首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In skeletal muscle, intermolecular communication between the 1,4-dihydropyridine receptor (DHPR) and RYR1 is bidirectional: orthograde coupling (skeletal excitation–contraction coupling) is observed as depolarization-induced Ca2+ release via RYR1, and retrograde coupling is manifested by increased L-type Ca2+ current via DHPR. A critical domain (residues 720–765) of the DHPR α1S II–III loop plays an important but poorly understood role in bidirectional coupling with RYR1. In this study, we examine the consequences of fluorescent protein insertion into different positions within the α1S II–III loop. In four constructs, a cyan fluorescent protein (CFP)–yellow fluorescent protein (YFP) tandem was introduced in place of residues 672–685 (the peptide A region). All four constructs supported efficient bidirectional coupling as determined by the measurement of L-type current and myoplasmic Ca2+ transients. In contrast, insertion of a CFP–YFP tandem within the N-terminal portion of the critical domain (between residues 726 and 727) abolished bidirectional signaling. Bidirectional coupling was partially preserved when only a single YFP was inserted between residues 726 and 727. However, insertion of YFP near the C-terminal boundary of the critical domain (between residues 760 and 761) or in the conserved C-terminal portion of the α1S II–III loop (between residues 785 and 786) eliminated bidirectional coupling. None of the fluorescent protein insertions, even those that interfered with signaling, significantly altered membrane expression or targeting. Thus, bidirectional signaling is ablated by insertions at two different sites in the C-terminal portion of the α1S II–III loop. Significantly, our results indicate that the conserved portion of the α1S II–III loop C terminal to the critical domain plays an important role in bidirectional coupling either by conveying conformational changes to the critical domain from other regions of the DHPR or by serving as a site of interaction with other junctional proteins such as RYR1.  相似文献   

2.
The ryanodine receptor (RyR)/Ca2+ release channel is an essential component of excitation–contraction coupling in striated muscle cells. To study the function and regulation of the Ca2+ release channel, we tested the effect of caffeine on the full-length and carboxyl-terminal portion of skeletal muscle RyR expressed in a Chinese hamster ovary (CHO) cell line. Caffeine induced openings of the full length RyR channels in a concentration-dependent manner, but it had no effect on the carboxyl-terminal RyR channels. CHO cells expressing the carboxyl-terminal RyR proteins displayed spontaneous changes of intracellular [Ca2+]. Unlike the native RyR channels in muscle cells, which display localized Ca2+ release events (i.e., “Ca2+ sparks” in cardiac muscle and “local release events” in skeletal muscle), CHO cells expressing the full length RyR proteins did not exhibit detectable spontaneous or caffeine-induced local Ca2+ release events. Our data suggest that the binding site for caffeine is likely to reside within the amino-terminal portion of RyR, and the localized Ca2+ release events observed in muscle cells may involve gating of a group of Ca2+ release channels and/or interaction of RyR with muscle-specific proteins.  相似文献   

3.
First coined by Alexander Sandow in 1952, the term excitation–contraction coupling (ECC) describes the rapid communication between electrical events occurring in the plasma membrane of skeletal muscle fibres and Ca2+ release from the SR, which leads to contraction. The sequence of events in twitch skeletal muscle involves: (1) initiation and propagation of an action potential along the plasma membrane, (2) spread of the potential throughout the transverse tubule system (T-tubule system), (3) dihydropyridine receptors (DHPR)-mediated detection of changes in membrane potential, (4) allosteric interaction between DHPR and sarcoplasmic reticulum (SR) ryanodine receptors (RyR), (5) release of Ca2+ from the SR and transient increase of Ca2+ concentration in the myoplasm, (6) activation of the myoplasmic Ca2+ buffering system and the contractile apparatus, followed by (7) Ca2+ disappearance from the myoplasm mediated mainly by its reuptake by the SR through the SR Ca2+ adenosine triphosphatase (SERCA), and under several conditions movement to the mitochondria and extrusion by the Na+/Ca2+ exchanger (NCX). In this text, we review the basics of ECC in skeletal muscle and the techniques used to study it. Moreover, we highlight some recent advances and point out gaps in knowledge on particular issues related to ECC such as (1) DHPR-RyR molecular interaction, (2) differences regarding fibre types, (3) its alteration during muscle fatigue, (4) the role of mitochondria and store-operated Ca2+ entry in the general ECC sequence, (5) contractile potentiators, and (6) Ca2+ sparks.  相似文献   

4.
Combined patch-clamp and Fura-2 measurements were performed on chinese hamster ovary (CHO) cells co-expressing two channel proteins involved in skeletal muscle excitation-contraction (E-C) coupling, the ryanodine receptor (RyR)-Ca2+ release channel (in the membrane of internal Ca2+ stores) and the dihydropyridine receptor (DHPR)-Ca2+ channel (in the plasma membrane). To ensure expression of functional L-type Ca2+ channels, we expressed α2, β, and γ DHPR subunits and a chimeric DHPR α1 subunit in which the putative cytoplasmic loop between repeats II and III is of skeletal origin and the remainder is cardiac. There was no clear indication of skeletal-type coupling between the DHPR and the RyR; depolarization failed to induce a Ca2+ transient (CaT) in the absence of extracellular Ca2+ ([Ca2+]o). However, in the presence of [Ca2+]o, depolarization evoked CaTs with a bell-shaped voltage dependence. About 30% of the cells tested exhibited two kinetic components: a fast transient increase in intracellular Ca2+ concentration ([Ca2+]i) (the first component; reaching 95% of its peak <0.6 s after depolarization) followed by a second increase in [Ca2+]i which lasted for 5–10 s (the second component). Our results suggest that the first component primarily reflected Ca2+ influx through Ca2+ channels, whereas the second component resulted from Ca2+ release through the RyR expressed in the membrane of internal Ca2+ stores. However, the onset and the rate of Ca2+ release appeared to be much slower than in native cardiac myocytes, despite a similar activation rate of Ca2+ current. These results suggest that the skeletal muscle RyR isoform supports Ca2+-induced Ca2+ release but that the distance between the DHPRs and the RyRs is, on average, much larger in the cotransfected CHO cells than in cardiac myocytes. We conclude that morphological properties of T-tubules and/or proteins other than the DHPR and the RyR are required for functional “close coupling” like that observed in skeletal or cardiac muscle. Nevertheless, some of our results imply that these two channels are potentially able to directly interact with each other.  相似文献   

5.
Excitation-contraction coupling is the signaling process by which action potentials control calcium release and consequently the force of muscle contraction. Until recently, three triad proteins were known to be essential for skeletal muscle EC coupling: the voltage-gated calcium channel CaV1.1 acting as voltage sensor, the SR calcium release channel RyR1 representing the only relevant calcium source, and the auxiliary CaV β1a subunit. Whether CaV1.1 and RyR1 are directly coupled or whether their interaction is mediated by another triad protein is still unknown. The recent identification of the adaptor protein STAC3 as fourth essential component of skeletal muscle EC coupling prompted vigorous research to reveal its role in this signaling process. Accumulating evidence supports its possible involvement in linking CaV1.1 and RyR1 in skeletal muscle EC coupling, but also indicates a second, much broader role of STAC proteins in the regulation of calcium/calmodulin-dependent feedback regulation of L-type calcium channels.  相似文献   

6.
Much recent progress has been made in our understanding of the mechanism of sarcoplasmic reticulum Ca2+ release in skeletal muscle. Vertebrate skeletal muscle excitation-contraction (E-C) coupling is thought to occur by a mechanical coupling mechanism involving protein-protein interactions that lead to activation of the sarcoplasmic reticulum (SR) ryanodine receptor (RyR)/Ca2+ release channel by the voltage-sensing transverse (T–) tubule dihydropyridine receptor (DHPR)/Ca2+ channel. In a subsequent step, the released Ca2+ amplify SR Ca2+ release by activating release channels that are not linked to the DHPR. Experiments with mutant muscle cells have indicated that skeletal muscle specific DHPR and RyR isoforms are required for skeletal muscle E-C coupling. A direct functional and structural interaction between a DHPR-derived peptide and the RyR has been described. The interaction between the DHPR and RyR may be stabilized by other proteins such as triadin (a SR junctional protein) and modulated by phosphorylation of the DHPR.  相似文献   

7.
The II-III loop of the dihydropyridine receptor (DHPR) alpha(1s) subunit is a modulator of the ryanodine receptor (RyR1) Ca(2+) release channel in vitro and is essential for skeletal muscle contraction in vivo. Despite its importance, the structure of this loop has not been reported. We have investigated its structure using a suite of NMR techniques which revealed that the DHPR II-III loop is an intrinsically unstructured protein (IUP) and as such belongs to a burgeoning structural class of functionally important proteins. The loop does not possess a stable tertiary fold: it is highly flexible, with a strong N-terminal helix followed by nascent helical/turn elements and unstructured segments. Its residual structure is loosely globular with the N and C termini in close proximity. The unstructured nature of the II-III loop may allow it to easily modify its interaction with RyR1 following a surface action potential and thus initiate rapid Ca(2+) release and contraction. The in vitro binding partner for the II-III was investigated. The II-III loop interacts with the second of three structurally distinct SPRY domains in RyR1, whose function is unknown. This interaction occurs through two preformed N-terminal alpha-helical regions and a C-terminal hydrophobic element. The A peptide corresponding to the helical N-terminal region is a common probe of RyR function and binds to the same SPRY domain as the full II-III loop. Thus the second SPRY domain is an in vitro binding site for the II-III loop. The possible in vivo role of this region is discussed.  相似文献   

8.
A key component of excitation contraction (EC) coupling in skeletal muscle is the cytoplasmic linker (II-III loop) between the second and third transmembrane repeats of the α(1S) subunit of the dihydropyridine receptor (DHPR). The II-III loop has been previously examined in vitro using a linear II-III loop with unrestrained N- and C-terminal ends. To better reproduce the loop structure in its native environment (tethered to the DHPR transmembrane domains), we have joined the N and C termini using intein-mediated technology. Circular dichroism and NMR spectroscopy revealed a structural shift in the cyclized loop toward a protein with increased α-helical and β-strand structure in a region of the loop implicated in its in vitro function and also in a critical region for EC coupling. The affinity of binding of the II-III loop binding to the SPRY2 domain of the skeletal ryanodine receptor (RyR1) increased 4-fold, and its ability to activate RyR1 channels in lipid bilayers was enhanced 3-fold by cyclization. These functional changes were predicted consequences of the structural enhancement. We suggest that tethering the N and C termini stabilized secondary structural elements in the DHPR II-III loop and may reflect structural and dynamic characteristics of the loop that are inherent in EC coupling.  相似文献   

9.
The plasmalemmal dihydropyridine receptor (DHPR) is the voltage sensor in skeletal muscle excitation-contraction (e-c) coupling. It activates calcium release from the sarcoplasmic reticulum via protein-protein interactions with the ryanodine receptor (RyR). To enable this interaction, DHPRs are arranged in arrays of tetrads opposite RyRs. In the DHPR alpha(1S) subunit, the cytoplasmic loop connecting repeats II and III is a major determinant of skeletal-type e-c coupling. Whether the essential II-III loop sequence (L720-L764) also determines the skeletal-specific arrangement of DHPRs was examined in dysgenic (alpha(1S)-null) myotubes reconstituted with distinct alpha(1) subunit isoforms and II-III loop chimeras. Parallel immunofluorescence and freeze-fracture analysis showed that alpha(1S) and chimeras containing L720-L764, all of which restored skeletal-type e-c coupling, displayed the skeletal arrangement of DHPRs in arrays of tetrads. Conversely, alpha(1C) and those chimeras with a cardiac II-III loop and cardiac e-c coupling properties were targeted into junctional membranes but failed to form tetrads. However, an alpha(1S)-based chimera with the heterologous Musca II-III loop produced tetrads but did not reconstitute skeletal muscle e-c coupling. These findings suggest an inhibitory role in tetrad formation of the cardiac II-III loop and that the organization of DHPRs in tetrads vis-a-vis the RyR is necessary but not sufficient for skeletal-type e-c coupling.  相似文献   

10.
We recently identified the second of three SPRY domains in the skeletal muscle ryanodine receptor type 1 (RyR1) as a potential binding partner in the RyR1 ion channel for the recombinant II–III loop of the skeletal muscle dihydropyridine receptor, for a scorpion toxin, Imperatoxin A and for an interdomain interaction within RyR1. SPRY domains are structural domains that were first described in the fungal Dictyostelium discoideum tyrosine kinase spore lysis A and all three isoforms of the mammalian ryanodine receptor (RyR). Our studies are the first to assign a function to any of the three SPRY domains in the RyR. However, in other systems SPRY domains provide binding sites for regulatory proteins or intramolecular binding sites that maintain the structural integrity of a protein. In this article, we review the general characteristics of a range of SPRY domains and discuss evidence that the SPRY2 domain in RyR1 supports interactions with binding partners that contain a structural surface of aligned basic residues.  相似文献   

11.
Enhanced sensitivity to caffeine is part of the standard tests for susceptibility to malignant hyperthermia (MH) in humans and pigs. The caffeine sensitivity of skeletal muscle contraction and Ca2+ release from the sarcoplasmic reticulum is enhanced, but surprisingly, the caffeine sensitivity of purified porcine ryanodine receptor Ca2+-release channels (RyRs) is not affected by the MH mutation (Arg615Cys). In contrast, we show here that native malignant hyperthermic pig RyRs (incorporated into lipid bilayers with RyR-associated lipids and proteins) were activated by caffeine at 100- to 1,000-fold lower concentrations than native normal pig RyRs. In addition, the results show that the mutant ryanodine receptor channels were less sensitive to high-affinity activation by a peptide (CS) that corresponds to a part of the II–III loop of the skeletal dihydropyridine receptor (DHPR). Furthermore, subactivating concentrations of peptide CS enhanced the response of normal pig and rabbit RyRs to caffeine. In contrast, the caffeine sensitivity of MH RyRs was not enhanced by the peptide. These novel results showed that in MH-susceptible pig muscles 1) the caffeine sensitivity of native RyRs was enhanced, 2) the sensitivity of RyRs to a skeletal II–III loop peptide was depressed, and 3) an interaction between the caffeine and peptide CS activation mechanisms seen in normal RyRs was lost. calcium ion homeostasis; excitation-contraction coupling; ryanodine receptor polymorphisms; muscle contraction  相似文献   

12.
Excitation-contraction (e-c) coupling in muscle relies on the interaction between dihydropyridine receptors (DHPRs) and RyRs within Ca(2+) release units (CRUs). In skeletal muscle this interaction is bidirectional: alpha(1S)DHPRs trigger RyR1 (the skeletal form of the ryanodine receptor) to release Ca(2+) in the absence of Ca(2+) permeation through the DHPR, and RyR1s, in turn, affect the open probability of alpha(1S)DHPRs. alpha(1S)DHPR and RyR1 are linked to each other, organizing alpha(1S)-DHPRs into groups of four, or tetrads. In cardiac muscle, however, alpha(1C)DHPR Ca(2+) current is important for activation of RyR2 (the cardiac isoform of the ryanodine receptor) and alpha(1C)-DHPRs are not organized into tetrads. We expressed RyR1, RyR2, and four different RyR1/RyR2 chimeras (R4: Sk1635-3720, R9: Sk2659-3720, R10: Sk1635-2559, R16: Sk1837-2154) in 1B5 dyspedic myotubes to test their ability to restore skeletal-type e-c coupling and DHPR tetrads. The rank-order for restoring skeletal e-c coupling, indicated by Ca(2+) transients in the absence of extracellular Ca(2+), is RyR1 > R4 > R10 > R16 > R9 > RyR2. The rank-order for restoration of DHPR tetrads is RyR1 > R4 = R9 > R10 = R16 > RyR2. Because the skeletal segment in R9 does not overlap with that in either R10 or R16, our results indicate that multiple regions of RyR1 may interact with alpha(1S)DHPRs and that the regions responsible for tetrad formation do not correspond exactly to the ones required for functional coupling.  相似文献   

13.
CHIP (C‐terminus of Hsc70‐interacting protein) and its worm ortholog CHN‐1 are E3 ubiquitin ligases that link the chaperone system with the ubiquitin‐proteasome system (UPS). CHN‐1 can cooperate with UFD‐2, another E3 ligase, to accelerate ubiquitin chain formation; however, the basis for the high processivity of this E3s set has remained obscure. Here, we studied the molecular mechanism and function of the CHN‐1–UFD‐2 complex in Caenorhabditis elegans. Our data show that UFD‐2 binding promotes the cooperation between CHN‐1 and ubiquitin‐conjugating E2 enzymes by stabilizing the CHN‐1 U‐box dimer. However, HSP70/HSP‐1 chaperone outcompetes UFD‐2 for CHN‐1 binding, thereby promoting a shift to the autoinhibited CHN‐1 state by acting on a conserved residue in its U‐box domain. The interaction with UFD‐2 enables CHN‐1 to efficiently ubiquitylate and regulate S‐adenosylhomocysteinase (AHCY‐1), a key enzyme in the S‐adenosylmethionine (SAM) regeneration cycle, which is essential for SAM‐dependent methylation. Our results define the molecular mechanism underlying the synergistic cooperation of CHN‐1 and UFD‐2 in substrate ubiquitylation.  相似文献   

14.
In skeletal muscle, excitation-contraction coupling involves a functional interaction between the ryanodine receptor (RyR) and the dihydropyridine receptor (DHPR). The domain corresponding to Thr671-Leu690 of the II-III loop of the skeletal DHPR α1-subunit is able to regulate RyR properties and calcium release from sarcoplasmic reticulum, whereas the domain corresponding to Glu724-Pro760 antagonizes this effect. Two peptides, covering these sequences (peptide ASk and CSk, respectively) were immobilized on polystyrene beads. We demonstrate that peptide ASk binds to the skeletal isoform of RyR (RyR1) whereas peptide CSk does not. Using surface plasmon resonance detection, we show that 1) domain Thr671-Leu690 is the only sequence of the II-III loop binding with RyR1 and 2) the interaction of peptide ASk with RyR1 is not modulated by Ca2+ (pCa 9-2) nor by Mg2+ (up to 10 mM). In contrast, this interaction is strongly potentiated by the immunophilin FKBP12 (EC50 = 10 nM) and inhibited by both rapamycin (IC50 = 5 nM) and FK506. Peptide ASk induces a 300% increase of the opening probability of the RyR1 incorporated in lipid bilayer. Removal of FKBP12 from RyR1 completely abolishes this effect of domain ASk on RyR1 channel behavior. These results demonstrate a direct interaction of the RyR1 with the discrete domain of skeletal DHPR α1-subunit corresponding to Thr671-Leu690 and show that the association of FKBP12 with RyR1 specifically modulates this interaction.  相似文献   

15.
Dihydropyridine receptors (DHPRs) and ryanodine receptors (RyRs) interact during EC coupling within calcium release units, CRUs. The location of the two channels and their positioning are related to their role in EC coupling. alphals DHPR and RyR1 of skeletal muscle form interlocked arrays. Groups of four DHPRs (forming a tetrad) are located on alternate RyR1s. This association provides the structural framework for reciprocal signaling between the two channels. RyR3 are present in some skeletal muscles in association with RyR1 and in ratios up to 1:1. RyR3 neither induce formation of tetrads by DHPRs nor sustain EC coupling. RyR3 are located in a parajunctional position, in proximity of the RyR1-DHPR complexes, and they may be indirectly activated by calcium liberated via the RyR1 channels. RyR2 have two locations in cardiac muscle. One is at CRUs that contain DHPRs and RyRs. In these cardiac CRUs, RyR2 and alpha1c DHPR are in proximity of each other, but not closely linked, so that they may not have a direct molecular interaction. A second location of RyR2 is on SR cisternae that are not attached to surface membrane/T tubules. The RyR2 in these cisternae, which are often several microns away from any DHPRs, must necessarily be activated indirectly.  相似文献   

16.
We investigated the molecular basis for Ca-dependent inactivation of the cardiac L-type Ca channel. Transfection of HEK293 cells with the wild-type α1C or its 3′ deletion mutant (α1C−3′del) produced channels that exhibited prominent Ca-dependent inactivation. To identify structural regions of α1C involved in this process, we analyzed chimeric α1 subunits in which one of the major intracellular domains of α1C was replaced by the corresponding region from the skeletal muscle α1S subunit (which lacks Ca-dependent inactivation). Replacing the NH2 terminus or the III–IV loop of α1C with its counterpart from α1S had no appreciable effect on Ca channel inactivation. In contrast, replacing the I–II loop of α1C with the corresponding region from α1S dramatically slowed the inactivation of Ba currents while preserving Ca-dependent inactivation. A similar but less pronounced result was obtained with a II–III loop chimera. These results suggest that the I–II and II–III loops of α1C may participate in the mechanism of Ca-dependent inactivation. Replacing the final 80% of the COOH terminus of α1C with the corresponding region from α1S completely eliminated Ca-dependent inactivation without affecting inactivation of Ba currents. Significantly, Ca-dependent inactivation was restored to this chimera by deleting a nonconserved, 211–amino acid segment from the end of the COOH terminus. These results suggest that the distal COOH terminus of α1S can block Ca-dependent inactivation, possibly by interacting with other proteins or other regions of the Ca channel. Our findings suggest that structural determinants of Ca-dependent inactivation are distributed among several major cytoplasmic domains of α1C.  相似文献   

17.
Ca2+ ions play a pivotal role in a wide array of cellular processes ranging from fertilization to cell death. In skeletal muscle, a mechanical interaction between plasma membrane dihydropyridine receptors (DHPRs, L-type Ca2+ channels) and Ca2+ release channels (ryanodine receptors, RyR1s) of the sarcoplasmic reticulum orchestrates a complex, bi-directional Ca2+ signaling process that converts electrical impulses in the sarcolemma into myoplasmic Ca2+ transients during excitation-contraction coupling. Mutations in the genes that encode the two proteins that coordinate this electrochemical conversion process (the DHPR and RyR1) result in a variety of skeletal muscle disorders including malignant hyperthermia (MH), central core disease (CCD), multiminicore disease, nemaline rod myopathy, and hypokalemic periodic paralysis. Although RyR1 and DHPR disease mutations are thought to alter excitability and Ca2+ homeostasis in skeletal muscle, only recently has research begun to probe the molecular mechanisms by which these genetic defects lead to distinct clinical and histopathological manifestations. This review focuses on recent advances in determining the impact of MH and CCD mutations in RyR1 on muscle Ca2+ signaling and how these effects contribute to disease-specific aspects of these disorders.  相似文献   

18.
Calcium release units (CRUs) are junctions between the sarcoplasmic reticulum (SR) and exterior membranes that mediates excitation contraction (e-c) coupling in muscle cells. In skeletal muscle CRUs contain two isoforms of the sarcoplasmic reticulum Ca(2+)release channel: ryanodine receptors type 1 and type 3 (RyR1 and RyR3). 1B5s are a mouse skeletal muscle cell line that carries a null mutation for RyR1 and does not express either RyR1 or RyR3. These cells develop dyspedic SR/exterior membrane junctions (i.e., dyspedic calcium release units, dCRUs) that contain dihydropyridine receptors (DHPRs) and triadin, two essential components of CRUs, but no RyRs (or feet). Lack of RyRs in turn affects the disposition of DHPRs, which is normally dictated by a linkage to RyR subunits. In the dCRUs of 1B5 cells, DHPRs are neither grouped into tetrads nor aligned in two orthogonal directions. We have explored the structural role of RyR3 in the assembly of CRUs in 1B5 cells independently expressing either RyR1 or RyR3. Either isoform colocalizes with DHPRs and triadin at the cell periphery. Electron microscopy shows that expression of either isoform results in CRUs containing arrays of feet, indicating the ability of both isoforms to be targeted to dCRUs and to assemble in ordered arrays in the absence of the other. However, a significant difference between RyR1- and RyR3-rescued junctions is revealed by freeze fracture. While cells transfected with RyR1 show restoration of DHPR tetrads and DHPR orthogonal alignment indicative of a link to RyRs, those transfected with RyR3 do not. This indicates that RyR3 fails to link to DHPRs in a specific manner. This morphological evidence supports the hypothesis that activation of RyR3 in skeletal muscle cells must be indirect and provides the basis for failure of e-c coupling in muscle cells containing RyR3 but lacking RyR1 (see the accompanying report, ).  相似文献   

19.
The molecular mechanisms that drive the infection by the severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2)—the causative agent of coronavirus disease 2019 (COVID‐19)—are under intense current scrutiny to understand how the virus operates and to uncover ways in which the disease can be prevented or alleviated. Recent proteomic screens of the interactions between viral and host proteins have identified the human proteins targeted by SARS‐CoV‐2. The DNA polymerase α (Pol α)–primase complex or primosome—responsible for initiating DNA synthesis during genomic duplication—was identified as a target of nonstructural protein 1 (nsp1), a major virulence factor in the SARS‐CoV‐2 infection. Here, we validate the published reports of the interaction of nsp1 with the primosome by demonstrating direct binding with purified recombinant components and providing a biochemical characterization of their interaction. Furthermore, we provide a structural basis for the interaction by elucidating the cryo‐electron microscopy structure of nsp1 bound to the primosome. Our findings provide biochemical evidence for the reported targeting of Pol α by the virulence factor nsp1 and suggest that SARS‐CoV‐2 interferes with Pol α''s putative role in the immune response during the viral infection.  相似文献   

20.
Severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) causes coronavirus disease 2019 (COVID‐19), which may result in acute respiratory distress syndrome (ARDS), multiorgan failure, and death. The alveolar epithelium is a major target of the virus, but representative models to study virus host interactions in more detail are currently lacking. Here, we describe a human 2D air–liquid interface culture system which was characterized by confocal and electron microscopy and single‐cell mRNA expression analysis. In this model, alveolar cells, but also basal cells and rare neuroendocrine cells, are grown from 3D self‐renewing fetal lung bud tip organoids. These cultures were readily infected by SARS‐CoV‐2 with mainly surfactant protein C‐positive alveolar type II‐like cells being targeted. Consequently, significant viral titers were detected and mRNA expression analysis revealed induction of type I/III interferon response program. Treatment of these cultures with a low dose of interferon lambda 1 reduced viral replication. Hence, these cultures represent an experimental model for SARS‐CoV‐2 infection and can be applied for drug screens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号