首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The factors influencing the abundance of phytoplankton in the Yellowknife River, in the Canadian subarctic, were determined from collections made for 42 consecutive months from June 1975 to November 1978. The spring bloom of plankton occured during April of each year in response to changing light conditions. WhileChlamydomonas lapponica was dominant during this period, it was replaced during the early part of the summer by a rapid succession ofDinobryon species in whichD. cylindricum was followed byD. sociale and in turn byD. bavaricum andD. divergens. Although low nutrient levels permitted the development ofDinobryon during the summer, the abundance of diatoms was greatly limited by the concentrations of SiO2 (< 0.1 g/m3). Algal densities began to decline in August and reached low overwintering levels by November. The absence of a fall bloom in densities was due to a combination of low temperatures and nutrient levels.P.O. Box 2310, Yellowknife, Northwest Territories, X1A 2P7, Canada  相似文献   

2.
1. Phosphate uptake kinetics and uptake rates were calculated for planktonic (phytoplankton and bacterioplankton) and benthic (epiphyton and epipelon) assemblages in a large, shallow, subtropical lake. Samples were taken bimonthly over the period of 1 year at three different sites to examine spatial and temporal variability in these processes. 2. Two of the sites, located at the edge of the littoral zone next to the open water (ecotone sites), had low irradiance at the sediment surface and high total phosphorus (TP) concentration (annual mean TP = 112 μg L–1). The third site, located in the littoral marsh zone, had high irradiance at the sediment surface and low TP concentration (annual mean TP = 7 μg L–1). 3. Based on 32P-PO4 turnover time, P availability varied temporally and spatially. At the two high TP ecotone sites, P concentration was lowest in July and August. At the low TP marsh site, P limited algal production throughout the year. 4. The quotient of maximum uptake rate to half saturation constant (Vm/Ks) in the plankton increased by over two orders of magnitude during the P-limited (summer) period at the two ecotone sites, suggesting that plankton used the scarce phosphorus more efficiently. The specific uptake rate of plankton was significantly greater than that of periphyton at all sites, suggesting that the plankton were more efficient than periphyton at taking up phosphate. 5. Periphyton biomass, as well as absolute and percentage P uptake rate, was greater at the marsh site than at the ecotone sites, despite the lower P concentrations in the marsh. This was probably a result of rapid nutrient cycling, combined with high light availability in the marsh.  相似文献   

3.
Nitrate (NO3) export coupled with high inorganic nitrogen (N) concentrations in Alaskan streams suggests that N cycles of permafrost‐influenced ecosystems are more open than expected for N‐limited ecosystems. We tested the hypothesis that soil thaw depth governs inorganic N retention and removal in soils due to vertical patterns in the dominant N transformation pathways. Using an in situ, push–pull method, we estimated rates of inorganic N uptake and denitrification during snow melt, summer, and autumn, as depth of soil–stream flowpaths increased in the valley bottom of an arctic and a boreal catchment. Net NO3 uptake declined sharply from snow melt to summer and decreased as a nonlinear function of thaw depth. Peak denitrification rate occurred during snow melt at the arctic site, in summer at the boreal site, and declined as a nonlinear function of thaw depth across both sites. Seasonal patterns in ammonium (NH4+) uptake were not significant, but low rates during the peak growing season suggest uptake that is balanced by mineralization. Despite rapid rates of hydrologic transport during snow melt runoff, rates of uptake and removal of inorganic N tended to exceed water residence time during snow melt, indicating potential for retention of N in valley bottom soils when flowpaths are shallow. Decreased reaction rates relative to water residence time in subsequent seasons suggest greater export of inorganic N as the soil–stream flowpath deepens due to thawing soils. Using seasonal thaw as a proxy for longer term deepening of the thaw layer caused by climate warming and permafrost degradation, these results suggest increasing potential for export of inorganic N from permafrost‐influenced soils to streams.  相似文献   

4.
The competitive ability for N uptake by four intertidal seaweeds, Stictosiphonia arbuscula (Harvey) King et Puttock, Apophlaea lyallii Hook. f. et Harvey, Scytothamnus australis Hook. f. et Harvey, and Xiphophora gladiata (Labillardière) Montagne ex Harvey, from New Zealand is described by the uptake kinetics for NO3?, NH4+, and urea. This is the first study to report uptake kinetics for N uptake by a range of southern hemisphere intertidal seaweeds in relation to season and zonation. Species growing at the highest shore positions had higher NO3? and urea uptake at both high and low concentrations and had unsaturable NH4+ uptake in both summer and winter. Although there was evidence of some feedback inhibition of Vmax for NO3? uptake by Stictosiphonia arbuscula growing at the lower vertical limits of its range, rates were high compared with species growing lower on the shore. Our results highlight the superior competitive ability for N uptake of certain high intertidal seaweeds, and consistent with our previous findings we can conclude that intertidal seaweeds in southeast New Zealand are adapted to maximizing N acquisition in a potentially N‐limiting environment.  相似文献   

5.
The potential nitrogen sources for the primary production in the intertidal area are nitrogen compounds obtained from mineralization in the sediment and the water column, nitrogen fixation, outflow from rivers and groundwater seeping from the mainland. The available inorganic nitrogen in the adjacent coastal waters decreases from 50–80 μmol NO3 -/l and 6–15 μmol NH4 +/l in early spring to ca one tenth during the growing season. In the sediment of the tidal flats available ammonia and nitrate vary between 50 and 100 μmol/1 pw. In the salt marsh available ammonia increases from 200–300 nmol NH4 +/g fwt to approximately double the amount, and the available nitrate varies from 100–300 nmol NO3 -/g fwt (250–750 μmol NO3 -/l pw) to ca one third during the growing season. The exchange of NH4 +, NO2 - and NO3 - across the sediment water interface has been estimated during tidal cycles under light and dark conditions on the tidal flats. The flux of nitrogen was dependent on the flora and fauna as well as the time of the year. The tidal activity, frequency and length of inundation are considered the driving force in a two-way process between salt marshes and adjacent coastal waters. The role of marsh sediment, tidal water and sediments of the tidal flats as sites of accumulation, consumption and remineralization of organic matter is emphasized. The possible exchange of ammonia and nitrate between the salt marsh and the different compartments of the tidal water is discussed.  相似文献   

6.
Araucaria araucana (Araucaria) is a long‐lived conifer growing along a sharp west–east biophysical gradient in the Patagonian Andes. The patterns and climate drivers of Araucaria growth have typically been documented on the driest part of the gradient relying on correlations with meteorological records, but the lack of in situ soil moisture observations has precluded an assessment of the growth responses to soil moisture variability. Here, we use a network of 21 tree‐ring width chronologies to investigate the spatiotemporal patterns of tree growth through the entire gradient and evaluate their linkages with regional climate and satellite‐observed surface soil moisture variability. We found that temporal variations in tree growth are remarkably similar throughout the gradient and largely driven by soil moisture variability. The regional spatiotemporal pattern of tree growth was positively correlated with precipitation (r = 0.35 for January 1920–1974; P < 0.01) and predominantly negatively correlated with temperature (r = ?0.38 for January–March 1920–1974; P < 0.01) during the previous growing season. These correlations suggest a temporally lagged growth response to summer moisture that could be associated with known physiological carry‐over processes in conifers and to a response to moisture variability at deeper layers of the rooting zone. Notably, satellite observations revealed a previously unobserved response of Araucaria growth to summer surface soil moisture during the current rather than the previous growing season (r = 0.65 for 1979–2000; P < 0.05). This new response has a large spatial footprint across the mid‐latitudes of the South American continent (35°–45°S) and highlights the potential of Araucaria tree rings for palaeoclimatic applications. The strong moisture constraint on tree growth revealed by satellite observations suggests that projected summer drying during the coming decades may result in regional growth declines in Araucaria forests and other water‐limited ecosystems in the Patagonian Andes.  相似文献   

7.
Sun  Bin  Tang  Chunyu  Yang  Na  He  Peimin 《Aquatic Ecology》2021,55(2):467-481

The interaction of various environmental triggers on phytoplankton communities of an artificial lagoon of Hangzhou Bay China, was studied during a Microcystis bloom in summer 2016. Forty-two phytoplankton genera (six phyla) were defined, with Bacillariophyta accounting for half of all phytoplankton genera. It was determined that Melosira, Chlorella, Cyclotella, Microcystis, Merismopedia, Anabaena and Selenastrum, which were identified and counted by an inverted microscope, were the dominant genera. In addition, a series of environmental indicators were analyzed, including salinity, seawater temperature, dissolved inorganic nitrogen, soluble reactive phosphorus (PO4-P), ammonium (NH4-N), nitrate nitrogen (NO3-N), nitrite (NO2-N), silicate (SiO4-Si), and chemical oxygen demand of the water samples, as well as zooplankton community. The results of variance partitioning by R language revealed that the most influential factor driving the change in the phytoplankton community was the environment (49.7%), and zooplankton grazing represented only 7.9%. The results of redundancy analysis indicated that the change and composition of the phytoplankton community correlated significantly with the interaction of salinity, PO4-P, transparency, seawater temperature, and the dominant zooplankton species. Notably, salinity and temperature fluctuation were the key factors inducing the rapid succession of the plankton community in artificial lagoons such as within the Jinshan City Beach (Shanghai, China).

  相似文献   

8.
Coastal marshes represent an important transitional zone between uplands and estuaries. One important function of marshes is to assimilate nutrient inputs from uplands, thus providing a buffer for anthropogenic nutrient loads. We examined the effects of nitrogen (N) and phosphorus (P) fertilization on biogeochemical and microbial processes during the summer growing season in a Spartina patens (Aiton (Muhl.)) marsh in the Narragansett Bay National Estuarine Research Reserve on Prudence Island (RI). Quadruplicate 1 m2 plots were fertilized with N and P additions, N-only, P-only, or no additions. N-only addition significantly stimulated bacterial production and increased pore water NH4+ and NO3 concentrations. Denitrification rates ranged from 0 to 8 mmol m−2 day−1. Fertilization had no apparent effect on soil oxygen consumption or denitrification measured in the summer in intact cores due to high core-to-core variation. P fertilization led to increased pore water dissolved inorganic phosphorus (DIP) concentrations and increased DIP release from soils. In contrast the control and N-only treatments had significant DIP uptake across the soil-water interface. The results suggest that in the summer fertilization has no apparent effect on denitrification rates, stimulates bacterial productivity, enhances pore water nutrient concentrations and alters some nutrient fluxes across the marsh surface.  相似文献   

9.
The colonisation potential of macroinvertebrate families was measured using artificial substrates. These substrates were tested on three highveld impoundments. Bronkhorstspruit Dam was an amictic, mesotrophic impoundment, while Hartbeespoort and Roodeplaat Dams were both monomictic, eutrophic impoundments. Bronkhorstspruit Dam had the best water quality and the smallest algal population, comprising mainly diatom species. Hartbeespoort Dam had the most saline water (TDS 96–400 mg/l; NH4 <0.004–0.218mg/l; NO2+NO3 0.109–2.776mg/l; PO4 <0.04–0.06mg/l), while Roodeplaat Dam had the highest nutrient concentrations (TDS 200–373mg/l; NH4 <0.04–0.933mg/l; NO2+NO3 <0.04–2.310mg/l; PO4 0.041–0.472 mg/l). Both Hartbeespoort and Roodeplaat Dams had large algal populations that resulted in very alkaline water during summer. Microsystis dominated the phytoplankton population in these two impoundments during summer and autumn, while green algae and diatoms were dominant during winter and spring. Ecological health was determined using two different biotic indices. Two modifications of the Belgian Biotic Index and a modification of SASS4 (SASSD) were tested. Three health classes were suggested for SASSD scores and ASPT values. It is concluded that artificial substrates with SASSD (and ASPT) as a biotic index can be used to determine the biological health of impoundments, but that further refinement of the index is needed.  相似文献   

10.
1. Planktonic metabolic balance (PMBm) of the surface mixed layer (SML) was measured as the ratio of areal rates of gross photosynthesis (AGP) to community respiration (AR) to test the idea that previously neglected allochthonous inputs of organic matter may support chronic excess respiration relative to photosynthesis even in very large lakes during the summer (May–October) season. Four Laurentian Great Lakes coastal sites of varying trophic status, physical structure and dissolved organic carbon (DOC) concentration were studied with oxygen light‐and dark bottle and 14C methods, with excess respiration anticipated in the higher DOC sites. 2. Planktonic metabolic balance was net autotrophic in 73% of the observations. The calculated mixing depth at which respiration would predominate over photosynthesis was greater than typically observed mixing depths, varying from 11 to 25 m in the more transparent, low DOC (<3 g m−3) sites to 8–15 m in the higher DOC (4–6 g m−3) sites. Biweekly measurements at one higher and one lower DOC site over two successive summer seasons showed that seasonal gross photosynthesis (ΣAGP) exceeded seasonal community respiration (ΣAR). Despite the location of the sites at the periphery of the lakes, where allochthonous influences should be strongest, the measurements indicated prevailing conditions of net autotrophy in the SML. 3. Individual measurements of AR from this study and the literature were correlated with AGP but season average values were more tightly correlated, suggesting a tighter coupling of metabolic rates on a larger scale and a looser coupling on a shorter scale. The observed temporal variability was variable in pattern among years, and likely to confound inferences based on limited sampling. 4. It is shown that accepted formulations for AGP and AR lead to the conclusion that PMBm should be largely predictable from knowledge of a biological properties ratio (light‐saturated gross photosynthesis to plankton community respiration, Pmax/R) and a physical properties ratio (euphotic to mixing depths, Zeu/Zm) and this prediction was confirmed using data from this study and from the literature. The evident success of this model points to the pre‐eminent importance of plankton biomass and physical conditions in determining metabolic balance. Variation in these fundamental factors appears capable of explaining the diversity of PMBm reported for different Great Lakes.  相似文献   

11.
Studies of the life cycle of a centric diatom, tentatively identified as Stephanodiscus neoastraea Håkansson & Hickel, showed that sexual reproduction occurred every year in a freshwater lake (Lough Neagh, Northern Ireland). Male and female gametes were produced in cells below 55% of the maximum diameter during a 3–4-week period in late summer, following the return of nitrate concentrations above 10 μM NO3-N. The frequency of sexual reproduction was linked to the cycle of diameter size reduction and regeneration. The times of largest decreases in cell diameter were during nutrient stress in summer and low light conditions in late autumn, rather than during the main spring growth period. So, environmental conditions (combined with the limited life-spans of individual cells) affected the rate of diameter reduction and, therefore, the length of the life cycle (3–4 years).  相似文献   

12.
Abundance of Pithophora oedogonia akinetes displayed seasonal changes, being greatest in winter and lowest in summer. Akinete abundance showed significant (P < 0.001) negative correlations with photoperiod(r = -0.53) and water temperature (r= -0.75) during the period February 1978 through June 1979. Experiments in which akinete germination was studied in response to manipulations of nutrients (NO3-N and PO4-P), photoperiod and temperature indicated that temperature was the primary factor regulating the timing of the vernal flush of akinete germination observed in Surrey Lake.  相似文献   

13.
The winter dynamics of several chemical, physical, and biological variables of a shallow, polymictic lake (Opinicon) are compared to those of a deep, nearby dimictic lake (Upper Rock) during ice cover (January to early April) in 1990 and 1991. Both lakes were weakly inversely thermally stratified. Dissolved oxygen concentration was at saturation (11–15 mg l−1) in the top 3 m layer, but declined to near anoxic levels near the sediments. Dissolved oxygen concentrations in the deep lake were at saturation in most of the water column and approached anoxic levels near the sediments only. Nutrient concentrations in both lakes were fairly high, and similar in both lakes during ice cover. Total phosphorus concentrations generally ranged between 10–20 μg l−1, NH4-N between 16–100 μg l−1, and DSi between 0.9–1.9 mg l−1; these concentrations fell within summer ranges. NO3-N concentrations were between 51–135 μg l−1 during ice cover, but occurred at trace concentrations (<0.002 μg l−1) during the summer. The winter phytoplankton community of both lakes was dominated by flagellates (cryptophytes, chrysophytes) and occasionally diatoms. Dinoflagellates, Cyanobacteria and green algae were poorly represented. Cryptophytes often occurred in fairly high proportions (20–80%) throughout the water column, whereas chrysophytes were more abundant just beneath the ice. Zooplankton population densities were extremely low during ice cover (compared to maximum densities measured in spring or summer) in both lakes, and were comprised largely of copepods.  相似文献   

14.
1. The ecophysiological significance of Crassulacean acid metabolism (CAM) in the invasive aquatic macrophyte Crassula helmsii was studied in an English soft‐water lake. The extent and the contribution of CAM to the carbon budget was examined in spring (April) and summer (July) along a depth gradient (0.5–2.2 m), covering the growth range of C. helmsii in the lake. 2. Significant in situ CAM activity (30–80 meq kg−1 FW) was present in all specimens, although it decreased with depth and hence correlated with the decline in photon irradiance. Potential CAM activity (60–161 meq kg−1 FW), measured after exposure to low concentrations of CO2 in the day and high concentrations at night, were on average 2.7‐times greater than in situ CAM activity. Overall CAM activity increased from April to July, which is consistent with higher potential carbon limitation caused by increased temperature and light availability. 3. CAM activity in C. helmsii appeared to be carbon‐limited at night because night‐time carbon‐fixation increased at raised, compared to ambient, concentrations of CO2. 4. The high in situ CAM activity in C. helmsii was reflected in the contribution of CAM to the total carbon budget which, independent of depth and season, ranged from 18% to 42%. The amount of CO2 taken up in the night via CAM was 0.74 to 2.94 times the amount of CO2 lost in respiration, thus emphasizing the importance of CAM in refixation of potentially lost respiratory CO2. 5. The onset of decarboxylation in the morning appeared to be under circadian control as there was a delay of up to 5.5 h between the start of the light period and a decline in cell acidity level. 6. There was little variation in δ13C content (−21.69 to 23.49‰) with season or depth suggesting, along with the estimated contribution to the carbon‐budget, that CAM is important for the whole population of C. helmsii. CAM may confer a competitive advantage in relation to growth, which may be one of the reasons for the invasiveness of this species.  相似文献   

15.
Stream water exports of nutrients and pollutants to water bodies integrate internal and external watershed processes that vary in both space and time. In this paper, we explore nitrate (NO3) fluxes for the 326 km2 mixed-land use Fall Creek watershed in central New York for 1972–2005, and consider internal factors such as changes in land use/land cover, dynamics in agricultural production and fertilizer use, and external factors such as atmospheric deposition. Segmented regression analysis was applied independently to dormant and growing seasons for three portions of the period of record, which indicated that stream water NO3 concentrations increased in both dormant and growing seasons from the 1970s to the early 1990s at all volumes of streamflow discharge. Dormant season NO3 concentrations then decreased at all flow conditions between the periods 1987–1993 and 1994–2005. Results from a regression-based stream water loading model (LOADEST) normalized to mean annual concentrations showed annual modeled NO3 concentration in stream water increased by 34% during the 1970s and 1980s (from 1.15 to 1.54 mg l−1), peaked in about 1989, and then decreased by 29% through 2005 (to 1.09 mg l−1). Annual precipitation had the strongest correlation with stream water NO3 concentrations (r = −0.62, P = 0.01). Among land use factors, corn production for grain was the variable most highly correlated to stream water NO3 concentrations (r = 0.53, P = 0.01). The strongest associative trend determined using Chi-squared Automatic Interaction Detection (CHAID) was found between stream water NO3 concentrations and N-equivalence of dairy production (Bonferroni adjusted P value = 0.0003). Large increases in dairy production were coincident with declining nitrate concentrations over the past decade, which suggest that dairy management practices may have improved in the watershed. However, because dairy production in the Fall Creek watershed has been fueled by large increases in feed imports, the environmental costs of feed production have likely been externalized to other watersheds.  相似文献   

16.
Laboratory experiments were conducted with three California agricultural soils to examine substrate and process controls over temporal variability of NO and N2O production during nitrification, and to quantify the kinetics of HNO2‐mediated chemical reactions. Gross NO production rates were highly correlated (r2 = 0.93–0.97) with calculated concentrations of HNO2, which were shown to originate from autotrophic microbial oxidation of NH4 + to NO2 ? Production of NO was not correlated with NH4 + or NO3, or with the overall nitrification rate. Distinct periods of high NO2 accumulation occurred below critical pH values in each soil, apparently due to inhibition of microbial NO2 oxidation. Data suggest that even during periods of relatively low NO2 accumulation and rapid overall nitrification, HNO2‐mediated reactions may have been the primary source of NO. Rate coefficients (kPNO) relating NO production to HNO2 concentrations were determined for sterile (λ‐irradiated) soils, and were similar to kPNO values in 2 of 3 nonsterile soils undergoing nitrification. Production of N2O was correlated with HNO2 (r2 = 0.88–0.99) in sterile soils, and with NO2 and NO3 (R2 = 0.72–0.91) in nonsterile soils. Experiments using 15N confirmed that dissimilatory NO3 reduction contributed to N2O production even under primarily aerobic conditions. Sterile kPNO and kPN2O values were correlated (r2 = 0.90 and 0.82) with soil organic matter content. Overall, the results demonstrate that both steps of the nitrification sequence, together with abiotic reactions involving NO2/HNO2 need to be considered in developing improved models of NO and N2O emissions from soils.  相似文献   

17.
Some expected changes in climate resulting from human greenhouse gas emissions are clear and well documented, but others may be harder to predict because they involve extreme weather events or heretofore unusual combinations of weather patterns. One recent example of unusual weather that may become more frequent with climate change occurred in early spring 2007 when a large Arctic air mass moved into the eastern United States following a very warm late winter. In this paper, we document effects of this freeze event on Walker Branch, a well‐studied stream ecosystem in eastern Tennessee. The 2007 spring freeze killed newly grown leaf tissues in the forest canopy, dramatically increasing the amount of light reaching the stream. Light levels at the stream surface were sustained at levels considerably above those normal for the late spring and summer months due to the incomplete recovery of canopy leaf area. Increased light levels caused a cascade of ecological effects in the stream beginning with considerably higher (two–three times) rates of gross primary production (GPP) during the late spring and summer months when normally low light levels severely limit stream GPP. Higher rates of stream GPP in turn resulted in higher rates of nitrate (NO3?) uptake by the autotrophic community and lower NO3? concentrations in stream water. Higher rates of stream GPP in summer also resulted in higher growth rates of a dominant herbivore, the snail Elimia clavaeformis. Typically, during summer months net NO3? uptake and snail growth rates are zero to negative; however, in 2007 uptake and growth were maintained at moderate levels. These results show how changes in forest vegetation phenology can have dramatic effects on stream productivity at multiple trophic levels and on nutrient cycling as a result of tight coupling of forest and stream ecosystems. Thus, climate change‐induced changes in canopy structure and phenology may lead to large effects on stream ecosystems in the future.  相似文献   

18.
Seasonal variations in nitrate and organic nitrogen content along the wing and midrib of Alaria esculenta (L.) Grev. lamina have been compared with the NO3- cycle in the sea and yearly growth pattern of the blade. Throughout the year, organic N is highest in blade meristem, while NO3- distribution is less consistent. NO3-in blades reaches a peak in March (ca. 25–28 μM), whereas maximum relative accumulation, 3,300X ambient seawater level, occurs in October. Content of NO3- and organic N in the blade decreases in concert with the decline of seawater NO3- in April. The three periods of rapid blade growth are not correlated with a specific organic N content in the blade meristem. Laboratory experiments suggest that low NO3- and elevated seawater temperature are not the major factors retarding Alaria blade growth during summer and early fall in nature.  相似文献   

19.
It has been suggested that desert vegetation will show the strongest response to rising atmospheric carbon dioxide due to strong water limitations in these systems that may be ameliorated by both photosynthetic enhancements and reductions in stomatal conductance. Here, we report the long‐term effect of 55 Pa atmospheric CO2 on photosynthesis and stomatal conductance for three Mojave Desert shrubs of differing leaf phenology (Ambrosia dumosa—drought‐deciduous, Krameria erecta—winter‐deciduous, Larrea tridentata—evergreen). The shrubs were growing in an undisturbed ecosystem fumigated using FACE technology and were measured over a four‐year period that included both above and below‐average precipitation. Daily integrated photosynthesis (Aday) was significantly enhanced by elevated CO2 for all three species, although Krameria erecta showed the greatest enhancements (63% vs. 32% for the other species) enhancements were constant throughout the entire measurement period. Only one species, Larrea tridentata, decreased stomatal conductance by 25–50% in response to elevated CO2, and then only at the onset of the summer dry season and following late summer convective precipitation. Similarly, reductions in the maximum carboxylation rate of Rubisco were limited to Larrea during spring. These results suggest that the elevated CO2 response of desert vegetation is a function of complex interactions between species functional types and prevailing environmental conditions. Elevated CO2 did not extend the active growing season into the summer dry season because of overall negligible stomatal conductance responses that did not result in significant water conservation. Overall, we expect the greatest response of desert vegetation during years with above‐average precipitation when the active growing season is not limited to ~ 2 months and, consequently, the effects of increased photosynthesis can accumulate over a biologically significant time period.  相似文献   

20.
Dormant season inorganic nitrogen (N) leaching varies considerably among forested catchments with similar bedrock, forest cover and deposition history. Recent work has highlighted the importance of winter rain-on-snow (ROS) events as a source of winter nitrate (NO3-N) export, but differences among streams are likely due to differences in baseflow NO3-N concentrations, and thus soil N processes. The objective of this study was to investigate rates of N-mineralization and nitrification as well as their potential environmental controls throughout the year, but with particular focus on the winter season in south-central Ontario, Canada. Field incubations were utilized to assess differences in NO3-N and ammonium production over time and across topographic positions in two catchments with contrasting patterns of N export. Rates of nitrification were similar to rates of total mineralization, and nitrification rates were significantly higher during the summer and spring compared with the winter and fall; however, winter nitrification was substantial, and ranged from 19 to 36 % of annual rates. Seasonal differences in nitrification were largely driven by temperature, soil moisture and inorganic N concentration in soil. Rain and melting snow infiltrated the soil during ROS events, which were associated with increased NO3-N availability, particularly in well-drained soils, and ROS-induced increases in stream nitrate concentrations were largest at the catchment dominated by well-drained soil. Annual nitrification fluxes were almost two orders of magnitude greater than N deposition or NO3-N leaching fluxes at either catchment. Similar rates of NO3-N production within the two catchments suggest that consumption of NO3-N within wet soils is responsible for the 10-fold difference in NO3-N export between the two streams. Notably, these results suggest that consumption processes were important for reducing NO3-N export even during winter ROS events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号