首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The flavonoids of an additional eight species of Clibadium have been determined. The compounds are derivatives of kaempferol, quercetin and quercetagetin. O-Methylated quercetagetin derivatives were found in several taxa with the possibility that 6-methoxykaempferol may also exist in one collection. Kaempferol and quercetin exist as 3-O-glucosides, galactosides, rhamnosides, rutinosides and diglucosides although not all glycosides occur in each taxon. Quercetagetin derivatives occur as 7-O-glucosides. Observations on these newly investigated species confirm previous work in the genus that three types of flavonoid profiles exist: (1) kaempferol and quercetin 3-glycosides; (2) kaempferol and quercetin 3-glycosides plus quercetagetin 7-glucoside; and (3) kaempferol and quercetin 3-glycosides plus quercetagetin 7-glucoside and O-methylated derivatives of quercetagetin.  相似文献   

2.
Six new and nine known flavonoids were obtained from Neurolaena oaxacana. The known flavonoids are 6-hydroxykaempferol 3,7-dimethyl ether, quercetagetin 3,7-dimethyl ether, quercetin 3-methyl ether, axillarin, nodifloretin, 6-hydroxyluteolin 7-glucoside, kaempferol 3-glucoside, quercetagetin 7-glucoside and patulitrin. The new compounds are 6-hydroxykaempferol 3-methyl ether, quercetagetin 3,7-dimethyl ether 6-galactoside, quercetagetin 3-methyl ether 7-glucoside, the 6- and 7-glucosides of 6-hydroxykaempferol 3-methyl ether and quercetagetin 3-methyl ether 7-sulfate.  相似文献   

3.
Fifteen flavonols, five aglycones and ten glucosides were isolated from the four species of Tetragonotheca, T. repanda, T. helianthoides, T. texana and T. ludoviciana. Included among the isolated flavonols are four previously unreported 7-O-glucosides, 6-hydroxykaempferol 7-O-glucoside, 6-hydroxykaempferol 6-methyl ether 7-O-glucoside, quercetagetin 6,3′-dimethyl ether 7-O-glucoside and quercetagetin 3,6-dimethyl ether 7-O-glucoside.  相似文献   

4.
Two new 5-methyl ether flavone glucosides (7,4′,5′-trihydroxy-5,3′-dimethoxyflavone 7-O-β-D-glucopyranoside and 7,4′-dihydroxy-5-methoxyflavone 7-O-β-D-glucopyranoside) were isolated from the leaves of Thai mangrove Bruguiera gymnorrhiza together with 7,3′,4′,5′-tetrahydroxy-5-methoxyflavone, 7,4′,5′-trihydroxy-5,3′-dimethoxyflavone, luteolin 5-methyl ether 7-O-β-D-glucopyranoside, 7,4′-dihydroxy-5,3′-dimethoxyflavone 7-O-β-D-glucopyranoside, quercetin 3-O-β-D-glucopyranoside, rutin, kaempferol 3-O-rutinoside, myricetin 3-O-rutinoside and an aryl-tetralin lignan rhamnoside. The structure of a lignan rhamnoside was found to be related to racemiside, an isolated compound from Cotoneaster racemiflora, and also discussed. Structure determinations were based on analyses of physical and spectroscopic data including 1D- and 2D-NMR.  相似文献   

5.
Twelve flavonoids including one new sulfate were isolated from Neurolaena lobata, and six known flavonoids were obtained from N. macrocephala. The new compound isolated from N. lobata is 6-hydroxykaempferol 3-methyl ether 7-sulfate, and the known flavonoids are 6-hydroxykaempferol 3,7-di-dimethyl ether, 6-hydroxykaempferol, 3-methyl ether 7-glucoside, 6-hydroxykaempferol 7-glucoside, quercetagetin and its 7-glucoside, quercetagetin 3,6- and 3,7-dimethyl ethers, quercetagetin 3-methyl ether 7-glucoside and 7-sulfate, 6-hydroxyluteolin 3′-methyl ether and 6-hydroxyluteolin 7-glucoside. The known flavonoids identified from N. macrocephala are quercetagetin 3,6- and 3, 7-dimethyl ethers, quercetagetin 6-methyl ether 7-glucoside, quercetagetin 3,6-dimethyl ether 7-glucoside, quercetagetin 7-glucoside and quercetagetin 3-methyl ether 7-sulfate.  相似文献   

6.
Two new flavonols, 5,7,4′-trihydroxy-3,6,8,3′-tetramethoxyflavone and quercetagetin 3,5,6,3′-tetramethyl ether, were identified in leaves of Chrysothamnus viscidiflorus. Eight known methyl ethers based on kaempferol, quercetin or their 6-hydroxy derivatives were also detected.  相似文献   

7.
Kaempferol and quercetin 3-O-glycosides were found in the closely related species, Parthenium hysterophorus, P. bipinnatifidum and P. glomeratum; the major aglycone flavonols in P. hypterophorus are quercetagetin 3,7-dimethyl ether and a new flavonoid, 6-hydroxykaempferol 3,7-dimethyl ether. The North-South American species-pair P. glomeratum (Argentina) and P. bipinnatifidum (Mexico) yielded quercetagetin 3,7,3′-trimethyl ether as the major aglycone. The desert species P. rollinsianum yielded five methylated flavonols: quercetin 3,3′-dimethyl ether, penduletin, quercetagetin 3,6,7-trimethyl ether, polycladin and artemetin.  相似文献   

8.
A leaf wash of Wyethia bolanderi afforded eight known methylated flavonols: santin, ermanin, jaceidin, 3,6-dimethoxyapigenin, kaempferide, isokaempferide, axillarin and quercetin 3-methyl ether. A leaf wash of Balsamorhiza macrophylla afforded six known methylated flavonols: centaureidin, quercetin 3,4′-dimethyl ether, axillarin, spinacetin, tamarexetin and quercetin 3-methyl ether. The chemotaxonomy of the two genera is discussed briefly.  相似文献   

9.
A new dihydroflavonol, pallasiin, together with kaempferol, quercetin, isorhamnetin, mearnsetin, aromadendrin, eriodictyol and taxifolin, has been isolated from the bark of Rhamnus pallasii and its structure elucidated as 2,3-dihydromyricetin 4′-O-methyl ether.  相似文献   

10.
The partially purified O-methyltransferase (OMT) system of Chrysosplenium americanum was found to catalyse the stepwise O-methylation of quercetin to its mono-, di- and trimethyl derivatives. It also utilized the partially methylated flavonol intermediates to form the next higher order of O-methylated products; thus indicating the involvement of several OMTs. The latter were resolved by chromatofocusing into three distinct peaks of enzyme activity which focused at pI values 4.8, 5.4 and 5.7. The former enzyme O-methylated quercetin at the 3-position, whereas the latter two O-methylated 3, 7-di-O-methyl quercetagetin at the 3′- and 6-positions, respectively. None of the focused enzymes accepted caffeic acid, or other flavonoids such as kaempferol or luteolin, as substrates; thus indicating specificity towards flavonols with 3′, 4′- substitution. The three OMTs had similar MWs and the Km values for their substrates were of the same order of magnitude. The biochemical role of these novel enzymes is discussed in relation to the biosynthesis of polymethylated flavonols in this tissue.  相似文献   

11.
Two new glycosides, kaempferol 4′-methyl ether 3-O-β-d-galactopyranoside and retusin 7-O-neohesperidoside, have been characterized from the stem bark of Prosopis juliflora.  相似文献   

12.
The ethyl ester of kaempferol 3-O-β-D-glucuronide, the methyl and ethyl esters of quercetin 3-O-β-D-glucuronide have been isolated from an aqueous acetone extract of the flowers of Tamarix nilotica. In addition kaempferol 3-O-sulphate-7,4′-dimethyl ether and the free aglycones were isolated. The structures were established by routine methods, by FAB-MS and by 13C NMR spectral measurements.  相似文献   

13.
Two new flavonol glucosides have been identified in Ephedra alata, namely, herbacetin 8-methyl ether 3-O- glucoside-7-O-rutinoside and herbacetin 7-O-(6″-quinylglucoside). The known flavonoids vicenin II, lucenin III, kaempferol 3-rhamnoside, quercetin 3-rhamnoside and herbacetin 7-glucoside were also found. The structure of the isolated compounds was determined mostly by FABMS and 1H NMR spectroscopy. The final structure of the new compounds and of herbacetin 7-glucoside was confirmed by 13C NMR spectroscopy.  相似文献   

14.
Yellow flavonols have been identified in flowers of Coleostephus myconis, Glossopappus macrotus, Lepidophorum repandum and Leucanthemopsis flaveola. In addition to quercetagetin, gossypetin, patuletin and quercetagetin 3′-methyl ether previously reported in other species of the tribe Anthemideae of the Compositae, spinacetin, the 6,3′-dimethyl ether of quercetagetin, has been found for the first time as a flower pigment. It occurs as the 7-glucoside in flowers of Lepidophorum repandum, the leaves of which contain patuletin 3-rhamnoside. The presence of spinacetin and the 3′-methyl ether of quercetagetin in Lepidophorum fits in with the results of recent taxonomic studies which place this genus closer to Chrysanthemum than to Anthemis. Similarly, the occurrence of quercetagetin and gossypetin in Leucanthemopsis confirms its recently proposed separation from Tanacetum. The chemical data indicate that there is an evolutionary trend in yellow flower pigmentation, with Leucanthemopsis and Chrysanthemum segetum as the two least specialized species and Lepidophorum as the most advanced.  相似文献   

15.
HPLC and chemical analyses of the flavonoids in culms of 11 Chondropetalum species divide the genus into two groups: seven, with glycosides of myricetin larycitin and syringetin; and four, with glycosides of kaempferol, quercetin, gossypetin, gossypetin 7-methyl ether and herbacetin 4′-methyl ether. This chemical dichotomy is correlated with anatomical differences and confirms the view that the genus requires taxonomic revision. HPLC measurements on those species with myricetin derivatives show that taxa with a qualitatively similar pattern of glycosides can be readily separated on quantitative grounds. Syringetin 3-arabinoside and a glycoside of herbacetin 4′-methyl ether are reported for the first time from the genus.  相似文献   

16.
Five species of Melampodium have been studied for their flavonoid components. Melampodium aureum, M. divaricatum and M. longipilum exhibited simple arrays of kaempferol and quercetin 3-O-mono-and diglycosides. Melampodium bibracteatum afforded the same simple glycosides plus quercetagetin 3-methyl ether. Melampodium americanum had the most complex pattern with simple flavonol glycosides being accompanied by five O-methylated derivatives of quercetagetin plus 6-hydroxykaempferol 3-methyl ether. Three populations of M. bibracteatum gave identical flavonoid profiles as did 15 collections of M. bibracteatum.  相似文献   

17.
The fresh leaves of Hillebrandia sandwicensis and 126 Begonia taxa were chemotaxonomically surveyed for flavonoids. Of their taxa, H. sandwicensis and 119 species, one variety and three hybrids were analyzed for flavonoids for the first time. Ten flavonols and eleven C-glycosylflavones were isolated and characterized as quercetin 3-O-rutinoside (1), kaempferol 3-O-rutinoside (2), isorhamnetin 3-O-rutinoside (3), quercetin 3-O-glucoside (4), quercetin 3-methyl ether 7-O-rhamnosylglucoside (5), quercetin 3,3'-dimethyl ether 7-O-rhamnosylglucoside (6), quercetin glycoside (13), quercetin glycoside (acylated) (14), kaempferol glycoside (17) and quercetin 3-O-rhamnoside (18) as flavonols, and isovitexin (7), vitexin (8), isoorientin (9), orientin (10), luteolin 6-C-pentoside (11), luteolin 8-C-pentoside (12), schaftoside (15), isoschaftoside (16), chrysoeriol 6,8-di-C-pentoside (19), apigenin 6,8-di-C-arabinoside (20) and isovitexin 2''-O-glucoside (21) as C-glycosylflavones. Quercetin 3-O-rutinoside (1) alone was isolated from H. sandwicensis endemic to Hawaii. Major flavonoids of almost Begonia species was also 1. Begonia species were divided into two chemotypes, i.e. flavonol containing type and C-glycosylflavone containing type. Of 14 section of the Begonia, almost species of many section, i.e. sect. Augustia, Coelocentrum, Doratometra, Leprosae, Loasibegonia, Monopteron and Ruizoperonia, were flavonol types. On the other hand, C-glycosyflavone type was comparatively most in sect. Platycentrum.  相似文献   

18.
Nine flavonoids including two new myricetin derivatives, myricetin 3′,4′-dimethyl ether and myricetin 3,3′, 4′-trimethyl ether, were obtained from Haplopappus integerrimus var. punctatus. The known compounds are quercetin 7,3′-dimethyl ether, querectin 3,3′-dimethyl ether, isorhamnetin, quercetin 3,7-dimethyl ether, quercetin 3-methyl ether, quercetin and quercetin 3-β-d-glucoside.  相似文献   

19.
Haplophyllum pedicellatum, H. robustum and H. glabrinum all yielded the known compound gossypetin 8,3′-dimethyl ether 3-rutinoside. In addition the first two species afforded isorhamnetin and its 3-rutinoside. A new glycoside, gossypetin 8,3′-dimethyl ether 3-glucoside was obtained from H. pedicellatum together with the 3-malonylrutinoside, 3-malonylglucoside and 3-galactoside of isorhamnetin plus kaempferol 3-malonylglucoside. H. robustum yielded isorhamnetin 7-glucoside and 3-glucoside and quercetin 3-galactoside, while H. glabrinum was found to contain gossypetin 8-methyl ether 3-malonylrutinoside in addition to kaempferol and isorhamnetin 3-glucoside.  相似文献   

20.
Nineteen flavonoids were isolated from Artemisia ludoviciana var. ludoviciana, including a new 2′- hydroxy- 6-methoxyflavone, 5,7,2′,4′-tetrahydroxy-6,5′-dimethoxyflavone. The known compounds include quercetagetin 3,6,3′,4′-tetramethyl ether, eupatilin, 5,7-dihydroxy-3,6,8,4′-tetramethoxyflavone, luteolin 3′,4′-dimethyl ether, jaceosidin, 5,7,4′-trihydroxy-3,6-dimethoxyflavone, tricin, hispidulin, chrysoeriol, kaempferol 3-methyl ether, apigenin, axillarin, eupafolin, selagin and luteolin together with three flavones which were previously isolated for the first time from Artemisia frigida: 5,7,4′-trihydroxy-6, 3′,5′-trimethoxyflavone, 5,7,3′-trihydroxy-6,4′,5′-trimethoxyflavone and 5,7,3′,4′-tetrahydroxy-6,5′- dimethoxyflavone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号