首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To fully describe the fold space and ultimately the biological function of membrane proteins, it is necessary to determine the specific interactions of the protein with the membrane. This property of membrane proteins that we refer to as structural topology cannot be resolved using X-ray crystallography or solution NMR alone. In this article, we incorporate into XPLOR-NIH a hybrid objective function for membrane protein structure determination that utilizes solution and solid-state NMR restraints, simultaneously defining structure, topology, and depth of insertion. Distance and angular restraints obtained from solution NMR of membrane proteins solubilized in detergent micelles are combined with backbone orientational restraints (chemical shift anisotropy and dipolar couplings) derived from solid-state NMR in aligned lipid bilayers. In addition, a supplementary knowledge-based potential, E z (insertion depth potential), is used to ensure the correct positioning of secondary structural elements with respect to a virtual membrane. The hybrid objective function is minimized using a simulated annealing protocol implemented into XPLOR-NIH software for general use. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
Stefanovic S  Hegde RS 《Cell》2007,128(6):1147-1159
Hundreds of proteins are anchored in intracellular membranes by a single transmembrane domain (TMD) close to the C terminus. Although these tail-anchored (TA) proteins serve numerous essential roles in cells, components of their targeting and insertion pathways have long remained elusive. Here we reveal a cytosolic TMD recognition complex (TRC) that targets TA proteins for insertion into the ER membrane. The highly conserved, 40 kDa ATPase subunit of TRC (which we termed TRC40) was identified as Asna-1. TRC40/Asna-1 interacts posttranslationally with TA proteins in a TMD-dependent manner for delivery to a proteinaceous receptor at the ER membrane. Subsequent release from TRC40/Asna-1 and insertion into the membrane depends on ATP hydrolysis. Consequently, an ATPase-deficient mutant of TRC40/Asna-1 dominantly inhibited TA protein insertion selectively without influencing other translocation pathways. Thus, TRC40/Asna-1 represents an integral component of a posttranslational pathway of membrane protein insertion whose targeting is mediated by TRC.  相似文献   

3.
4.
5.
Small GTPases of the Ras superfamily, which include Ras-, Rho-, Rab-, Arf-, and Ran-family isoforms, are generally known to function as a nucleotide-dependent molecular switch in eukaryotic cells. In the GTP-loaded forms, they selectively recruit their cognate interacting proteins or protein complexes, termed “effectors,” to the cytoplasmic face of subcellular membrane compartments, thereby switching on the downstream effector functions, which are vital for fundamental cellular events, such as cell proliferation, cytoskeletal organization, and intracellular membrane trafficking. Nevertheless, in addition to acting as the classic nucleotide-dependent switches for the effectors, recent studies have uncovered that small GTPases themselves can be self-assembled specifically into homo-dimers or higher-order oligomers on membranes, and these assembly processes are likely responsible for their physiological functions. This Review focuses particularly on the self-assembly processes of Rab- and Arf-family isoforms during membrane tethering, the most critical step to ensure the fidelity of membrane trafficking. A summary of the current experimental evidence for self-assemblies of Rab and Arf small GTPases on lipid bilayers in chemically defined reconstitution system is provided  相似文献   

6.
A large class of proteins with cytosolic functional domains is anchored to selected intracellular membranes by a single hydrophobic segment close to the C-terminus. Although such tail-anchored (TA) proteins are numerous, diverse, and functionally important, the mechanism of their transmembrane insertion and the basis of their membrane selectivity remain unclear. To address this problem, we have developed a highly specific, sensitive, and quantitative in vitro assay for the proper membrane-spanning topology of a model TA protein, cytochrome b5 (b5). Selective depletion from membranes of components involved in cotranslational protein translocation had no effect on either the efficiency or topology of b5 insertion. Indeed, the kinetics of transmembrane insertion into protein-free phospholipid vesicles was the same as for native ER microsomes. Remarkably, loading of either liposomes or microsomes with cholesterol to levels found in other membranes of the secretory pathway sharply and reversibly inhibited b5 transmembrane insertion. These results identify the minimal requirements for transmembrane topogenesis of a TA protein and suggest that selectivity among various intracellular compartments can be imparted by differences in their lipid composition.  相似文献   

7.
An emerging alternative to the use of detergents in biochemical studies on membrane proteins is apparently the use styrene-maleic acid (SMA) amphipathic copolymers. These cut the membrane into nanodiscs (SMA-lipid particles, SMALPs), which contain membrane proteins possibly surrounded by their native lipid environment. We examined this approach for studies on several types of T cell membrane proteins, previously defined as raft or non-raft associated, to see whether the properties of the raft derived SMALPs differ from non-raft SMALPs. Our results indicate that two types of raft proteins, GPI-anchored proteins and two Src family kinases, are markedly present in membrane fragments much larger (>250?nm) than those containing non-raft proteins (<20?nm). Lipid probes sensitive to membrane fluidity (membrane order) indicate that the lipid environment in the large SMALPs is less fluid (more ordered) than in the small ones which may indicate the presence of a more ordered lipid Lo phase which is characteristic of membrane rafts. Also the lipid composition of the small vs. large SMALPs is markedly different – the large ones are enriched in cholesterol and lipids containing saturated fatty acids. In addition, we confirm that T cell membrane proteins present in SMALPs can be readily immunoisolated. Our results support the use of SMA as a potentially better (less artifact prone) alternative to detergents for studies on membrane proteins and their complexes, including membrane rafts.  相似文献   

8.
Persistent hurdles impede the successful determination of high-resolution crystal structures of eukaryotic integral membrane proteins (IMP). We designed a high-throughput structural genomics oriented pipeline that seeks to minimize effort in uncovering high-quality, responsive non-redundant targets for crystallization. This “discovery-oriented” pipeline sidesteps two significant bottlenecks in the IMP structure determination pipeline: expression and membrane extraction with detergent. In addition, proteins that enter the pipeline are then rapidly vetted by their presence in the included volume on a size-exclusion column—a hallmark of well-behaved IMP targets. A screen of 384 rationally selected eukaryotic IMPs in baker’s yeast Saccharomyces cerevisiae is outlined to demonstrate the results expected when applying this discovery-oriented pipeline to whole-organism membrane proteomes. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Franklin A. Hays and Zygy Roe-Zurz have contributed equally to this work.  相似文献   

9.
Lipids as modulators of membrane fusion mediated by viral fusion proteins   总被引:1,自引:0,他引:1  
Enveloped viruses infect host cells by fusion of viral and target membranes. This fusion event is triggered by specific glycoproteins in the viral envelope. Fusion glycoproteins belong to either class I, class II or the newly described third class, depending upon their arrangement at the surface of the virion, their tri-dimensional structure and the location within the protein of a short stretch of hydrophobic amino acids called the fusion peptide, which is able to induce the initial lipid destabilization at the onset of fusion. Viral fusion occurs either with the plasma membrane for pH-independent viruses, or with the endosomal membranes for pH-dependent viruses. Although, viral fusion proteins are parted in three classes and the subcellular localization of fusion might vary, these proteins have to act, in common, on lipid assemblies. Lipids contribute to fusion through their physical, mechanical and/or chemical properties. Lipids can thus play a role as chemically defined entities, or through their preferential partitioning into membrane microdomains called "rafts", or by modulating the curvature of the membranes involved in the fusion process. The purpose of this review is to make a state of the art on recent findings on the contribution of cholesterol, sphingolipids and glycolipids in cell entry and membrane fusion of a number of viral families, whose members bear either class I or class II fusion proteins, or fusion proteins of the recently discovered third class.  相似文献   

10.

Background

Tail-anchored (TA) proteins are a distinct class of membrane proteins that are sorted post-translationally to various organelles and function in a number of important cellular processes, including redox reactions, vesicular trafficking and protein translocation. While the molecular targeting signals and pathways responsible for sorting TA proteins to their correct intracellular destinations in yeasts and mammals have begun to be characterized, relatively little is known about TA protein biogenesis in plant cells, especially for those sorted to the plastid outer envelope.

Methodology/Principal Findings

Here we investigated the biogenesis of three plastid TA proteins, including the 33-kDa and 34-kDa GTPases of the translocon at the outer envelope of chloroplasts (Toc33 and Toc34) and a novel 9-kDa protein of unknown function that we define here as an outer envelope TA protein (OEP9). Using a combination of in vivo and in vitro assays we show that OEP9 utilizes a different sorting pathway than that used by Toc33 and Toc34. For instance, while all three TA proteins interact with the cytosolic OEP chaperone/receptor, AKR2A, the plastid targeting information within OEP9 is distinct from that within Toc33 and Toc34. Toc33 and Toc34 also appear to differ from OEP9 in that their insertion is dependent on themselves and the unique lipid composition of the plastid outer envelope. By contrast, the insertion of OEP9 into the plastid outer envelope occurs in a proteinaceous-dependent, but Toc33/34-independent manner and membrane lipids appear to serve primarily to facilitate normal thermodynamic integration of this TA protein.

Conclusions/Significance

Collectively, the results provide evidence in support of at least two sorting pathways for plastid TA outer envelope proteins and shed light on not only the complex diversity of pathways involved in the targeting and insertion of proteins into plastids, but also the molecular mechanisms that underlie the delivery of TA proteins to their proper intracellular locations in general.  相似文献   

11.
The de novo generation of double-membrane autophagosomes is the hallmark of autophagy. The initial membranous precursor cisterna, the phagophore, is very likely generated by the fusion of vesicles and acts as a membrane seed for the subsequent expansion into an autophagosome. This latter step requires a massive convoy of lipids into the phagophore. In this review, we present recent advances in our understanding of the intracellular membrane sources and lipid delivery mechanisms, which principally rely on vesicular transport and membrane contact sites that contribute to autophagosome biogenesis. In this context, we discuss lipid biosynthesis and lipid remodeling events that play a crucial role in both phagophore nucleation and expansion.  相似文献   

12.
The mitochondrial pathway of apoptosis proceeds when molecules, such as cytochrome c, sequestered between the outer and inner mitochondrial membranes are released to the cytosol by mitochondrial outer membrane (MOM) permeabilization. Bax, a member of the Bcl-2 protein family, plays a pivotal role in mitochondrion-mediated apoptosis. In response to apoptotic stimuli, Bax integrates into the MOM, where it mediates the release of cytochrome c from the intermembrane space into the cytosol, leading to caspase activation and cell death. The pro-death action of Bax is regulated by interactions with both other prosurvival proteins, such as tBid, and the MOM, but the exact mechanisms remain largely unclear. Here, the mechanisms of integration of Bax into a model membrane mimicking the MOM were studied by Monte Carlo simulations preceded by a computer prediction of the docking of tBid with Bax. A novel model of Bax activation by tBid was predicted by the simulations. In this model, tBid binds to Bax at an interaction site formed by Bax helices α1, α2, α3 and α5 leading, due to interaction of the positively charged N-terminal fragment of tBid with anionic lipid headgroups, to Bax reorientation such that a hydrogen-bonded pair of residues, Asp98 and Ser184, is brought into close proximity with negatively charged lipid headgroups. The interaction with these headgroups destabilizes the hydrogen bond which results in the release of helix α9 from the Bax-binding groove, its insertion into the membrane, followed by insertion into the membrane of the α5–α6 helical hairpin. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
To accommodate expanding volume (V) during hyposmotic swelling, animal cells change their shape and increase surface area (SA) by drawing extra membrane from surface and intracellular reserves. The relative contributions of these processes, sources and extent of membrane reserves are not well defined. In this study, the SA and V of single substrate-attached A549, 16HBE14o, CHO and NIH 3T3 cells were evaluated by reconstructing cell three-dimensional topology based on conventional light microscopic images acquired simultaneously from two perpendicular directions. The size of SA reserves was determined by swelling cells in extreme 98% hypotonic (∼6 mOsm) solution until membrane rupture; all cell types examined demonstrated surprisingly large membrane reserves and could increase their SA 3.6 ± 0.2-fold and V 10.7 ± 1.5-fold. Blocking exocytosis (by N-ethylmaleimide or 10°C) reduced SA and V increases of A549 cells to 1.7 ± 0.3-fold and 4.4 ± 0.9-fold, respectively. Interestingly, blocking exocytosis did not affect SA and V changes during moderate swelling in 50% hypotonicity. Thus, mammalian cells accommodate moderate (<2-fold) V increases mainly by shape changes and by drawing membrane from preexisting surface reserves, while significant endomembrane insertion is observed only during extreme swelling. Large membrane reserves may provide a simple mechanism to maintain membrane tension below the lytic level during various cellular processes or acute mechanical perturbations and may explain the difficulty in activating mechanogated channels in mammalian cells. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
Tail-anchored (TA) proteins have a single C-terminal transmembrane domain, making their biogenesis dependent on posttranslational translocation. Despite their importance, no dedicated insertion machinery has been uncovered for mitochondrial outer membrane (MOM) TA proteins. To decipher the molecular mechanisms guiding MOM TA protein insertion, we performed two independent systematic microscopic screens in which we visualized the localization of model MOM TA proteins on the background of mutants in all yeast genes. We could find no mutant in which insertion was completely blocked. However, both screens demonstrated that MOM TA proteins were partially localized to the endoplasmic reticulum (ER) in ∆spf1 cells. Spf1, an ER ATPase with unknown function, is the first protein shown to affect MOM TA protein insertion. We found that ER membranes in ∆spf1 cells become similar in their ergosterol content to mitochondrial membranes. Indeed, when we visualized MOM TA protein distribution in yeast strains with reduced ergosterol content, they phenocopied the loss of Spf1. We therefore suggest that the inherent differences in membrane composition between organelle membranes are sufficient to determine membrane integration specificity in a eukaryotic cell.  相似文献   

15.
Tail‐anchored (TA) proteins insert into their target organelles by incompletely elucidated posttranslational pathways. Some TA proteins spontaneously insert into protein‐free liposomes, yet target a specific organelle in vivo. Two spontaneously inserting cytochrome b5 forms, b5‐ER and b5‐RR, which differ only in the charge of the C‐terminal region, target the endoplasmic reticulum (ER) or the mitochondrial outer membrane (MOM), respectively. To bridge the gap between the cell‐free and in cellula results, we analyzed targeting in digitonin‐permeabilized adherent HeLa cells. In the absence of cytosol, the MOM was the destination of both b5 forms, whereas in cytosol the C‐terminal negative charge of b5‐ER determined targeting to the ER. Inhibition of the transmembrane recognition complex (TRC) pathway only partially reduced b5 targeting, while strongly affecting the classical TRC substrate synaptobrevin 2 (Syb2). To identify additional pathways, we tested a number of small inhibitors, and found that Eeyarestatin I (ESI) reduced insertion of b5‐ER and of another spontaneously inserting TA protein, while not affecting Syb2. The effect was independent from the known targets of ESI, Sec61 and p97/VCP. Our results demonstrate that the MOM is the preferred destination of spontaneously inserting TA proteins, regardless of their C‐terminal charge, and reveal a novel, substrate‐specific ER‐targeting pathway.   相似文献   

16.
S-palmitoylation describes the reversible attachment of fatty acids (predominantly palmitate) onto cysteine residues via a labile thioester bond. This posttranslational modification impacts protein functionality by regulating membrane interactions, intracellular sorting, stability, and membrane micropatterning. Several recent findings have provided a tantalizing insight into the regulation and spatiotemporal dynamics of protein palmitoylation. In mammalian cells, the Golgi has emerged as a possible super-reaction center for the palmitoylation of peripheral membrane proteins, whereas palmitoylation reactions on post-Golgi compartments contribute to the regulation of specific substrates. In addition to palmitoylating and depalmitoylating enzymes, intracellular palmitoylation dynamics may also be controlled through interplay with distinct posttranslational modifications, such as phosphorylation and nitrosylation.  相似文献   

17.
A variety of extracellular stimuli regulate cellular responses via membrane receptors. A well-known group of seven-transmembrane domain-containing proteins referred to as G protein-coupled receptors, directly couple with the intracellular GTP-binding proteins (G proteins) across cell membranes and trigger various cellular responses by regulating the activity of several enzymes as well as ion channels. Many specific populations of ion channels are directly controlled by G proteins; however, indirect modulation of some channels by G protein-dependent phosphorylation events and lipid metabolism is also observed. G protein-mediated diverse modifications affect the ion channel activities and spatio-temporally regulate membrane potentials as well as of intracellular Ca2 + concentrations in both excitatory and non-excitatory cells. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.  相似文献   

18.
Pore-forming toxins constitute a class of potent virulence factors that attack their host membrane in a two- or three-step mechanism. After binding to the membrane, often aided by specific receptors, they form pores in the membrane. Pore formation either unfolds a cytolytic activity in itself or provides a pathway to introduce enzymes into the cells that act upon intracellular proteins. The elucidation of the pore-forming mechanism of many of these toxins represents a major research challenge. As the toxins often refold after entering the membrane, their structure in the membrane is unknown, and key questions such as the stoichiometry of individual pores and their mechanism of oligomerization remain unanswered. In this study, we used single subunit counting based on fluorescence spectroscopy to explore the oligomerization process of the Cry1Aa toxin of Bacillus thuringiensis. Purified Cry1Aa toxin molecules labeled at different positions in the pore-forming domain were inserted into supported lipid bilayers, and the photobleaching steps of single fluorophores in the fluorescence time traces were counted to determine the number of subunits of each oligomer. We found that toxin oligomerization is a highly dynamic process that occurs in the membrane and that tetramers represent the final form of the toxins in a lipid bilayer environment.  相似文献   

19.
EBV, the prototypic human γ(1)-herpesvirus, persists for life in infected individuals, despite the presence of vigorous antiviral immunity. CTLs play an important role in the protection against viral infections, which they detect through recognition of virus-encoded peptides presented in the context of HLA class I molecules at the cell surface. The viral peptides are generated in the cytosol and are transported into the endoplasmic reticulum (ER) by TAP. The EBV-encoded lytic-phase protein BNLF2a acts as a powerful inhibitor of TAP. Consequently, loading of antigenic peptides onto HLA class I molecules is hampered, and recognition of BNLF2a-expressing cells by cytotoxic T cells is avoided. In this study, we characterize BNLF2a as a tail-anchored (TA) protein and elucidate its mode of action. Its hydrophilic N-terminal domain is located in the cytosol, whereas its hydrophobic C-terminal domain is inserted into membranes posttranslationally. TAP has no role in membrane insertion of BNLF2a. Instead, Asna1 (also named TRC40), a cellular protein involved in posttranslational membrane insertion of TA proteins, is responsible for integration of BNLF2a into the ER membrane. Asna1 is thereby required for efficient BNLF2a-mediated HLA class I downregulation. To optimally accomplish immune evasion, BNLF2a is composed of two specialized domains: its C-terminal tail anchor ensures membrane integration and ER retention, whereas its cytosolic N terminus accomplishes inhibition of TAP function. These results illustrate how EBV exploits a cellular pathway for TA protein biogenesis to achieve immune evasion, and they highlight the exquisite adaptation of this virus to its host.  相似文献   

20.
During many cellular processes such as cell division, polarization and motility, the plasma membrane does not only represent a passive physical barrier, but also provides a highly dynamic platform for the interplay between lipids, membrane binding proteins and cytoskeletal elements. Even though many regulators of these interactions are known, their mutual interdependence appears to be highly complex and difficult to study in a living cell. Over the past few years, in vitro studies on membrane–cytoskeleton interactions using biomimetic membranes turned out to be extremely helpful to get better mechanistic insight into the dynamics of these processes. In this review, we discuss some of the recent developments using in vitro assays to dissect the role of the players involved: lipids in the membrane, proteins binding to membranes and proteins binding to membrane proteins. We also summarize advantages and disadvantages of supported lipid bilayers as model membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号