首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Macroautophagy/autophagy is the main intracellular catabolic pathway in neurons that eliminates misfolded proteins, aggregates and damaged organelles associated with ageing and neurodegeneration. Autophagy is regulated by both MTOR-dependent and -independent pathways. There is increasing evidence that autophagy is compromised in neurodegenerative disorders, which may contribute to cytoplasmic sequestration of aggregation-prone and toxic proteins in neurons. Genetic or pharmacological modulation of autophagy to promote clearance of misfolded proteins may be a promising therapeutic avenue for these disorders. Here, we demonstrate robust autophagy induction in motor neuronal cells expressing SOD1 or TARDBP/TDP-43 mutants linked to amyotrophic lateral sclerosis (ALS). Treatment of these cells with rilmenidine, an anti-hypertensive agent and imidazoline-1 receptor agonist that induces autophagy, promoted autophagic clearance of mutant SOD1 and efficient mitophagy. Rilmenidine administration to mutant SOD1G93A mice upregulated autophagy and mitophagy in spinal cord, leading to reduced soluble mutant SOD1 levels. Importantly, rilmenidine increased autophagosome abundance in motor neurons of SOD1G93A mice, suggesting a direct action on target cells. Despite robust induction of autophagy in vivo, rilmenidine worsened motor neuron degeneration and symptom progression in SOD1G93A mice. These effects were associated with increased accumulation and aggregation of insoluble and misfolded SOD1 species outside the autophagy pathway, and severe mitochondrial depletion in motor neurons of rilmenidine-treated mice. These findings suggest that rilmenidine treatment may drive disease progression and neurodegeneration in this mouse model due to excessive mitophagy, implying that alternative strategies to beneficially stimulate autophagy are warranted in ALS.  相似文献   

2.
In the present review a large amount of experimental and clinical studies on ALS are discussed in an effort to dissect common pathogenic mechanisms which may provide novel information and potential therapeutic strategies for motor neuron degeneration.Protein clearing systems play a critical role in motor neuron survival during excitotoxic stress, aging and neurodegenerative disorders. Among various mechanisms which clear proteins from the cell recent studies indicate autophagy as the most prominent pathway to promote survival of motor neurons.Autophagy regulates the clearance of damaged mitochondria, endoplasmic reticulum and misfolded proteins in eukaryotic cells. Upon recruitment of the autophagy pathway, an autophagosome is produced and directed towards lysosomal degradation.Here we provide evidence that in both genetic and sporadic amyotrophic lateral sclerosis (ALS, the most common motor neuron disorder) a defect in the autophagy machinery is common. In fact, swollen, disrupted mitochondria and intracellular protein aggregates accumulate within affected motor neurons. These structures localize within double membrane vacuoles, autophagosomes, which typically cluster in perinuclear position. In keeping with this, when using autophagy inhibitors or suppressing autophagy promoting genes, motor symptoms and motor neuron death are accelerated. Conversely stimulation of autophagy alleviates motor neuron degeneration.Therefore, autophagy represents an important target when developing novel treatments in ALS.  相似文献   

3.
Unwanted or misfolded proteins are either refolded by chaperones or degraded by the ubiquitin-proteasome system (UPS). When UPS is impaired, misfolded proteins form aggregates, which are transported along microtubules by motor protein dynein towards the juxta-nuclear microtubule-organizing center to form aggresome, a single cellular garbage disposal complex. Because aggresome formation results from proteasome failure, aggresome components are degraded through the autophagy/lysosome pathway. Here we report that small molecule isothiocyanates (ITCs) can induce formation of aggresome-like structure (ALS) through covalent modification of cytoplasmic α- and β-tubulin. The formation of ALS is related to neither proteasome inhibition nor oxidative stress. ITC-induced ALS is a proteasome-dependent assembly for emergent removal of misfolded proteins, suggesting that the cell may have a previously unknown strategy to cope with misfolded proteins.  相似文献   

4.
Neurodegenerative diseases belong to a larger group of protein misfolding disorders, known as proteinopathies. There is increasing experimental evidence implicating prion-like mechanisms in many common neurodegenerative disorders, including Alzheimer disease, Parkinson disease, the tauopathies, and amyotrophic lateral sclerosis (ALS), all of which feature the aberrant misfolding and aggregation of specific proteins. The prion paradigm provides a mechanism by which a mutant or wild-type protein can dominate pathogenesis through the initiation of self-propagating protein misfolding. ALS, a lethal disease characterized by progressive degeneration of motor neurons is understood as a classical proteinopathy; the disease is typified by the formation of inclusions consisting of aggregated protein within and around motor neurons that can contribute to neurotoxicity. It is well established that misfolded/oxidized SOD1 protein is highly toxic to motor neurons and plays a prominent role in the pathology of ALS. Recent work has identified propagated protein misfolding properties in both mutant and wild-type SOD1, which may provide the molecular basis for the clinically observed contiguous spread of the disease through the neuroaxis. In this review we examine the current state of knowledge regarding the prion-like properties of SOD1 and comment on its proposed mechanisms of intercellular transmission.  相似文献   

5.
《Autophagy》2013,9(4):450-453
Several neurodegenerative diseases share a common neuropathology, primarily featuring the presence of abnormal protein inclusions in the brain containing specific misfolded proteins. Strategies to decrease the load of protein aggregates and oligomers are considered relevant targets for therapeutic intervention. Many studies indicate that macroautophagy is a selective and efficient mechanism for the degradation of misfolded mutant proteins related to neurodegeneration, without affecting the levels of the corresponding wild-type form. In fact, activation of autophagy by rapamycin treatment decreases the accumulation of protein aggregates and alleviates disease features in animal models of Huntington disease and other disorders affecting the nervous system. Recent evidence, however, indicates that the expression of several disease-related genes may actually impair autophagy activity at different levels, including omegasome formation, substrate recognition, lysosomal acidity and autophagosome membrane nucleation. A recent report from Zhang and co-workers indicates that treatment of an amyotrophic lateral sclerosis (ALS) mouse model with rapamycin actually exacerbates neuronal loss and disease progression, associated with enhanced apoptosis. This study reflects the need for a better understanding of the contribution of autophagy to ALS and other neurodegenerative diseases since this pathway may not only operate as a cleaning-up mechanism. Then, autophagy impairment may be part of the pathological mechanisms underlying the disease, whereas augmenting autophagy levels above a certain threshold could lead to detrimental effects in neuronal function and survival. Combinatorial strategies to repair the autophagy deficit and also enhance the activation of the pathway may result in a beneficial impact to decrease the content of protein aggregates and damaged organelles, improving neuronal function and survival.  相似文献   

6.
Motoneuron diseases, like spinal bulbar muscular atrophy (SBMA) and amyotrophic lateral sclerosis (ALS), are associated with proteins that because of gene mutation or peculiar structures, acquire aberrant (misfolded) conformations toxic to cells. To prevent misfolded protein toxicity, cells activate a protein quality control (PQC) system composed of chaperones and degradative pathways (proteasome and autophagy). Inefficient activation of the PQC system results in misfolded protein accumulation that ultimately leads to neuronal cell death, while efficient macroautophagy/autophagy-mediated degradation of aggregating proteins is beneficial. The latter relies on an active retrograde transport, mediated by dynein and specific chaperones, such as the HSPB8-BAG3-HSPA8 complex. Here, using cellular models expressing aggregate-prone proteins involved in SBMA and ALS, we demonstrate that inhibition of dynein-mediated retrograde transport, which impairs the targeting to autophagy of misfolded species, does not increase their aggregation. Rather, dynein inhibition correlates with a reduced accumulation and an increased clearance of mutant ARpolyQ, SOD1, truncated TARDBP/TDP-43 and expanded polyGP C9ORF72 products. The enhanced misfolded protein clearance is mediated by the proteasome, rather than by autophagy and correlates with the upregulation of the HSPA8 cochaperone BAG1. In line, overexpression of BAG1 increases the proteasome-mediated clearance of these misfolded proteins. Our data suggest that when the misfolded proteins cannot be efficiently transported toward the perinuclear region of the cells, where they are either degraded by autophagy or stored into the aggresome, the cells activate a compensatory mechanism that relies on the induction of BAG1 to target the HSPA8-bound cargo to the proteasome in a dynein-independent manner.  相似文献   

7.
Nassif M  Hetz C 《Autophagy》2011,7(4):450-453
Several neurodegenerative diseases share a common neuropathology, primarily featuring the presence of abnormal protein inclusions in the brain containing specific misfolded proteins. Strategies to decrease the load of protein aggregates and oligomers are considered relevant targets for therapeutic intervention. Many studies indicate that macroautophagy is a selective and efficient mechanism for the degradation of misfolded mutant proteins related to neurodegeneration, without affecting the levels of the corresponding wild-type form. In fact, activation of autophagy by rapamycin treatment decreases the accumulation of protein aggregates and alleviates disease features in animal models of Huntington disease and other disorders affecting the nervous system. Recent evidence, however, indicates that the expression of several disease-related genes may actually impair autophagy activity at different levels, including omegasome formation, substrate recognition, lysosomal acidity and autophagosome membrane nucleation. A recent report from Zhang and co-workers indicates that treatment of an amyotrophic lateral sclerosis (ALS) mouse model with rapamycin actually exacerbates neuronal loss and disease progression, associated with enhanced apoptosis. This study reflects the need for a better understanding of the contribution of autophagy to ALS and other neurodegenerative diseases since this pathway may not only operate as a cleaning-up mechanism. Then, autophagy impairment may be part of the pathological mechanisms underlying the disease, whereas augmenting autophagy levels above a certain threshold could lead to detrimental effects in neuronal function and survival. Combinatorial strategies to repair the autophagy deficit and also enhance the activation of the pathway may result in a beneficial impact to decrease the content of protein aggregates and damaged organelles, improving neuronal function and survival.  相似文献   

8.
Recent literature demonstrated that exposure to excitatory amino acid in specific experimental conditions might produce a defect in the autophagy pathway. Such an effect was observed in motor neurons exposed chronically to glutamate agonists. On the other hand, it is well known that glutamate induces motor neuron death and this is supposed to play a key role in the physiopathology of motor neuron loss in amyotrophic lateral sclerosis (ALS). Similarly, a defective recruitment of autophagy was recently documented in ALS. In the present study we found that exposure of motor neurons to kainic acid produces intracellular changes associated with defective autophagy. In this experimental conditions, pharmacological activation of autophagy rescues the loss of motor neurons.  相似文献   

9.
《Autophagy》2013,9(8):1194-1197
Ridding neurons of toxic misfolded proteins is a critical feature of many neurodegenerative diseases. We have recently reported that lack of access of nuclear polyglutamine-expanded androgen receptor (AR) to the autophagic degradation pathway is a critical point in pathogenesis. When mutant AR is contained within the cytoplasm, it can be degraded by autophagy, resulting in amelioration of its toxic effects, as has been observed in other polyglutamine expansion diseases involving cytoplasmic mutant proteins. However, we have also found that pharmacological induction of autophagy protects SBMA motor neurons from the toxic effects of even nuclear localized mutant AR, albeit without affecting mutant nuclear AR levels. Thus, we have further investigated the mechanism by which autophagy elicits therapeutic benefit in cell culture. We found that endogenous autophagy only slightly alters nuclear mutant AR aggregation compared to substantial effects on cytoplasmic AR aggregation. Interestingly, pharmacological activation of mTOR-dependent autophagy did not significantly alter nuclear AR aggregation, whereas we observed that it protects SBMA motor neurons. Our findings indicate that therapeutic intervention to induce autophagy represents a potential potent benefit for SBMA, and that it likely does so by protecting SBMA motor neurons independent of a direct effect on mutant AR.  相似文献   

10.
Olzmann JA  Chin LS 《Autophagy》2008,4(1):85-87
Pathological inclusions containing misfolded proteins are a prominent feature common to many age-related neurodegenerative diseases, including Parkinson's disease, Alzheimer's disease, Huntington's disease, and amyotrophic lateral sclerosis. In cultured cells, when the production of misfolded proteins exceeds the capacity of the chaperone refolding system and the ubiquitin-proteasome degradation pathway, misfolded proteins are actively transported along microtubules to pericentriolar inclusions called aggresomes. The aggresomes sequester potentially toxic misfolded proteins and facilitate their clearance by autophagy. The molecular mechanism(s) that targets misfolded proteins to the aggresome-autophagy pathway is mostly unknown. Our recent work identifies parkin-mediated K63-linked polyubiquitination as a signal that couples misfolded proteins to the dynein motor complex via the adaptor protein histone deacetylase 6 and thereby promotes sequestration of misfolded proteins into aggresomes and subsequent clearance by autophagy. Our findings provide insight into the mechanisms underlying aggresome formation and suggest that parkin and K63-linked polyubiquitination may play a role in the autophagic clearance of misfolded proteins.  相似文献   

11.
The common underlying feature of most neurodegenerative diseases such as Alzheimer disease (AD), prion diseases, Parkinson disease (PD), and amyotrophic lateral sclerosis (ALS) involves accumulation of misfolded proteins leading to initiation of endoplasmic reticulum (ER) stress and stimulation of the unfolded protein response (UPR). Additionally, ER stress more recently has been implicated in the pathogenesis of HIV-associated neurocognitive disorders (HAND). Autophagy plays an essential role in the clearance of aggregated toxic proteins and degradation of the damaged organelles. There is evidence that autophagy ameliorates ER stress by eliminating accumulated misfolded proteins. Both abnormal UPR and impaired autophagy have been implicated as a causative mechanism in the development of various neurodegenerative diseases. This review highlights recent advances in the field on the role of ER stress and autophagy in AD, prion diseases, PD, ALS and HAND with the involvement of key signaling pathways in these processes and implications for future development of therapeutic strategies.  相似文献   

12.
Lonial S  Boise LH 《Autophagy》2011,7(4):448-449
The increasing appreciation of the importance of autophagy as consequence of cancer therapy or underlying disease biology is illustrated by the large number of papers that are evaluating autophagy as a cancer target. While autophagy is often linked to the generation of metabolic precursors, it is also important in diseases where protein production is a hallmark of the disease itself, such as pancreatic cancer and multiple myeloma. Multiple myeloma is characterized by ongoing autophagy as a consequence of constitutive immunoglobulin production, which creates the need for efficient transfer and disposal of misfolded or unfolded proteins. In order to survive this cellular stress, plasma cells depend on proteasomal degradation of the large volume of misfolded proteins as well as the autophagy pathway. It has previously been suggested that the excess proteins not targeted to the proteasome, or that accumulate when the proteasome is inhibited through the use of chemically active agents such as bortezomib, are linked to impaired cell survival, and that their packaging in the form of an aggresome somehow minimizes their 'proteotoxicity' allowing these toxic proteins to be sequestered away from normal cellular machinery.  相似文献   

13.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive loss of motor neurons. We previously showed that the expression of dynactin 1, an axon motor protein regulating retrograde transport, is markedly reduced in spinal motor neurons of sporadic ALS patients, although the mechanisms by which decreased dynactin 1 levels cause neurodegeneration have yet to be elucidated. The accumulation of autophagosomes in degenerated motor neurons is another key pathological feature of sporadic ALS. Since autophagosomes are cargo of dynein/dynactin complexes and play a crucial role in the turnover of several organelles and proteins, we hypothesized that the quantitative loss of dynactin 1 disrupts the transport of autophagosomes and induces the degeneration of motor neuron. In the present study, we generated a Caenorhabditis elegans model in which the expression of DNC-1, the homolog of dynactin 1, is specifically knocked down in motor neurons. This model exhibited severe motor defects together with axonal and neuronal degeneration. We also observed impaired movement and increased number of autophagosomes in the degenerated neurons. Furthermore, the combination of rapamycin, an activator of autophagy, and trichostatin which facilitates axonal transport dramatically ameliorated the motor phenotype and axonal degeneration of this model. Thus, our results suggest that decreased expression of dynactin 1 induces motor neuron degeneration and that the transport of autophagosomes is a novel and substantial therapeutic target for motor neuron degeneration.  相似文献   

14.
Evidence suggests that protein misfolding is crucially involved in the pathogenesis of amyotrophic lateral sclerosis (ALS). However, controversy still exists regarding the involvement of proteasomes or autophagy in ALS due to previous conflicting results. Here, we show that impairment of the ubiquitin-proteasome system, but not the autophagy-lysosome system in motor neurons replicates ALS in mice. Conditional knock-out mice of the proteasome subunit Rpt3 in a motor neuron-specific manner (Rpt3-CKO) showed locomotor dysfunction accompanied by progressive motor neuron loss and gliosis. Moreover, diverse ALS-linked proteins, including TAR DNA-binding protein 43 kDa (TDP-43), fused in sarcoma (FUS), ubiquilin 2, and optineurin were mislocalized or accumulated in motor neurons, together with other typical ALS hallmarks such as basophilic inclusion bodies. On the other hand, motor neuron-specific knock-out of Atg7, a crucial component for the induction of autophagy (Atg7-CKO), only resulted in cytosolic accumulation of ubiquitin and p62, and no TDP-43 or FUS pathologies or motor dysfunction was observed. These results strongly suggest that proteasomes, but not autophagy, fundamentally govern the development of ALS in which TDP-43 and FUS proteinopathy may play a crucial role. Enhancement of proteasome activity may be a promising strategy for the treatment of ALS.  相似文献   

15.
Walker AK  Atkin JD 《IUBMB life》2011,63(9):754-763
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by the misfolding and aggregation of distinct proteins in affected tissues, however, the pathogenic cause of disease remains unknown. Recent evidence indicates that endoplasmic reticulum (ER) stress plays a central role in ALS pathogenesis. ER stress activates the unfolded protein response (UPR), a homeostatic response to misfolded proteins. The UPR is initially protective by up-regulation of specific ER stress-regulated genes and inhibition of general protein translation. However, long-term ER stress leads to cell death via apoptotic signaling, thus providing a link to neurodegeneration. Activation of the UPR is one of the earliest events in affected motor neurons of transgenic rodent models expressing ALS-linked mutant superoxide dismutase 1 (SOD1). Recently, genetic manipulation of ER stress in several different SOD1 mouse models was shown to alter disease onset and progression, implicating an active role for the UPR in disease mechanisms. Furthermore, mutations to vesicle-associated membrane protein-associated protein B (VAPB), an ER transmembrane protein involved in ER stress regulation, also cause some cases of familial ALS. ER stress also occurs in spinal cord tissues of human sporadic ALS patients, and recent evidence suggests that perturbation of the ER could occur in ALS cases associated with TAR DNA binding protein 43 (TDP-43), fused in sarcoma (FUS) and valosin containing protein (VCP). Together these findings implicate ER stress as a potential upstream mechanism involved in both familial and sporadic forms of ALS.  相似文献   

16.
Amyotrophic lateral sclerosis (ALS) is a disease caused by the degeneration of motor neurons (MNs) leading to progressive muscle weakness and atrophy. Several molecular pathways have been implicated, such as glutamate-mediated excitotoxicity, defects in cytoskeletal dynamics and axonal transport, disruption of RNA metabolism, and impairments in proteostasis. ALS is associated with protein accumulation in the cytoplasm of cells undergoing neurodegeneration, which is a hallmark of the disease. In this review, we focus on mechanisms of proteostasis, particularly protein degradation, and discuss how they are related to the genetics of ALS. Indeed, the genetic bases of the disease with the implication of more than 30 genes associated with familial ALS to date, together with the important increase in understanding of endoplasmic reticulum (ER) stress, proteasomal degradation, and autophagy, allow researchers to better understand the mechanisms underlying the selective death of motor neurons in ALS. It is clear that defects in proteostasis are involved in this type of cellular degeneration, but whether or not these mechanisms are primary causes or merely consequential remains to be clearly demonstrated. Novel cellular and animal models allowing chronic expression of mutant proteins, for example, are required. Further studies linking genetic discoveries in ALS to mechanisms of protein clearance will certainly be crucial in order to accelerate translational and clinical research towards new therapeutic targets and strategies.  相似文献   

17.
《Autophagy》2013,9(4):448-449
The increasing appreciation of the importance of autophagy as consequence of cancer therapy or underlying disease biology is illustrated by the large number of papers that are evaluating autophagy as a cancer target. While autophagy is often linked to the generation of metabolic precursors, it is also important in diseases where protein production is a hallmark of the disease itself, such as pancreatic cancer and multiple myeloma. Multiple myeloma is characterized by ongoing autophagy as a consequence of constitutive immunoglobulin production, which creates the need for efficient transfer and disposal of misfolded or unfolded proteins. In order to survive this cellular stress, plasma cells depend on proteasomal degradation of the large volume of misfolded proteins as well as the autophagy pathway. It has previously been suggested that the excess proteins not targeted to the proteasome, or that accumulate when the proteasome is inhibited through the use of chemically active agents such as bortezomib, are linked to impaired cell survival, and that their packaging in the form of an aggresome somehow minimizes their ‘proteotoxicity’ allowing these toxic proteins to be sequestered away from normal cellular machinery.  相似文献   

18.
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by memory loss and cognitive impairment. It is caused by synaptic failure and excessive accumulation of misfolded proteins. To date, almost all advanced clinical trials on specific AD-related pathways have failed mostly due to a large number of neurons lost in the brain of patients with AD. Also, currently available drug candidates intervene too late. Stem cells have improved characteristics of self-renewal, proliferation, differentiation, and recombination with the advent of stem cell technology and the transformation of these cells into different types of central nervous system neurons and glial cells. Stem cell treatment has been successful in AD animal models. Recent preclinical studies on stem cell therapy for AD have proved to be promising. Cell replacement therapies, such as human embryonic stem cells or induced pluripotent stem cell–derived neural cells, have the potential to treat patients with AD, and human clinical trials are ongoing in this regard. However, many steps still need to be taken before stem cell therapy becomes a clinically feasible treatment for human AD and related diseases. This paper reviews the pathophysiology of AD and the application prospects of related stem cells based on cell type.  相似文献   

19.
Mutant superoxide dismutase 1 (mSOD1) is often found as aggregates at the outer-membrane of mitochondria in motor neurons of various mouse models and familial amyotrophic lateral sclerosis (f-ALS) patients. It has been postulated that disruption of mitochondrial function by physical association of misfolded mSOD1 aggregates may actually be the trigger for initiation of degeneration of motor neurons in ALS. However, it was not clear if the same mechanism is involved in muscle degeneration and mitochondrial dysfunction in skeletal muscles of ALS. Recent study from our laboratory show that two skeletal muscle proteins, namely creatine kinase (CK) and glyceraldehydes-3-phosphate dehydrogenase (GAPDH) undergo major conformational and functional changes in the f-ALS mouse model of ALS (G93A). In this paper, we report two intriguing observations which are as follows:(i) G93A protein does not form aggregates in skeletal muscle at any stages of disease process probably due to high chymotrypsin-like activity of proteasome and thus G93A protein aggregates have no direct effects on progressive loss of muscle mass and global changes in protein conformation in ALS, and (ii) the soluble G93A protein does not have direct effects on mitochondrial dysfunction as determined by quantifying the release of reactive oxygen species (ROS) in skeletal muscle mitochondria; instead, the proteins affected by G93A possibly affect mitochondrial ROS release. These data strongly suggest for the first time that unlike in motor neurons, the soluble and aggregation states of the G93A protein do not have direct effects on protein misfolding and mitochondrial dysfunction in skeletal muscle during ALS.  相似文献   

20.
Mutations in superoxide dismutase (SOD1) are causative for inherited amyotrophic lateral sclerosis. A proportion of SOD1 mutant protein is misfolded onto the cytoplasmic face of mitochondria in one or more spinal cord cell types. By construction of mice in which mitochondrially targeted enhanced green fluorescent protein is selectively expressed in motor neurons, we demonstrate that axonal mitochondria of motor neurons are primary in vivo targets for misfolded SOD1. Mutant SOD1 alters axonal mitochondrial morphology and distribution, with dismutase active SOD1 causing mitochondrial clustering at the proximal side of Schmidt-Lanterman incisures within motor axons and dismutase inactive SOD1 producing aberrantly elongated axonal mitochondria beginning pre-symptomatically and increasing in severity as disease progresses. Somal mitochondria are altered by mutant SOD1, with loss of the characteristic cylindrical, networked morphology and its replacement by a less elongated, more spherical shape. These data indicate that mutant SOD1 binding to mitochondria disrupts normal mitochondrial distribution and size homeostasis as early pathogenic features of SOD1 mutant-mediated ALS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号