首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
  • 1.1. The pattern of the changes shown for the metabolic intermediates studied from two structures is not coincident.
  • 2.2. Both in sporangiophores and mycelia we found very low pyruvate/lactate and oxaloacetate/malate ratios.
  • 3.3. The effect of light on the whole Phycomyces was evaluated. From this, we cannot exclude a dependence on the gene mad B and/or car S products from the effect found in the level of glucose-6-phosphate, l-alanine, l-malate and oxaloacetate.
  相似文献   

2.
  • 1.1. Biliverdin reductase from the liver of eel, Anguilla japonica was characterized and purified with a novel enzymatic staining method on polyacrylamide electrophoretic gel.
  • 2.2. This enzyme could use both NADPH and NADH as coenzyme. The Km of NADPH was 5.2 μM, while that of NADH was 5.50 μM.
  • 3.3. The optimum reaction pH for using HADPH as coenzyme was 5.3. That for NADH was 6.1. The optimum reaction temperature is 37°C.
  • 4.4. When NADPH was used as coenzyme, the Km of biliverdin was 0.6 μM. When NADH was used as coenzyme, the Km of biliverdin was 7.0 μM.
  • 5.5. The activity of the enzyme was inhibited by the concentration of biliverdin. Also, the potency of the enzyme was much less than that of the analogous enzyme isolated from mammals.
  • 6.6. This is a fairly stable enzyme with a mol. wt around 67,000. Its estimated pI was pH 3.5–4.0.
  • 7.7. This is the first time biliverdin reductase has been isolated and characterized from a vertebrate other than mammals. The property of it is quite different from that of mammals.
  相似文献   

3.
  • 1.1. Hydroxypyruvate reductase has been purified 193-fold from Lemna minor L. by affinity chromatography on Blue Sepharose.
  • 2.2. The enzyme has activity over a broad pH range (optimum pH 6), a Km hydroxypyruvate of 59 μ M and Km NADH of 12μM.
  • 3.3. Crude extracts of Lemna exhibit substrate inhibition of activity above 1 mM hydroxypyruvate, a property which is lost on purification.
  • 4.4. Oxaloacetate inhibits purified preparations of the enzyme and a possible role for such regulation in vivo is discussed.
  相似文献   

4.
  • 1.1. A thermostable orthophosphoric monoester phosphohydrolase (EC 3.1.3.1) from Thermus sp strain Rt41A has been purified 400-fold to give a specific activity of 25 U/mg at 60°C in IM diethanolamine (pH 11.1).
  • 2.2. The enzyme has a Mr of 160,000 and is trimeric.
  • 3.3. The half-life of the enzyme is 5 min at 85°C.
  • 4.4. The enzyme has a wide specificity for a number of phosphate monoesters.
  • 5.5. The Hm of the enzyme is pH dependent, so the pH optimum of the enzyme is affected by the substrate concentration.
  • 6.6. The enzyme is inhibited 50% by 20 mM Ca2+ or Mg2+.
  • 7.7. The Ki for phosphate, EDTA-di sodium salt and arsenate (in 1 M diethanolamine, pH 11.1) is approx 1.2, 1.6 and 4mM respectively.
  • 8.8. Urea (200 mM) is not inhibitory.
  相似文献   

5.
  • 1.1. A NAD+-dependent glutamate dehydrogenase (EC 1.4.1.2.) was purified 126-fold from Halobacterium halobium.
  • 2.2. Activity and stability of the enzyme were affected by salt concentration. Maximum activity of the NADH-dependent reductive amination of 2-oxoglutarate occurs at 3.2 M NaCl and 0.8 M KCl, and the NAD+-dependent oxidative deamination of l-glutamate occurs at 0.9 M NaCl and 0.4 M KCl. The maximum activity is higher with Na+ than with K+ in the amination reaction while the reverse is true in the deamination reaction.
  • 3.3. The apparent Km values of the various substrates and coenzymes under optimal conditions were: 2-oxoglutarate, 20.2 mM; ammonium, 0.45 M; NADH, 0.07 mM; l-glutamate, 4.0 mM; NAD+, 0.30 mM.
  • 4.4. No effect of ADP or GTP on the enzyme activity was found. The purified enzyme was activated by some l-amino acids.
  相似文献   

6.
  • 1.1. Fundamental chitin digestion characteristics of Crassostrea virginica crystalline style were investigated.
  • 2.2. Optimum temperature and pH were 34°C and 4.8. respectively.
  • 3.3. The colloidal regenerated chitin (0.56mol/0.5 ml: GlcNAc equivalents) was saturating under all enzyme levels encountered.
  • 4.4. There was no evidence of end product inhibition, even after 100 hr incubation.
  • 5.5. Calculated Km for the chitinase complex was 1.19mM when determined using a 30 min assay, but was only 0.70 mM when determined using a 4.6 hr assay.
  • 6.6. Both Km values are lower than reported for similar assays in other molluscs and for most bacteria.
  • 7.7. Effect of substrate preparation on the kinetics are discussed.
  • 8.8. Eight peaks of chitinase activity were resolved by DEAE-Fractogel ion exchange chromatography.
  相似文献   

7.
  • 1.1. Isoenzymes of d-lactate specific dehydrogenase from foot, mantle and hepatopancreas of Patella caerulea have been purified by Chromatographic techniques. d-lactate dehydrogenase (d-Ldh) from P. caerulea tissues was found to be tetrameric with a Mr of ca 140,000 as judged by gel filtration; subunit Mr of ca 37,000 was obtained from SDS-electrophoresis.
  • 2.2. Kinetic studies suggest that P. caerulea foot and mantle d-Ldh is similar to vertebrate muscle-type l-Ldh; furthermore hepatopancreas d-LDH resembles vertebrate heart-type l-LDH since it has a higher affinity for d-lactate and is inhibited by pyruvate.
  • 3.3. The results imply that the P. caerulead-Ldh isoenzymes may have distinct metabolic functions.
  相似文献   

8.
  • 1.1. Treatment of isolated rat liver mitochondria with methyl methacrylate (MM) produced membrane disruption as evidenced by the release of citrate synthase, and changes in the ultrastructure of mitochondria.
  • 2.2. At concentration 0.1%, MM uncoupled oxidative phosphorylation as evidenced by stimulation of state 4 respiration supported either by pyruvate plus malate or succinate (+rotenone) and ATP-ase activity in intact mitochondria.
  • 3.3. At concentration 1% MM stimulated ATP-ase activity in intact mitochondria and succinate (+rotenone) oxidation at state 4 and was without effect on this substrate oxidation at state 3.
  • 4.4. MM inhibited pyruvate plus malate oxidation either at state 3 or in the presence of uncoupling agents.
  • 5.5. MM inhibited the NADH oxidase of electron transport particles at a concentration which failed to inhibit either succinic oxidase or the NADH-ferricyanide reductase activity.
  • 6.6. The data presented suggest that in the isolated mitochondria MM inhibits NADH oxidation in the vicinity of the rotenone sensitive site of complex I.
  • 7.7. The general conclusion is that MM may block an electron transport and to uncouple oxidative phosphorylation in rat liver mitochondria. The overall in vitro effect would be to prevent ATP synthesis which could result in cell death under in vivo conditions.
  相似文献   

9.
  • 1.1. Kinetic constant values of the reaction catalyzed by bass liver glucose 6-phosphate dehydrogenase show to be modified between 10 and 40°C.
  • 2.2. The Arrhenius plot between 10 and 50°C shows two slopes with different activation energies.
  • 3.3. These results suggest a regulation of this enzyme by environmental temperature.
  • 4.4. Kinetics of ATP inhibition were examined between pH 6.2 and 7.8: patterns and Ki values obtained are affected by the pH variation.
  • 5.5. NADH is an effective inhibitor of bass glucose 6-phosphate dehydrogenase but this enzyme does not show NAD-linked activity.
  • 6.6. Kinetics of pyridoxal 5′-phosphate inhibition have indicated the presence of a lysine in the catalytic site for NADP+.
  相似文献   

10.
  • 1.1. An alkaline p-nitrophenylphosphate phosphatase has been purified 440-fold from extracts of Hatobacterium halobium.
  • 2.2. The enzyme has an apparent molecular weight of 24,000.
  • 3.3. A Km value for p-nitrophenylphosphate of 1.12mM has been found under optimal conditions.
  • 4.4. The enzyme is selectively activated and stabilized by Mn2+.
  • 5.5. It requires high salt concentrations for stability and maximum activity.
  • 6.6. It displays an unusual restricted substrate specificity of 25 phosphate esters tested, only phosphotyrosine and casein were hydrolysed besides p-nitrophenylphosphate.
  相似文献   

11.
  • 1.1. The purified enzyme hydrolyzes the linear l-lysinamide and the cycle amide of l-lysine—l-α-amino-ϵ-caprolactam.
  • 2.2. The apparent relative molecular mass is 180,000. The enzyme consists of four subunits and the molecular mass of a single subunit was found to be 47,000.
  • 3.3. The coefficient of molecular sedimentation equals 8.3 S, the isoelectric point was determined to be pH 4.3
  • 4.4. The enzyme is not a glycoprotein. p-Mercuribenzoate binds 10 SH-groups of the native enzyme molecule and 20 SH-groups in the presence of 0.7% SDS.
  • 5.5. pH- optimum for the hydrolysis of l-lysine amides was observed to be 7.5–7.7. The enzyme is strictly dependent on Mn2+ and Mg2+.
  • 6.6. The kinetic parameters for the hydrolysis of l-lysinamide where Km = 3.8 mM and kcat = 3000 sec−1 For the hydrolysis of cyclic L-lysinamide Km = 4.8 mM and kcat = 2600 sec.
  相似文献   

12.
  • 1.1. Rat liver cytoplasmic acetyl-CoA synthetase was partially purified (purification factor = 23, yield = 30%).
  • 2.2. The apparent Kms for acetate, coenzyme A, ATP and MgCl2 were determined and found to be 52.5 μM, 50.5 μM, 570 μM and 1.5 mM, respectively.
  • 3.3. The partially-purified enzyme showed a low affinity for short-chain carbon substrates other than acetate.
  • 4.4. The properties of the partially-purified enzyme were compared with those of enzymes from other sources.
  相似文献   

13.
  • 1.1. Glycollate oxidase has been purified to apparent homogeneity from Lemna minor L. grown on medium containing 7mM NO3.
  • 2.2. The enzyme is a highly basic protein with a sub-unit molecular weight of 42,000 and a holoprotein molecular weight of 250,000.
  • 3.3. The Lemna enzyme is a flavoprotein with a broad specificity for straight chain α-hydroxy acids, the preferred substrate being glycollate.
  • 4.4. It is also competitively inhibited by oxalate and phenyllactate.
  • 5.5. A comparison is drawn between the physical properties of glycollate oxidase from a number of higher plants and the degree of sub-unit aggregation in the resulting protomers.
  相似文献   

14.
  • 1.1. A lipoxygenase activity was purified from Thermoactinomyces vulgaris and some of its properties were characterized.
  • 2.2. The enzyme showed a temperature activity range of 40–55°C with still significant activity over 60°C.
  • 3.3. The pH of activity on linoleic acid had a broad range with an optimum at pH 6.0 and a weaker one at pH 11.0.
  • 4.4. On arachidonic acid the pattern was narrow bell-shaped with an optimum at pH 6.5.
  • 5.5. The purified lipoxygenase from Th. vulgaris showed an apparent Km of 1 mM and Vmax of 0.84 μmol diene/min/mg protein.
  • 6.6. It was inhibited by the oxidation products, 9-HPOD and 13-HPOD.
  • 7.7. A 160,000 Da molecular weight of the enzyme was determined by molecular filtration. Methionine, tyrosine, tryptophan and cysteine are apparently involved in its activity.
  相似文献   

15.
  • 1.1. Elastase has been purified from the hepatopancreas of the king crab (Paralithodes camtschatica). Specific activity of the enzyme measured toward Suc-(Ala)3-pNA and Boc-(Ala)3-pNA was 926 and 3700 mUnits per mg of protein, respectively.
  • 2.2. The enzyme is an anion protein (pI 4.5) with an approximate mol.wt of 28.5 kDa.
  • 3.3. The enzyme exhibited a bell-shaped pH-dependence for the hydrolysis of Suc-(Ala)3-pNA with a maximum at 8–8.5. Under these conditions the values of Km and kcat of the crab elastase are 4 mM and 4.75 s−1, respectively.
  • 4.4. The serine elastase is effectively inhibited by elastinal and diisopropylfluorophosphate.
  • 5.5. It is shown that some salts except HgCl2 activate the protease. In the presence of HgCl2 with concentrations of 10 mM and higher, the crab elastase is inactive. SDS and Triton X-100 have no any effect on the activity of crab elastase.
  相似文献   

16.
  • 1.1. The properties of Na+/K+-transporting ATPase in microsomal fractions from the nervous tissue of the grasshopper, Poekilocerus bufonius were investigated.
  • 2.2. Two components of ATPase activity are present.
  • 3.3. Inclusion of 1 mM ouabain in the incubation media reduced the activity of total and Na+/K+-ATPase by 57 and 79%, respectively.
  • 4.4. The maximum velocity (Vmax) was decreased by the addition of 1 mM ouabain, whereas the apparent Km value was not affected indicating a non-competitive type of inhibition.
  • 5.5. The calculated value of the pI50 was 6.4 (I50 = 3.98 × 10−7M) for ouabain inhibition of the enzyme showing great sensitivity to the cardiac glycoside ouabain.
  • 6.6. The present results show that the physicochemical properties of Na+/K+-transporting ATPase from the brain of P. bufonius are essentially the same as for the enzyme prepared from the excretory system of the insect which has been previously investigated.
  • 7.7. Dissimilarities were also observed between these tissues in the way that the enzyme from the brain was sensitive to ouabain inhibition with a non-competitive type rather than a ouabain-resistance and a competitive type of inhibition for the enzyme from the excretory system.
  • 8.8. These dissimilarities are probably due to different isoenzyme patterns available in the same insect.
  相似文献   

17.
  • 1.1. The malate dehydrogenase (MHD) activity from the ribbed mussel gill is polymorphic with two distinct mitochondrial forms (M1 and M2) and five forms that could be resolved from cytosolic extracts (C1 to C5) by DEAE-cellulose chromatography and starch gel electrophoresis.
  • 2.2. Two of the cytosolic forms (C3 and C4) may represent interchangeable conformational states.
  • 3.3. With kinetic analysis there appear to be three distinct cytosolic forms (C1, C2 and C3–C4), with C2 possibly behaving as a heterodimer.
  • 4.4. The identity of C5 is uncertain.
  • 5.5. The forms isolated from the mitochondria (M1 and M2) exhibited lower apparent Kms for oxaloacetate (OAA) than the cytosolic forms.
  • 6.6. For all isozymic forms, the apparent Kms for OAA increased as the pH increased between pH 6 and 9
  • 7.7. Increasing the salt concentration raised the Km for OAA for all forms.
  • 8.8. The mMDHs were more sensitive to inhibition by NaCl than the cMDHs.
  • 9.9. Representative cMDH (C1) and mMDH (M2) isozymes exhibited substrate inhibition by high concentrations of OAA with the mMDH possessing lower Kis for substrate inhibition than the cMDH at each pH tested.
  • 10.10. Differences and similarities in Km app. for OAA at the different pHs and salt concentrations indicated that C1, C2 and C3–C4 and C5 were distinct forms, that M1 and M2 were distinct but very similar to each other, and that C1, C2, C3–C4 and C5 were distinct from M1 and M2.
  相似文献   

18.
  • 1.1. Primate liver lysosomal acid DNase is an endonucleolytic enzyme.
  • 2.2. The enzyme has both 3'- and 5'-nucleotidohydrolase activities.
  • 3.3. The oligonucleotides produced by DNase are polymers mainly about 30 mononucleotides long.
  • 4.4. The Arrhenius plot shows a discontinuity with a transition temperature at 47°C, with an activation energy of 107 kJ/mol below and 67 kJ/mol above this temperature.
  • 5.5. The activation enthalpy is 104kJ/mol and the entropy −0.498 kJ/mol/K.
  • 6.6. The enzyme is subject to substrate inhibition and the Km value is 159 × 10−3mM DNA-P.
  相似文献   

19.
  1. The main pathway of the anaerobic metabolism of l-malate in Saccharomyces bailii is catalyzed by a l-malic enzyme.
  2. The enzyme was purified more than 300-fold. During the purification procedure fumarase and pyruvate decarboxylase were removed completely, and malate dehydrogenase and oxalacetate decarboxylase were removed to a very large extent.
  3. Manganese ions are not required for the reaction of malic enzyme of Saccharomyces bailii, but the activity of the enzyme is increased by manganese.
  4. The reaction of l-malic enzyme proceeds with the coenzymes NAD and (to a lesser extent) NADP.
  5. The K m-values of the malic enzyme of Saccharomyces bailii were 10 mM for l-malate and 0.1 mM for NAD.
  6. A model based on the activity and substrate affinity of malic enzyme, the intracellular concentration of malate and phosphate, and its action on fumarase, is proposed to explain the complete anaerobic degradation of malate in Saccharomyces bailii as compared with the partial decomposition of malate in Saccharomyces cerevisiae.
  相似文献   

20.
  • 1.1. Optimum in vitro conditions, and kinetics of the enzyme catechol-O-methyltransferase from the brain of the male African catfish were studied.
  • 2.2. A saturated level for S-adenosylmethionine, as methyldonor, and magnesium as cofactor was reached at 5 μM and 10 mM, respectively.
  • 3.3. The addition of ascorbic acid, as an antioxidant, and tranylcypromine, as a MAO inhibitor, was not necessary, during incubations with fore-brain homogenates.
  • 4.4. Kinetic analysis of the methylation of catecholestrone, catecholestradiol and dopamine showed Km values of 1.2, 0.6 and 0.5 μM, respectively.
  • 5.5. The affinity of the catecholsubstrates for the enzyme catechol-O-methyltransferase is much higher in the brain of the African catfish than in tissues of mammals.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号