首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to research the mechanism of circMAN2B2 in the development of glioma. In our study, we found that circMAN2B2 has a higher expression in glioma tissues and cells, which was negatively related to the overall survival of glioma patients. The cell counting kit-8 assay, 5-ethynyl-2′-deoxyuridine labeling assay, transwell assay, and the nude mice assay indicated that knockdown of circMAN2B2 inhibited the cell proliferation, invasion, migration and decreased tumor size. In terms of mechanism, knockdown of circMAN2B2 increased the expression of miR-1205. Moreover, circMAN2B2 regulated S100A8 expression by inhibiting miR-1205. We also showed that knockdown of S100A8 inhibited cell proliferation, invasion, and migration. Increasing S100A8 expression rescued the effect of si-circMAN2B2. In conclusion, circMAN2B2 could improve cell proliferation, invasion, and migration of the glioma by inhibiting miR-1205 and promoting the expression of S100A8.  相似文献   

2.
3.
4.
DIX domain containing 1 (DIXDC1), the human homolog of coiled-coil-DIX1 (Ccd1), is a positive regulator of Wnt signaling pathway. Recently, it was found to act as a candidate oncogene in colon cancer, non-small-cell lung cancer, and gastric cancer. In this study, we aimed to investigate the clinical significance of DIXDC1 expression in human glioma and its biological function in glioma cells. Western blot and immunohistochemistry analysis showed that DIXDC1 was overexpressed in glioma tissues and glioma cell lines. The expression level of DIXDC1 was evidently linked to glioma pathological grade and Ki-67 expression. Kaplan–Meier curve showed that high expression of DIXDC1 may lead to poor outcome of glioma patients. Serum starvation and refeeding assay indicated that the expression of DIXDC1 was associated with cell cycle. To determine whether DIXDC1 could regulate the proliferation and migration of glioma cells, we transfected glioma cells with interfering RNA-targeting DIXDC1; investigated cell proliferation with Cell Counting Kit (CCK)-8, flow cytometry assays, and colony formation analyses; and investigated cell migration with wound healing assays and transwell assays. According to our data, knockdown of DIXDC1 significantly inhibited proliferation and migration of glioma cells. These data implied that DIXDC1 might participate in the development of glioma, suggesting that DIXDC1 can become a potential therapeutic strategy for glioma.  相似文献   

5.
6.

Background

Malignant gliomas rank among the most lethal cancers. Gliomas display a striking cellular heterogeneity with a hierarchy of differentiation states. Recent studies support the existence of cancer stem cells in gliomas that are functionally defined by their capacity for extensive self-renewal and formation of secondary tumors that phenocopy the original tumors. As the c-Myc oncoprotein has recognized roles in normal stem cell biology, we hypothesized that c-Myc may contribute to cancer stem cell biology as these cells share characteristics with normal stem cells.

Methodology/Principal Findings

Based on previous methods that we and others have employed, tumor cell populations were enriched or depleted for cancer stem cells using the stem cell marker CD133 (Prominin-1). We characterized c-Myc expression in matched tumor cell populations using real time PCR, immunoblotting, immunofluorescence and flow cytometry. Here we report that c-Myc is highly expressed in glioma cancer stem cells relative to non-stem glioma cells. To interrogate the significance of c-Myc expression in glioma cancer stem cells, we targeted its expression using lentivirally transduced short hairpin RNA (shRNA). Knockdown of c-Myc in glioma cancer stem cells reduced proliferation with concomitant cell cycle arrest in the G0/G1 phase and increased apoptosis. Non-stem glioma cells displayed limited dependence on c-Myc expression for survival and proliferation. Further, glioma cancer stem cells with decreased c-Myc levels failed to form neurospheres in vitro or tumors when xenotransplanted into the brains of immunocompromised mice.

Conclusions/Significance

These findings support a central role of c-Myc in regulating proliferation and survival of glioma cancer stem cells. Targeting core stem cell pathways may offer improved therapeutic approaches for advanced cancers.  相似文献   

7.
The previous data showed that caffeic acid phenethyl ester (CAPE), a component of propolis, possesses inducing cell cycle arrest and antiproliferation effect on C6 glioma cells in vitro and in vivo. In the present study, C6 glioma cells treated with CAPE resulted in morphological changes to an astrocytic phenotype and increased the expression of glial differentiation marker proteins including glial fibrillary acidic protein (GFAP) and S-100β. In addition, with scratch assay and Boyden chamber assay, CAPE exhibited inhibitory effects on the motility and invasion of C6 glioma cells. Furthermore, CAPE induced the expression of nerve growth factor (NGF) and p75 neurotrophin receptor (p75NTR), which were involved in neural cell differentiation. CAPE could also inhibit the activity of matrix metalloproteinases (MMPs) and induce the expression of RhoB, a tumor suppressor. To examine the involvement of p75NTR in the anti-invasive property of CAPE, Western blotting and Boyden Chamber assay were performed by addition of an anti-p75NTR antibody in C6 cells. The results showed that blocking p75NTR could decrease the CAPE-induced expression of RhoB and the inactivation of MMP-2, -9 as well as the anti-invasion effect in C6 glioma cells. Furthermore, CAPE suppressed IκB-α phosphorylation which was down stream of p75NTR. Finally, the effect of CAPE on metastasis by lung colonization of the tumor cell in nude mice was also evaluated. It was found that the groups of nude mice injected with CAPE-pretreated cells could decrease both lung size and weight as compared to the positive control group which did not receive CAPE treatment. In addition, histological examination of the mouse lung sections showed that the CAPE-treated group inhibited the metastasis of C6 glioma cells. These data suggest CAPE possesses antitumor progression potential.  相似文献   

8.
Lung cancer is the leading cause of death from malignant diseases worldwide, with the non-small cell (NSCLC) subtype accounting for the majority of cases. NSCLC is characterized by frequent genomic imbalances and copy number variations (CNVs), but the epigenetic aberrations that are associated with clinical prognosis and therapeutic failure remain not completely identify. In the present study, a total of 55 lung cancer patients were included and we conducted genomic and genetic expression analyses, immunohistochemical protein detection, DNA methylation and chromatin immunoprecipitation assays to obtain genetic and epigenetic profiles associated to prognosis and chemoresponse of NSCLC patients. Finally, siRNA transfection-mediated genetic silencing and cisplatinum cellular cytotoxicity assays in NSCLC cell lines A-427 and INER-37 were assessed to describe chemoresistance mechanisms involved. Our results identified high frequencies of CNVs (66–51% of cases) in the 7p22.3–p21.1 and 7p15.3–p15.2 cytogenetic regions. However, overexpression of genes, such as MEOX2, HDAC9, TWIST1 and AhR, at 7p21.2–p21.1 locus occurred despite the absence of CNVs and little changes in DNA methylation. In contrast, the promoter sequences of MEOX2 and TWIST1 displayed significantly lower/decrease in the repressive histone mark H3K27me3 and increased in the active histone mark H3K4me3 levels. Finally these results correlate with poor survival in NSCLC patients and cellular chemoresistance to oncologic drugs in NSCLC cell lines in a MEOX2 and TWIST1 overexpression dependent-manner. In conclusion, we report for the first time that MEOX2 participates in chemoresistance irrespective of high CNV, but it is significantly dependent upon H3K27me3 enrichment probably associated with aggressiveness and chemotherapy failure in NSCLC patients, however additional clinical studies must be performed to confirm our findings as new probable clinical markers in NSCLC patients.  相似文献   

9.
BackgroundAerobic glycolysis is a unique tumor cell phenotype considered as one of the hallmarks of cancer. Aerobic glycolysis can accelerate tumor development by increasing glucose uptake and lactate production. In the present study, lactate dehydrogenase A (LDHA) is significantly increased within glioma tissue samples and cells, further confirming the oncogenic role of LDHA within glioma.MethodsHematoxylin and eosin (H&E) and immunohistochemical (IHC) staining were applied for histopathological examination. The protein levels of LDHA, transporter isoform 1 (GLUT1), hexokinase 2 (HK2), phosphofructokinase (PFK) in target cells were detected by Immunoblotting. The predicted miR-9 binding to lncRNA Annexin A2 Pseudogene 2 (ANXA2P2) or the 3′ untranslated region (UTR) of LDHA was verified using Luciferase reporter assay. Cell viability or apoptosis were examined by MTT assay or Flow cytometry. Intracellular glucose and Lactate levels were measured using glucose assay kit and lactate colorimetric assay kit.ResultsThe expression of ANXA2P2 showed to be dramatically upregulated within glioma tissue samples and cells. Knocking down ANXA2P2 within glioma cells significantly inhibited cell proliferation and aerobic glycolysis, as manifested as decreased lactate and increased glucose in culture medium, and downregulated protein levels of glycolysis markers, GLUT1, HK2, PFK, as well as LDHA. miR-9 was predicted to target both lncRNA ANXA2P2 and LDHA. The overexpression of miR-9 suppressed the cell proliferation and aerobic glycolysis of glioma cells. Notably, miR-9 could directly bind to LDHA 3′UTR to inhibit LDHA expression and decrease the protein levels of LDHA. ANXA2P2 competitively targeted miR-9, therefore counteracting miR-9-mediated repression on LDHA. Within tissues, miR-9 exhibited a negative correlation with ANXA2P2 and LDHA, respectively, whereas ANXA2P2 and LDHA exhibited a positive correlation with each other.ConclusionsIn conclusion, ANXA2P2/miR-9/LDHA axis modulates the aerobic glycolysis progression in glioma cells, therefore affecting glioma cell proliferation.  相似文献   

10.
Sphingosine-1-phosphate (S1P) is a bioactive lipid that signals through a family of five G-protein-coupled receptors, termed S1P(1-5). S1P stimulates growth and invasiveness of glioma cells, and high expression levels of the enzyme that forms S1P, sphingosine kinase-1, correlate with short survival of glioma patients. In this study we examined the mechanism of S1P stimulation of glioma cell proliferation and invasion by either overexpressing or knocking down, by RNA interference, S1P receptor expression in glioma cell lines. S1P(1), S1P(2) and S1P(3) all contribute positively to S1P-stimulated glioma cell proliferation, with S1P(1) being the major contributor. Stimulation of glioma cell proliferation by these receptors correlated with activation of ERK MAP kinase. S1P(5) blocks glioma cell proliferation, and inhibits ERK activation. S1P(1) and S1P(3) enhance glioma cell migration and invasion. S1P(2) inhibits migration through Rho activation, Rho kinase signaling and stress fiber formation, but unexpectedly, enhances glioma cell invasiveness by stimulating cell adhesion. S1P(2) also potently enhances expression of the matricellular protein CCN1/Cyr61, which has been implicated in tumor cell adhesion, and invasion as well as tumor angiogenesis. A neutralizing antibody to CCN1 blocked S1P(2)-stimulated glioma invasion. Thus, while S1P(2) decreases glioma cell motility, it may enhance invasion through induction of proteins that modulate glioma cell interaction with the extracellular matrix.  相似文献   

11.
12.
Glioblastoma multiforme (GBM) is considered the most lethal intracranial tumor and the median survival time is approximately 14 months. Although some glioma cells present radioresistance, radiotherapy has been the mainstay of therapy for patients with malignant glioma. The activation of P2X7 receptor (P2X7R) is responsible for ATP-induced death in various cell types. In this study, we analyzed the importance of ATP-P2X7R pathway in the radiotherapy response P2X7R silenced cell lines, in vivo and human tumor samples. Both glioma cell lines used in this study present a functional P2X7R and the P2X7R silencing reduced P2X7R pore activity by ethidium bromide uptake. Gamma radiation (2 Gy) treatment reduced cell number in a P2X7R-dependent way, since both P2X7R antagonist and P2X7R silencing blocked the cell cytotoxicity caused by irradiation after 24 h. The activation of P2X7R is time-dependent, as EtBr uptake significantly increased after 24 h of irradiation. The radiotherapy plus ATP incubation significantly increased annexin V incorporation, compared with radiotherapy alone, suggesting that ATP acts synergistically with radiotherapy. Of note, GL261 P2X7R silenced-bearing mice failed in respond to radiotherapy (8 Gy) and GL261 WT-bearing mice, that constitutively express P2X7R, presented a significant reduction in tumor volume after radiotherapy, showing in vivo that functional P2X7R expression is essential for an efficient radiotherapy response in gliomas. We also showed that a high P2X7R expression is a good prognostic factor for glioma radiosensitivity and survival probability in humans. Our data revealed the relevance of P2X7R expression in glioma cells to a successful radiotherapy response, and shed new light on this receptor as a useful predictor of the sensitivity of cancer patients to radiotherapy and median survival.  相似文献   

13.
目的探讨星形胶质瘤细胞来源的外泌体中microRNA-1246(miRNA-1246)是否作用于星形胶质瘤细胞,促进其增殖与侵袭。 方法实验分为对照组、miRNA-1246抑制剂组与miRNA-1246模拟物组,各组设6个复孔。首先从患者血液中分离外泌体并鉴定其成分。通过基质胶包被的Transwell小室实验检测星形胶质瘤细胞在miRNA-1246作用下侵袭能力的变化,CCK-8实验检测细胞增殖能力。利用荧光素酶报告基因验证miRNA-1246是否靶向细胞黏附分子1(CADM1)基因。最后通过Western Blot实验与RT-qPCR实验检测癌症组织中CADM1蛋白水平的含量并分析其与胶质瘤的关系。采用方差分析和t检验进行统计学分析。 结果恶性胶质瘤患者血液循环外泌体中miRNA-1246的含量为2.83±1.70,高于对照组1.00±0.50,差异具有统计学意义(t?=?6.044,P?=?0.026)。转染miRNA-1246抑制剂后细胞CADM1蛋白水平为1.79±0.17,高于对照组1.00±0.09(t?=?4.576,P?=?0.017),细胞侵袭数量为(48.40±5.90)个,低于对照组96.50±6.70,而转染miRNA-1246模拟物后细胞侵袭数量为(123.20±9.80)个,高于对照组(96.50±6.70)个(t?=?5.258,P?=?0.002)。CCK-8实验中转染miRNA-1246抑制剂组A450值为0.49±0.08,低于对照组0.76±0.06,而转染miRNA-1246模拟物组A450值为1.03±0.09,显著升高(F?=?33.82,P?=?0.005)。荧光素酶报告实验表明细胞转染miR-?1246模拟物后荧光强度为4.98±1.86,低于对照组10.34±2.60(t?=?7.235,P?=?0.006),而CADM1-Mut组内之间比较差异无统计学意义。 结论胶质瘤细胞外泌体中的miRNA-1246可通过靶向CADM1基因抑制蛋白表达,促进胶质瘤细胞的增殖与转移,提示循环外泌体中的miRNA-1246可作为恶性胶质瘤诊断与治疗的潜在靶点。  相似文献   

14.
胶质瘤是一种较为常见的颅内恶性肿瘤,其侵袭转移能力强,影响临床疗效。探讨胶质瘤发生侵袭转移的分子机制,寻找新的靶点干预胶质瘤侵袭转移是目前亟待解决的重大课题。我们前期研究中发现,神经细胞黏附分子(neuronal cell adhesion molecule, NRCAM)在各种胶质瘤细胞中的表达量均显著高于其在人正常星形胶质细胞(NHA)中的表达量(NRCAM在胶质瘤A172和T98G中的表达量分别是其在NHA中的2.15和17.63倍);且根据人类蛋白质组学数据库信息及qRT-PCR结果证实,NRCAM在胶质瘤组织中的表达量也显著高于其在正常组织中的表达。Kaplan-Meier分析提示,高表达的NRCAM与胶质瘤患者较差的预后正相关。在此基础上,通过生物信息学预测的方法结合双荧光素酶报告基因实验证实,转录因子锌指E盒结合蛋白1(ZEB1)能够增加NRCAM启动子活性,上调NRCAM mRNA和蛋白质水平的表达量。通过Transwell实验证实,在过表达ZEB1的胶质瘤细胞A172中,沉默NRCAM将抑制该细胞的侵袭能力。而在敲低ZEB1的胶质瘤细胞T98G中,过表达NRCAM将增加该细胞的侵袭能力。总之,NRCAM在胶质瘤中显著高表达且与患者较差的预后正相关。ZEB1转录上调NRCAM来增加胶质瘤细胞侵袭能力。  相似文献   

15.
BackgroundGlioma is the most common cancer in the central nervous system. Previous studies have revealed that the miR-376 family is crucial in tumour development; however, its detailed mechanism in glioma is not clear.MethodsCellular mRNA or protein levels of miR-376a, SIRT1, VEGF and YAP1 were detected via qRT–PCR or Western blotting. We analysed the proliferation, angiogenesis and migration abilities of glioma cell lines using colony formation, tube formation and Transwell assays. A luciferase assay was performed to determine whether miR-376a could recognize SIRT1 mRNA. Xenograft experiments were performed to analyse the tumorigenesis capacity of glioma cell lines in nude mice. The angiogenesis marker CD31 in xenograft tumours was detected via immunohistochemistry (IHC).ResultsmiR-376a expression was lower in glioma cells than in normal astrocytes. miR-376a mimic inhibited SIRT1, YAP1, and VEGF expression and suppressed the proliferation, migration and angiogenesis abilities of the glioma cell lines LN229 and A172, whereas miR-376a inhibitor exerted the opposite functions. In a luciferase assay, miR-376a inhibited the luciferase activity of WT-SIRT1. SIRT1 overexpression upregulated YAP1 and VEGF in glioma cells and promoted proliferation, migration and angiogenesis. Xenografts with ectopic miR-376a expression exhibited lower volumes and weights and a slower growth curve. Overexpression of miR-376a inhibited YAP1/VEGF signalling and angiogenesis by inhibiting SIRT1 in xenograft tissues.ConclusionmiR-376a directly targets and inhibits SIRT1 in glioma cells. Downregulation of SIRT1 resulted in decreased YAP1 and VEGF signalling, which led to suppression of glioma cell proliferation, migration and angiogenesis.  相似文献   

16.
Glioma is the most common cancer in human brain system and seriously threatens human health. miRNA-320 has been demonstrated to be closely correlated with the development of glioma. However, its effect and molecular mechanism underlying radioresistance have not been fully elucidated in glioma. Here, RT-qPCR assay was used to assess the expressions of miR-320 and forkhead box protein M1 (FoxM1) mRNA in glioma tumor tissues and cells. The effects of miR-320, FoxM1 and sirtuin type 1 (Sirt1) on radiosensitivity in glioma cells were evaluated by clone formation assay, apoptosis assay, histone H2AX phosphorylation level (γH2AX) detection and caspase 3 activity analysis, respectively. The direct interaction between miR-320 and FoxM1 was detected by luciferase assay. The protein levels of FoxM1, Sirt1 and γH2AX were measured by western blot assay. We found that miR-320 expression was down-regulated and FoxM1 expression was up-regulated in radioresistant glioma tissues and IR-treated glioma cells. miR-320 overexpression dramatically enhanced radiosensitivity, promoted apoptosis, and improved γH2AX expression and caspase 3 activity in glioma cells. Luciferase reporter assay and western blot assay further validated that miR-320 suppressed FoxM1 expression by directly targeting 3’ UTR region of FoxM1. Moreover, miR-320 inhibited Sirt1 expression via targeting FoxM1 in glioma cells. Furthermore, overexpression of FoxM1 and Sirt1 strikingly attenuated miR-320-induced increase of radiosensitivity, apoptosis and γH2AX expression in glioma cells. In conclusion, miR-320 enhanced radiosensitivity of glioma cells through down-regulation of Sirt1 by directly targeting FoxM1.  相似文献   

17.
18.
19.
We recently found that microRNA-34a (miR-34a) is downregulated in human glioma tumors as compared to normal brain, and that miR-34a levels in mutant-p53 gliomas were lower than in wildtype-p53 tumors. We showed that miR-34a expression in glioma and medulloblastoma cells inhibits cell proliferation, G1/S cell cycle progression, cell survival, cell migration and cell invasion, but that miR-34a expression in human astrocytes does not affect cell survival and cell cycle. We uncovered the oncogenes c-Met, Notch-1 and Notch-2 as direct targets of miR-34a that are inhibited by miR-34a transfection. We found that c-Met levels in human glioma specimens inversely correlate with miR-34a levels. We showed that c-Met and Notch partially mediate the inhibitory effects of miR-34a on cell proliferation and cell death. We also found that mir-34a expression inhibits in vivo glioma xenograft growth. We concluded that miR-34a is a potential tumor suppressor in brain tumors that acts by targeting multiple oncogenes. In this extra view, we briefly review and discuss the implications of these findings and present new data on the effects of miR-34a in glioma stem cells. The new data show that miR-34a expression inhibits various malignancy endpoints in glioma stem cells. Importantly, they also show for the first time that miR-34a expression induces glioma stem cell differentiation. Altogether, the data suggest that miR-34a is a tumor suppressor and a potential potent therapeutic agent that acts by targeting multiple oncogenic pathways in brain tumors and by inducing the differentiation of cancer stem cells.  相似文献   

20.
We aimed to explore the interaction among lncRNA MALAT1, miR‐129 and SOX2. Besides, we would investigate the effect of MALAT1 on the proliferation of glioma stem cells and glioma tumorigenesis. Differentially expressed lncRNAs in glioma cells and glioma stem cells were screened out with microarray analysis. The targeting relationship between miR‐129 and MALAT1 or SOX2 was validated by dual‐luciferase reporter assay. The expressions of MALAT1, miR‐129 and SOX2mRNA in both glioma non‐stem cells and glioma stem cells were examined by qRT‐PCR assay. The impact of MALAT1 and miR‐129 on glioma stem cell proliferation was observed by CCK‐8 assay, EdU assay and sphere formation assay. The protein expression of SOX2 was determined by western blot. The effects of MALAT1 and miR‐129 on glioma tumour growth were further confirmed using xenograft mouse model. The mRNA expression of MALAT1 was significantly up‐regulated in glioma stem cells compared with non‐stem cells, while miR‐129 was significantly down‐regulated in glioma stem cells. MALAT1 knockdown inhibited glioma stem cell proliferation via miR‐129 enhancement. Meanwhile, miR‐129 directly targeted at SOX2 and suppressed cell viability and proliferation of glioma stem cells by suppressing SOX2 expression. The down‐regulation of MALAT1 and miR‐129 overexpression both suppressed glioma tumour growth via SOX2 expression promotion in vivo. MALAT1 enhanced glioma stem cell viability and proliferation abilities and promoted glioma tumorigenesis through suppressing miR‐129 and facilitating SOX2 expressions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号