice within 7 days following the intratracheal challenge. Electron microscopy demonstrated the large membrane protrusions, indicative of ruffles, and smaller, less organized membrane structures of the respiratory epithelial cells induced by the clinical isolate. Bacteria were observed to enter the cells as single entities in spacious vacuoles. Suppressive subtraction hybridization identified in the invasive isolate 35 distinct sequences associated with systems of energy production and conversion, transport, and secretion. In most cases, the identities between the references and the amino acid sequences deduced were low, suggesting that the functions of these sequences remain unknown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号