首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pathological TDP‐43 aggregation is characteristic of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD‐TDP); however, how TDP‐43 aggregation and function are regulated remain poorly understood. Here, we show that O‐GlcNAc transferase OGT‐mediated O‐GlcNAcylation of TDP‐43 suppresses ALS‐associated proteinopathies and promotes TDP‐43''s splicing function. Biochemical and cell‐based assays indicate that OGT''s catalytic activity suppresses TDP‐43 aggregation and hyperphosphorylation, whereas abolishment of TDP‐43 O‐GlcNAcylation impairs its RNA splicing activity. We further show that TDP‐43 mutations in the O‐GlcNAcylation sites improve locomotion defects of larvae and adult flies and extend adult life spans, following TDP‐43 overexpression in Drosophila motor neurons. We finally demonstrate that O‐GlcNAcylation of TDP‐43 promotes proper splicing of many mRNAs, including STMN2, which is required for normal axonal outgrowth and regeneration. Our findings suggest that O‐GlcNAcylation might be a target for the treatment of TDP‐43‐linked pathogenesis.  相似文献   

2.
Aggregation of the multifunctional RNA‐binding protein TDP‐43 defines large subgroups of amyotrophic lateral sclerosis and frontotemporal dementia and correlates with neurodegeneration in both diseases. In disease, characteristic C‐terminal fragments of ~25 kDa ("TDP‐25") accumulate in cytoplasmic inclusions. Here, we analyze gain‐of‐function mechanisms of TDP‐25 combining cryo‐electron tomography, proteomics, and functional assays. In neurons, cytoplasmic TDP‐25 inclusions are amorphous, and photobleaching experiments reveal gel‐like biophysical properties that are less dynamic than nuclear TDP‐43. Compared with full‐length TDP‐43, the TDP‐25 interactome is depleted of low‐complexity domain proteins. TDP‐25 inclusions are enriched in 26S proteasomes adopting exclusively substrate‐processing conformations, suggesting that inclusions sequester proteasomes, which are largely stalled and no longer undergo the cyclic conformational changes required for proteolytic activity. Reporter assays confirm that TDP‐25 impairs proteostasis, and this inhibitory function is enhanced by ALS‐causing TDP‐43 mutations. These findings support a patho‐physiological relevance of proteasome dysfunction in ALS/FTD.  相似文献   

3.
TDP‐43 is the major component of pathological inclusions in most ALS patients and in up to 50% of patients with frontotemporal dementia (FTD). Heterozygous missense mutations in TARDBP, the gene encoding TDP‐43, are one of the common causes of familial ALS. In this study, we investigate TDP‐43 protein behavior in induced pluripotent stem cell (iPSC)‐derived motor neurons from three ALS patients with different TARDBP mutations, three healthy controls and an isogenic control. TARDPB mutations induce several TDP‐43 changes in spinal motor neurons, including cytoplasmic mislocalization and accumulation of insoluble TDP‐43, C‐terminal fragments, and phospho‐TDP‐43. By generating iPSC lines with allele‐specific tagging of TDP‐43, we find that mutant TDP‐43 initiates the observed disease phenotypes and has an altered interactome as indicated by mass spectrometry. Our findings also indicate that TDP‐43 proteinopathy results in a defect in mitochondrial transport. Lastly, we show that pharmacological inhibition of histone deacetylase 6 (HDAC6) restores the observed TDP‐43 pathologies and the axonal mitochondrial motility, suggesting that HDAC6 inhibition may be an interesting therapeutic target for neurodegenerative disorders linked to TDP‐43 pathology.  相似文献   

4.
TDP‐43 forms the primary constituents of the cytoplasmic inclusions contributing to various neurodegenerative diseases, including amyotrophic lateral sclerosis and frontotemporal dementia (FTD). Over 60 TDP‐43 mutations have been identified in patients suffering from these two diseases, but most variations are located in the protein''s disordered C‐terminal glycine‐rich region. P112H mutation of TDP‐43 has been uniquely linked to FTD, and is located in the first RNA recognition motif (RRM1). This mutation is thought to be pathogenic, but its impact on TDP‐43 at the protein level remains unclear. Here, we compare the biochemical and biophysical properties of TDP‐43 truncated proteins with or without P112H mutation. We show that P112H‐mutated TDP‐43 proteins exhibit higher thermal stability, impaired RNA‐binding activity, and a reduced tendency to aggregate relative to wild‐type proteins. Near‐UV CD, 2D‐nuclear‐magnetic resonance, and intrinsic fluorescence spectrometry further reveal that the P112H mutation in RRM1 generates local conformational changes surrounding the mutational site that disrupt the stacking interactions of the W113 side chain with nucleic acids. Together, these results support the notion that P112H mutation of TDP‐43 contributes to FTD through functional impairment of RNA metabolism and/or structural changes that curtail protein clearance.  相似文献   

5.
Tightly packed complexes of nucleocapsid protein and genomic RNA form the core of viruses and assemble within viral factories, dynamic compartments formed within the host cells associated with human stress granules. Here, we test the possibility that the multivalent RNA‐binding nucleocapsid protein (N) from severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) condenses with RNA via liquid–liquid phase separation (LLPS) and that N protein can be recruited in phase‐separated forms of human RNA‐binding proteins associated with SG formation. Robust LLPS with RNA requires two intrinsically disordered regions (IDRs), the N‐terminal IDR and central‐linker IDR, as well as the folded C‐terminal oligomerization domain, while the folded N‐terminal domain and the C‐terminal IDR are not required. N protein phase separation is induced by addition of non‐specific RNA. In addition, N partitions in vitro into phase‐separated forms of full‐length human hnRNPs (TDP‐43, FUS, hnRNPA2) and their low‐complexity domains (LCs). These results provide a potential mechanism for the role of N in SARS‐CoV‐2 viral genome packing and in host‐protein co‐opting necessary for viral replication and infectivity.  相似文献   

6.
7.
Morphologically distinct TDP‐43 aggregates occur in clinically different FTLD‐TDP subtypes, yet the mechanism of their emergence and contribution to clinical heterogeneity are poorly understood. Several lines of evidence suggest that pathological TDP‐43 follows a prion‐like cascade, but the molecular determinants of this process remain unknown. We use advanced microscopy techniques to compare the seeding properties of pathological FTLD‐TDP‐A and FTLD‐TDP‐C aggregates. Upon inoculation of patient‐derived aggregates in cells, FTLD‐TDP‐A seeds amplify in a template‐dependent fashion, triggering neoaggregation more efficiently than those extracted from FTLD‐TDP‐C patients, correlating with the respective disease progression rates. Neoaggregates are sequentially phosphorylated with N‐to‐C directionality and with subtype‐specific timelines. The resulting FTLD‐TDP‐A neoaggregates are large and contain densely packed fibrils, reminiscent of the pure compacted fibrils present within cytoplasmic inclusions in postmortem brains. In contrast, FTLD‐TDP‐C dystrophic neurites show less dense fibrils mixed with cellular components, and their respective neoaggregates are small, amorphous protein accumulations. These cellular seeding models replicate aspects of the patient pathological diversity and will be a useful tool in the quest for subtype‐specific therapeutics.  相似文献   

8.
The RNA‐binding protein fused in sarcoma (FUS) assembles via liquid–liquid phase separation (LLPS) into functional RNA granules and aggregates in amyotrophic lateral sclerosis associated neuronal inclusions. Several studies have demonstrated that posttranslational modification (PTM) can significantly alter FUS phase separation and aggregation, particularly charge‐altering phosphorylation of the nearly uncharged N‐terminal low complexity domain of FUS (FUS LC). However, the occurrence and impact of N‐terminal acetylation on FUS phase separation remains unexplored, even though N‐terminal acetylation is the most common PTM in mammals and changes the charge at the N‐terminus. First, we find that FUS is predominantly acetylated in two human cell types and stress conditions. Next, we show that recombinant FUS LC can be acetylated when co‐expressed with the NatA complex in Escherichia coli. Using NMR spectroscopy, we find that N‐terminal acetylated FUS LC (FUS LC Nt‐Ac) does not notably alter monomeric FUS LC structure or motions. Despite no difference in structure, Nt‐Ac‐FUS LC phase separates more avidly than unmodified FUS LC. More importantly, N‐terminal acetylation of FUS LC reduces aggregation. Our findings highlight the importance of N‐terminal acetylation of proteins that undergo physiological LLPS and pathological aggregation.  相似文献   

9.
The piRNA amplification pathway in Bombyx is operated by Ago3 and Siwi in their piRISC form. The DEAD‐box protein, Vasa, facilitates Ago3‐piRISC production by liberating cleaved RNAs from Siwi‐piRISC in an ATP hydrolysis‐dependent manner. However, the Vasa‐like factor facilitating Siwi‐piRISC production along this pathway remains unknown. Here, we identify DEAD‐box polypeptide 43 (DDX43) as the Vasa‐like protein functioning in Siwi‐piRISC production. DDX43 belongs to the helicase superfamily II along with Vasa, and it contains a similar helicase core. DDX43 also contains a K‐homology (KH) domain, a prevalent RNA‐binding domain, within its N‐terminal region. Biochemical analyses show that the helicase core is responsible for Ago3‐piRISC interaction and ATP hydrolysis, while the KH domain enhances the ATPase activity of the helicase core. This enhancement is independent of the RNA‐binding activity of the KH domain. For maximal DDX43 RNA‐binding activity, both the KH domain and helicase core are required. This study not only provides new insight into the piRNA amplification mechanism but also reveals unique collaborations between the two domains supporting DDX43 function within the pathway.  相似文献   

10.
In eukaryotic translation, termination and ribosome recycling phases are linked to subsequent initiation of a new round of translation by persistence of several factors at ribosomal sub‐complexes. These comprise/include the large eIF3 complex, eIF3j (Hcr1 in yeast) and the ATP‐binding cassette protein ABCE1 (Rli1 in yeast). The ATPase is mainly active as a recycling factor, but it can remain bound to the dissociated 40S subunit until formation of the next 43S pre‐initiation complexes. However, its functional role and native architectural context remains largely enigmatic. Here, we present an architectural inventory of native yeast and human ABCE1‐containing pre‐initiation complexes by cryo‐EM. We found that ABCE1 was mostly associated with early 43S, but also with later 48S phases of initiation. It adopted a novel hybrid conformation of its nucleotide‐binding domains, while interacting with the N‐terminus of eIF3j. Further, eIF3j occupied the mRNA entry channel via its ultimate C‐terminus providing a structural explanation for its antagonistic role with respect to mRNA binding. Overall, the native human samples provide a near‐complete molecular picture of the architecture and sophisticated interaction network of the 43S‐bound eIF3 complex and the eIF2 ternary complex containing the initiator tRNA.  相似文献   

11.
SARS‐CoV‐2 nucleocapsid (N) protein plays essential roles in many steps of the viral life cycle, thus representing a key drug target. N protein contains the folded N‐/C‐terminal domains (NTD/CTD) and three intrinsically disordered regions, while its functions including liquid–liquid phase separation (LLPS) depend on the capacity in binding various viral/host‐cell RNA/DNA of diverse sequences. Previously NTD was established to bind various RNA/DNA while CTD to dimerize/oligomerize for forming high‐order structures. By NMR, here for the first time we decrypt that CTD is not only capable of binding S2m, a specific probe derived from SARS‐CoV‐2 gRNA but with the affinity even higher than that of NTD. Very unexpectedly, ATP, the universal energy currency for all living cells with high cellular concentrations (2–16 mM), specifically binds CTD with Kd of 1.49 ± 0.28 mM. Strikingly, the ATP‐binding residues of NTD/CTD are identical in the SARS‐CoV‐2 variants while ATP and S2m interplay in binding NTD/CTD, as well as in modulating LLPS critical for the viral life cycle. Results together not only define CTD as a novel binding domain for ATP and nucleic acid, but enforce our previous proposal that ATP has been evolutionarily exploited by SARS‐CoV‐2 to complete its life cycle in the host cell. Most importantly, the unique ATP‐binding pockets on NTD/CTD may offer promising targets for design of specific anti‐SARS‐CoV‐2 molecules to fight the pandemic. Fundamentally, ATP emerges to act at mM as a cellular factor to control the interface between the host cell and virus lacking the ability to generate ATP.  相似文献   

12.
Proteins function in the crowded cellular environments with high salt concentrations, thus facing tremendous challenges of misfolding/aggregation which represents a pathological hallmark of aging and an increasing spectrum of human diseases. Recently, intrinsically disordered regions (IDRs) were recognized to drive liquid–liquid phase separation (LLPS), a common principle for organizing cellular membraneless organelles (MLOs). ATP, the universal energy currency for all living cells, mysteriously has concentrations of 2–12 mM, much higher than required for its previously‐known functions. Only recently, ATP was decoded to behave as a biological hydrotrope to inhibit protein LLPS and aggregation at mM. We further revealed that ATP also acts as a bivalent binder, which not only biphasically modulates LLPS driven by IDRs of human and viral proteins, but also bind to the conserved nucleic‐acid‐binding surfaces of the folded proteins. Most unexpectedly, ATP appears to act as a hydration mediator to antagonize the crowding‐induced destabilization as well as to enhance folding of proteins without significant binding. Here, this review focuses on summarizing the results of these biophysical studies and discussing their implications in an evolutionary context. By linking triphosphate with unique hydration property to adenosine, ATP appears to couple the ability for establishing hydrophobic, π‐π, π‐cation and electrostatic interactions to the capacity in mediating hydration of proteins, which is at the heart of folding, dynamics, stability, phase separation and aggregation. Consequently, ATP acquired a category of functions at ~mM to energy‐independently control protein homeostasis with diverse mechanisms, thus implying a link between cellular ATP concentrations and protein‐aggregation diseases.  相似文献   

13.
The binding of severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) spike protein to the angiotensin‐converting enzyme 2 (ACE2) receptor expressed on the host cells is a critical initial step for viral infection. This interaction is blocked through competitive inhibition by soluble ACE2 protein. Therefore, developing high‐affinity and cost‐effective ACE2 mimetic ligands that disrupt this protein–protein interaction is a promising strategy for viral diagnostics and therapy. We employed human and plant defensins, a class of small (2–5 kDa) and highly stable proteins containing solvent‐exposed alpha‐helix, conformationally constrained by two disulfide bonds. Therefore, we engineered the amino acid residues on the constrained alpha‐helix of defensins to mimic the critical residues on the ACE2 helix 1 that interact with the SARS‐CoV‐2 spike protein. The engineered proteins (h‐deface2, p‐deface2, and p‐deface2‐MUT) were soluble and purified to homogeneity with a high yield from a bacterial expression system. The proteins demonstrated exceptional thermostability (Tm 70.7°C), high‐affinity binding to the spike protein with apparent K d values of 54.4 ± 11.3, 33.5 ± 8.2, and 14.4 ± 3.5 nM for h‐deface2, p‐deface2, and p‐deface2‐MUT, respectively, and were used in a diagnostic assay that detected SARS‐CoV‐2 neutralizing antibodies. This work addresses the challenge of developing helical ACE2 mimetics by demonstrating that defensins provide promising scaffolds to engineer alpha‐helices in a constrained form for designing of high‐affinity ligands.  相似文献   

14.
Potassium‐coupled chloride transporters (KCCs) play crucial roles in regulating cell volume and intracellular chloride concentration. They are characteristically inhibited under isotonic conditions via phospho‐regulatory sites located within the cytoplasmic termini. Decreased inhibitory phosphorylation in response to hypotonic cell swelling stimulates transport activity, and dysfunction of this regulatory process has been associated with various human diseases. Here, we present cryo‐EM structures of human KCC3b and KCC1, revealing structural determinants for phospho‐regulation in both N‐ and C‐termini. We show that phospho‐mimetic KCC3b is arrested in an inward‐facing state in which intracellular ion access is blocked by extensive contacts with the N‐terminus. In another mutant with increased isotonic transport activity, KCC1Δ19, this interdomain interaction is absent, likely due to a unique phospho‐regulatory site in the KCC1 N‐terminus. Furthermore, we map additional phosphorylation sites as well as a previously unknown ATP/ADP‐binding pocket in the large C‐terminal domain and show enhanced thermal stabilization of other CCCs by adenine nucleotides. These findings provide fundamentally new insights into the complex regulation of KCCs and may unlock innovative strategies for drug development.  相似文献   

15.
Shuttle protein UBQLN2 functions in protein quality control (PQC) by binding to proteasomal receptors and ubiquitinated substrates via its N‐terminal ubiquitin‐like (UBL) and C‐terminal ubiquitin‐associated (UBA) domains, respectively. Between these two folded domains are low‐complexity STI1‐I and STI1‐II regions, connected by disordered linkers. The STI1 regions bind other components, such as HSP70, that are important to the PQC functions of UBQLN2. We recently determined that the STI1‐II region enables UBQLN2 to undergo liquid–liquid phase separation (LLPS) to form liquid droplets in vitro and biomolecular condensates in cells. However, how the interplay between the folded (UBL/UBA) domains and the intrinsically disordered regions mediates phase separation is largely unknown. Using engineered domain deletion constructs, we found that removing the UBA domain inhibits UBQLN2 LLPS while removing the UBL domain enhances LLPS, suggesting that UBA and UBL domains contribute asymmetrically in modulating UBQLN2 LLPS. To explain these differential effects, we interrogated the interactions that involve the UBA and UBL domains across the entire UBQLN2 molecule using nuclear magnetic resonance spectroscopy. To our surprise, aside from well‐studied canonical UBL:UBA interactions, there also exist moderate interactions between the UBL and several disordered regions, including STI1‐I and residues 555–570, the latter of which is a known contributor to UBQLN2 LLPS. Our findings are essential for the understanding of both the molecular driving forces of UBQLN2 LLPS and the effects of ligand binding to UBL, UBA, or disordered regions on the phase behavior and physiological functions of UBQLN2.  相似文献   

16.
The Staphylococcal Bap proteins sense environmental signals (such as pH, [Ca2+]) to build amyloid scaffold biofilm matrices via unknown mechanisms. We here report the crystal structure of the aggregation‐prone region of Staphylococcus aureus Bap which adopts a dumbbell‐shaped fold. The middle module (MM) connecting the N‐terminal and C‐terminal lobes consists of a tandem of novel double‐Ca2+‐binding motifs involved in cooperative interaction networks, which undergoes Ca2+‐dependent order–disorder conformational switches. The N‐terminal lobe is sufficient to mediate amyloid aggregation through liquid–liquid phase separation and maturation, and subsequent biofilm formation under acidic conditions. Such processes are promoted by disordered MM at low [Ca2+] but inhibited by ordered MM stabilized by Ca2+ binding, with inhibition efficiency depending on structural integrity of the interaction networks. These studies illustrate a novel protein switch in pathogenic bacteria and provide insights into the mechanistic understanding of Bap proteins in modulation of functional amyloid and biofilm formation, which could be implemented in the anti‐biofilm drug design.  相似文献   

17.
In Parkinson''s disease with dementia, up to 50% of patients develop a high number of tau‐containing neurofibrillary tangles. Tau‐based pathologies may thus act synergistically with the α‐synuclein pathology to confer a worse prognosis. A better understanding of the relationship between the two distinct pathologies is therefore required. Liquid–liquid phase separation (LLPS) of proteins has recently been shown to be important for protein aggregation involved in amyotrophic lateral sclerosis, whereas tau phase separation has been linked to Alzheimer''s disease. We therefore investigated the interaction of α‐synuclein with tau and its consequences on tau LLPS. We find α‐synuclein to have a low propensity for both, self‐coacervation and RNA‐mediated LLPS at pH 7.4. However, full‐length but not carboxy‐terminally truncated α‐synuclein efficiently partitions into tau/RNA droplets. We further demonstrate that Cdk2‐phosphorylation promotes the concentration of tau into RNA‐induced droplets, but at the same time decreases the amount of α‐synuclein inside the droplets. NMR spectroscopy reveals that the interaction of the carboxy‐terminal domain of α‐synuclein with the proline‐rich region P2 of tau is required for the recruitment of α‐synuclein into tau droplets. The combined data suggest that the concentration of α‐synuclein into tau‐associated condensates can contribute to synergistic aSyn/tau pathologies.  相似文献   

18.
In this study, we explored the precise mechanisms underlying the receptor for advanced glycation end products (RAGE)‐mediated neuronal loss and behavioral dysfunction induced by hyperglycemia. We used immunoprecipitation (IP) and GST pull‐down assays to assess the interaction between RAGE and mitogen‐activated protein kinase kinase 3 (MKK3). Then, we investigated the effect of specific mutation of RAGE on plasticity at hippocampal synapses and behavioral deficits in db/db mice through electrophysiological recordings, morphological assays, and behavioral tests. We discovered that RAGE binds MKK3 and that this binding is required for assembly of the MEKK3‐MKK3‐p38 signaling module. Mechanistically, we found that activation of p38 mitogen‐activated protein kinase (MAPK)/NF‐κB signaling depends on mediation of the RAGE‐MKK3 interaction by C‐terminal RAGE (ctRAGE) amino acids (AAs) 2‐5. We found that ctRAGE R2A‐K3A‐R4A‐Q5A mutation suppressed neuronal damage, improved synaptic plasticity, and alleviated behavioral deficits in diabetic mice by disrupting the RAGE‐MKK3 conjugation. High glucose induces direct binding of RAGE and MKK3 via ctRAGE AAs 2‐5, which leads to assembly of the MEKK3‐MKK3‐p38 signaling module and subsequent activation of the p38MAPK/NF‐κB pathway, and ultimately results in diabetic encephalopathy (DE).  相似文献   

19.
Protein–protein interactions are crucial in biology and play roles in for example, the immune system, signaling pathways, and enzyme regulation. Ultra‐high affinity interactions (K d <0.1 nM) occur in these systems, however, structures and energetics behind stability of ultra‐high affinity protein–protein complexes are not well understood. Regulation of the starch debranching barley limit dextrinase (LD) and its endogenous cereal type inhibitor (LDI) exemplifies an ultra‐high affinity complex (K d of 42 pM). In this study the LD–LDI complex is investigated to unveil how robust the ultra‐high affinity is to LDI sequence variation at the protein–protein interface and whether alternative sequences can retain the ultra‐high binding affinity. The interface of LD–LDI was engineered using computational protein redesign aiming at identifying LDI variants predicted to retain ultra‐high binding affinity. These variants present a very diverse set of mutations going beyond conservative and alanine substitutions typically used to probe interfaces. Surface plasmon resonance analysis of the LDI variants revealed that high affinity of LD–LDI requires interactions of several residues at the rim of the protein interface, unlike the classical hotspot arrangement where key residues are found at the center of the interface. Notably, substitution of interface residues in LDI, including amino acids with functional groups different from the wild‐type, could occur without loss of affinity. This demonstrates that ultra‐high binding affinity can be conferred without hotspot residues, thus making complexes more robust to mutational drift in evolution. The present mutational analysis also demonstrates how energetic coupling can emerge between residues at large distances at the interface.  相似文献   

20.
Pangolins have been suggested as potential reservoir of zoonotic viruses, including SARS‐CoV‐2 causing the global COVID‐19 outbreak. Here, we study the binding of two SARS‐CoV‐2‐like viruses isolated from pangolins, GX/P2V/2017 and GD/1/2019, to human angiotensin‐converting enzyme 2 (hACE2), the receptor of SARS‐CoV‐2. We find that the spike protein receptor‐binding domain (RBD) of pangolin CoVs binds to hACE2 as efficiently as the SARS‐CoV‐2 RBD in vitro. Furthermore, incorporation of pangolin CoV RBDs allows entry of pseudotyped VSV particles into hACE2‐expressing cells. A screen for binding of pangolin CoV RBDs to ACE2 orthologs from various species suggests a broader host range than that of SARS‐CoV‐2. Additionally, cryo‐EM structures of GX/P2V/2017 and GD/1/2019 RBDs in complex with hACE2 show their molecular binding in modes similar to SARS‐CoV‐2 RBD. Introducing the Q498H substitution found in pangolin CoVs into the SARS‐CoV‐2 RBD expands its binding capacity to ACE2 homologs of mouse, rat, and European hedgehog. These findings suggest that these two pangolin CoVs may infect humans, highlighting the necessity of further surveillance of pangolin CoVs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号