共查询到20条相似文献,搜索用时 0 毫秒
1.
Xinna Liu Mingying Hou Shiqi Zhang Yutong Zhao Qi Wang Menglu Jiang Mengxian Du Zhengbo Shao Huiping Yuan 《Cell death & disease》2021,12(6)
Glaucoma is characterized by retinal ganglion cell (RGC) death, the underlying mechanisms of which are still largely unknown. An E50K mutation in the Optineurin (OPTN) gene is a leading cause of normal-tension glaucoma (NTG), which directly affects RGCs in the absence of high intraocular pressure and causes severe glaucomatous symptoms in patients. Bone marrow (BM) stem cells have been demonstrated to play a key role in regenerating damaged tissue during ageing and disease through their trophic effects and homing capability. Here, we separated BM stem cells into Sca-1+ and Sca-1- cells and transplanted them into lethally irradiated aged OPTN E50K mice to generate Sca-1+ and Sca-1− chimaeras, respectively. After 3 months of BM repopulation, we investigated whether Sca-1+ cells maximized the regenerative effects in the retinas of NTG model mice with the OPTN E50K mutation. We found that the OPTN E50K mutation aggravated age-related deficiency of neurotrophic factors in both retinas and BM during NTG development, leading to retinal degeneration and BM dysfunction. Sca-1+ cells from young healthy mice had greater paracrine trophic effects than Sca-1− cells and Sca-1+ cells from young OPTN E50K mice. In addition, Sca-1+ chimaeras demonstrated better visual functions than Sca-1− chimaeras and untreated OPTN E50K mice. More Sca-1+ cells than Sca-1− cells were recruited to repair damaged retinas and reverse visual impairment in NTG resulting from high expression levels of neurotrophic factors. These findings indicated that the Sca-1+ cells from young, healthy mice may have exhibited an enhanced ability to repair retinal degeneration in NTG because of their excellent neurotrophic capability.Subject terms: Neurotrophic factors, Haematopoietic stem cells 相似文献
2.
Mutations in the coding region of the OPTN gene are associated with certain glaucomas. Although the function of the optineurin
protein is yet to be elucidated, the most common mutation, E50K, is associated with a severe phenotype. Plasmids expressing
wild-type Optineurin (WT) and mutant Optineurin(E50K) were transfected into RGC-5 and monitored by immunofluorescence staining
and western blotting. The mutant Optineurin(E50K) induced the death of retinal ganglion cells by generation of reactive oxygen
species accompanied disruption of mitochondrial transmembrane potential, down-regulation of bcl-2, and up-regulation of bax,
which led to the release of cytochrome C from the mitochondria into the cytosol, which, in turn, resulted in the activation
of caspase-9 and caspase-3, indicating that mutant Optineurin(E50K) acquired the ability to induce cell death through the
mitochondrial caspase-dependent cell death pathway. 相似文献
3.
Pedro Lax Gema Esquiva Lorena Fuentes-Broto Francisco Segura Ana Sánchez-Cano Nicolás Cuenca 《Chronobiology international》2016,33(4):374-391
The melanopsin system consists of intrinsically photosensitive retinal ganglion cells containing the photopigment melanopsin (mRGCs). These mRGCs mediate several non-image-forming visual functions, including light entrainment of circadian rhythms. Here we evaluate age-related alterations of the melanopsin system and circadian rhythms in P23H line 1 (P23H-1) rats, a rodent model of retinitis pigmentosa (RP). In homozygous P23H-1 rats and wild-type control rats from the same genetic background (Sprague–Dawley), body temperature and locomotor activity were continuously monitored at 10-min intervals for 7 days, once every 4–5 weeks, between 2 and 24 months of age, using a telemetry transmitter. The distribution and number of mRGCs were assessed in control rats at 12, 18, and 24 months of age and in P23H-1 rats aged 12, 18, 24, and 30 months by immunostaining whole-mount retinas with antibodies against melanopsin. The mean density of mRGCs in control rats showed no significant variations when evaluated at 12 and 18 months of age, and fell by approximately 56% between 18 and 24 months of age. Meanwhile, a significant decrease in the mean number of mRGCs was found in 18-month-old P23H-1 rats as compared to 18-month-old control rats (81% decrease). Parametric and non-parametric analyses of the records showed a gradual age-dependent weakening of body temperature and locomotor activity circadian rhythms robustness in both control and P23H-1 rats from 2 to 24 months of age. However, body temperature and locomotor activity circadian patterns were less robust throughout the experiment in P23H-1 as compared to control rats, with lower amplitude, weaker coupling strength to environmental zeitgebers and higher fragmentation of the rhythms. The present study shows that the degeneration of photoreceptors and inner retinal neurons, characteristic of RP, has age-related degenerative effects on the melanopsin system and is associated with weaker circadian patterns. 相似文献
4.
The early development of retinal ganglion cells with uncrossed axons in the mouse: retinal position and axonal course 总被引:6,自引:0,他引:6
The carbocyanine dye, DiI, has been used to study the retinal origin of the uncrossed retinofugal component of the mouse and to show the course taken by these fibres through the optic nerve and chiasm during development. Optic axons first arrive at the chiasm at embryonic day 13 (E13) but do not cross the midline until E14. After this stage, fibres taking an uncrossed course can be selectively labelled by unilateral tract implants of DiI. The earliest ipsilaterally projecting ganglion cells are located in the dorsal central retina. The first sign of the adult pattern of distribution of ganglion cells with uncrossed axons located mainly in the ventrotemporal retina is seen on embryonic day 16.5, thus showing that the adult line of decussation forms early in development. A small number of labelled cells continue to be found in nasal and dorsal retina at all later stages. At early stages (E14-15), retrogradely labelled uncrossed fibres are found in virtually all fascicles of the developing nerve, intermingling with crossed axons throughout the length of the nerve. At later stages of development (E16-17), although uncrossed fibres pass predominantly within the temporal part of the stalk, they remain intermingled with crossed axons. A significant number of uncrossed axons also lie within the nasal part of the optic stalk. The position of uncrossed fibres throughout the nerve in the later developmental stages is comparable to that seen in the adult rodent (Baker and Jeffery, 1989). The distribution of uncrossed axons thus indicates that positional cues are not sufficient to account for the choice made by axons when they reach the optic chiasm. 相似文献
5.
(-)-Deprenyl ( L-deprenyl, selegiline hydrochloride), a selective monoamine oxidase B (MAO-B) inhibitor employed in the pharmacological therapy of Parkinson's disease, increases neuronal survival in both animal models of neurodegenerative disorders and acute CNS lesions. Despite intensive investigations, the mechanisms of (-)-deprenyl-mediated neuroprotection remain poorly understood. To test the hypothesis that (-)-deprenyl might have a beneficial effect not only on neuronal survival, but also on axonal regeneration, we describe here experiments performed in vitro and in vivo which clearly demonstrate that (-)-deprenyl fails to promote axonal regeneration of severed rat retinal ganglion cells (RGCs). Furthermore, (-)-deprenyl was not able to overcome free-radical-induced RGC axon degeneration. These results challenge the notion that (-)-deprenyl might be useful as a monotherapy for acute CNS lesions and give rise to a more critical viewpoint of the trophic-like function of this widely used therapeutic agent. 相似文献
6.
Like all cells, neurons adapt to stress by transient alterations in phenotype, an epigenetic response that forms the basis for preconditioning against acute ischemic injury in the central nervous system. We recently showed that a modified repetitive hypoxic preconditioning (RHP) regimen significantly extends the window of ischemic tolerance to acute retinal ischemic injury from days to months. The present study was undertaken to determine if this uniquely protracted neuroprotective phenotype would also confer resistance to glaucomatous neurodegeneration. Retinal ganglion cell death at somatic and axonal levels was assessed after both 3 and 10 wks of sustained intraocular hypertension in an adult mouse model of inducible, open-angle glaucoma, with or without RHP before intraocular pressure elevation. Loss of brn3-positive ganglion cell soma after 3 wks of experimental glaucoma, along with increases in several apoptotic endpoints, were all significantly and robustly attenuated in mice subjected to RHP. Soma protection by RHP was also confirmed after 10 wks of intraocular hypertension by brn3 and SMI32 immunostaining. In addition, quantification of axon density in the postlaminar optic nerve documented robust preservation in RHP-treated mice, and neurofilament immunostaining also revealed preconditioning-induced improvements in axon integrity/survival in both retina and optic nerve after 10 wks of experimental glaucoma. This uniquely protracted period of phenotypic change, established in retinal ganglion cells by the activation of latent antiapoptotic, prosurvival mechanisms at both somatic and axonal levels, reflects a novel form of inducible neuronal plasticity that may provide innovative therapeutic targets for preventing and treating glaucoma and other neurodegenerative diseases. 相似文献
7.
Shin Kikuchi Takafumi Ninomiya Takayuki Kohno Takashi Kojima Haruyuki Tatsumi 《Cell biology and toxicology》2018,34(2):93-107
Cobalt is a trace element that localizes in the human body as cobalamin, also known as vitamin B12. Excessive cobalt exposure induces a peripheral neuropathy, the mechanisms of which are yet to be elucidated. We investigated how cobalt may affect mitochondrial motility in primary cultures of rat dorsal root ganglion (DRG). We observed mitochondrial motility by time-lapse imaging after DsRed2 tagging via lentivirus, mitochondrial structure using transmission electron microscopy (TEM), and axonal swelling using immunocytochemical staining. The concentration of cobaltous ion (Co2+) required to significantly suppress mitochondrial motility is lower than that required to induce axonal swelling following a 24-h treatment. Exposure to relatively low concentrations of Co2+ for 48 h suppressed mitochondrial motility without leading to axonal swelling. TEM images indicated that Co2+ induces mitochondrial destruction. Our results show that destruction of the axonal mitochondria precedes the axonal degeneration induced by Co2+ exposure. 相似文献
8.
9.
The constituent proteins of the fast (110–150 mm/day) and slow (1.5–2 mm/day) components of axonal transport in the retinal ganglion cells of the rabbit were investigated. The fast and slow components were labelled by intraocular injection of (3H)- and (14C)-leucine, respectively. Subcellular fractionation of the optic nerve and tract and subsequent gel electrophoresis of the fractions showed that most of the soluble proteins moved with the slow phase of axonal transport, whereas only some of the soluble proteins were transported with the rapid phase. Extraction of the microsomal fraction with triton X-100 resulted in the solubilization of highly labelled proteins belonging to the rapid phase. These proteins showed a relatively low electrophoretic mobility. 相似文献
10.
Huberman AD Manu M Koch SM Susman MW Lutz AB Ullian EM Baccus SA Barres BA 《Neuron》2008,59(3):425-438
Our understanding of how mammalian sensory circuits are organized and develop has long been hindered by the lack of genetic markers of neurons with discrete functions. Here, we report a transgenic mouse selectively expressing GFP in a complete mosaic of transient OFF-alpha retinal ganglion cells (tOFF-alphaRGCs). This enabled us to relate the mosaic spacing, dendritic anatomy, and electrophysiology of these RGCs to their complete map of projections in the brain. We find that tOFF-alphaRGCs project exclusively to the superior colliculus (SC) and dorsal lateral geniculate nucleus and are restricted to a specific laminar depth within each of these targets. The axons of tOFF-alphaRGC are also organized into columns in the SC. Both laminar and columnar specificity develop through axon refinement. Disruption of cholinergic retinal waves prevents the emergence of columnar- but not laminar-specific tOFF-alphaRGC connections. Our findings reveal that in a genetically identified sensory map, spontaneous activity promotes synaptic specificity by segregating axons arising from RGCs of the same subtype. 相似文献
11.
Tsutomu Ohashi Kazuhiko Namekata Xiaoli Guo Atsuko Kimura Chikako Harada Takayuki Harada 《Biochemistry and Biophysics Reports》2022
Lighting conditions may affect the development of retinal degenerative diseases such as macular degeneration. In this study, to determine whether the lighting environment affects the progression of degeneration of retinal ganglion cells (RGCs), we examined glutamate/aspartate transporter (GLAST) heterozygous (GLAST+/-) mice, a mouse model of normal tension glaucoma. GLAST+/- mice were reared under a 12-h light-dark cycle (Light/Dark) or complete darkness (Dark/Dark) condition after birth. The total RGC number in the Dark/Dark group was significantly decreased compared with the Light/Dark group at 3 weeks old, while the number of osteopontin-positive αRGCs were similar in both groups. At 6 and 12 weeks old, the total RGC number were not significantly different in both conditions. In addition, the retinal function examined by multifocal electroretinogram were similar at 12 weeks old. These results suggest that lighting conditions may regulate the progression of RGC degeneration in some types of glaucoma. 相似文献
12.
Djoere Gaublomme Tom Buyens Lies De Groef Michelle Stakenborg Els Janssens Signe Ingvarsen Astrid Porse Niels Behrendt Lieve Moons 《Journal of neurochemistry》2014,129(6):966-979
Restoration of correct neural activity following central nervous system (CNS) damage requires the replacement of degenerated axons with newly outgrowing, functional axons. Unfortunately, spontaneous regeneration is largely lacking in the adult mammalian CNS. In order to establish successful regenerative therapies, an improved understanding of axonal outgrowth and the various molecules influencing it, is highly needed. Matrix metalloproteinases (MMPs) constitute a family of zinc‐dependent proteases that were sporadically reported to influence axon outgrowth. Using an ex vivo retinal explant model, we were able to show that broad‐spectrum MMP inhibition reduces axon outgrowth of mouse retinal ganglion cells (RGCs), implicating MMPs as beneficial factors in axonal regeneration. Additional studies, using more specific MMP inhibitors and MMP‐deficient mice, disclosed that both MMP‐2 and MT1‐MMP, but not MMP‐9, are involved in this process. Furthermore, administration of a novel antibody to MT1‐MMP that selectively blocks pro‐MMP‐2 activation revealed a functional co‐involvement of these proteinases in determining RGC axon outgrowth. Subsequent immunostainings showed expression of both MMP‐2 and MT1‐MMP in RGC axons and glial cells. Finally, results from combined inhibition of MMP‐2 and β1‐integrin were suggestive for a functional interaction between these molecules. Overall, our data indicate MMP‐2 and MT1‐MMP as promising axonal outgrowth‐promoting molecules.
13.
Sabrina Reinehr Dennis Koch Maximilian Weiss Franziska Froemel Christina Voss H. Burkhard Dick Rudolf Fuchshofer Stephanie C. Joachim 《Journal of cellular and molecular medicine》2019,23(8):5497-5507
Primary open‐angle glaucoma (POAG) is one of the most common causes for blindness worldwide. Although an elevated intraocular pressure (IOP) is the main risk factor, the exact pathology remained indistinguishable. Therefore, it is necessary to have appropriate models to investigate these mechanisms. Here, we analysed a transgenic glaucoma mouse model (βB1‐CTGF) to elucidate new possible mechanisms of the disease. Therefore, IOP was measured in βB1‐CTGF and wildtype mice at 5, 10 and 15 weeks of age. At 5 and 10 weeks, the IOP in both groups were comparable (P > 0.05). After 15 weeks, a significant elevated IOP was measured in βB1‐CTGF mice (P < 0.001). At 15 weeks, electroretinogram measurements were performed and both the a‐ and b‐wave amplitudes were significantly decreased in βB1‐CTGF retinae (both P < 0.01). Significantly fewer Brn‐3a+ retinal ganglion cells (RGCs) were observed in the βB1‐CTGF group on flatmounts (P = 0.02), cross‐sections (P < 0.001) and also via quantitative real‐time PCR (P = 0.02). Additionally, significantly more cleaved caspase 3+ RGCs were seen in the βB1‐CTGF group (P = 0.002). Furthermore, a decrease in recoverin+ cells was observable in the βB1‐CTGF animals (P = 0.004). Accordingly, a significant down‐regulation of Recoverin mRNA levels were noted (P < 0.001). Gfap expression, on the other hand, was higher in βB1‐CTGF retinae (P = 0.023). Additionally, more glutamine synthetase signal was noted (P = 0.04). Although no alterations were observed regarding photoreceptors via immunohistology, a significant decrease of Rhodopsin (P = 0.003) and Opsin mRNA (P = 0.03) was noted. We therefore assume that the βB1‐CTGF mouse could serve as an excellent model for better understanding the pathomechanisms in POAG. 相似文献
14.
Deneubourg L Ralea S Gromova P Parsons R Vanderwinden JM Erneux C 《Cellular signalling》2011,23(11):1857-1868
Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors of the gastrointestinal tract. Approximately 85% of GISTs harbor activating mutations of the KIT or PDGFRA receptor tyrosine kinases. PTEN and SHIP2 are major phosphatases that dephosphorylate PI(3,4,5)P3, one of the intracellular signal pathways downstream of KIT. PTEN is an important tumor suppressor, whereas the involvement of SHIP2 in cancer has been proposed based essentially on cell line studies. We have used a mouse model of GIST, i.e. KitK641E knock-in mice, resulting in the substitution of a Lys by Glu at position 641 of Kit. In homozygous KitK641E mice, PTEN-immunoreactivity (ir) in antrum was found in the hyperplastic Kit-ir layer. The same localization was found for SHIP2. Western blot analysis in antrum showed a large increase in PTEN expression in KitK641E homozygous mice as compared to wild type. In contrast, SHIP2 expression was not affected between the two genotypes. Erk1, but not PKB, phosphorylation appears to be upregulated in KitK641E homozygous mice. In the human GIST882 imatinib sensitive cell line, both PTEN and SHIP2 were expressed and showed, in part, a nuclear localization. The upregulation of PTEN in antrum in KitK641E mice might serve as a feedback mechanism to limit PI 3-kinase activation downstream of Kit in a context of oncogenic mutation. 相似文献
15.
Neuromuscular degeneration, nmd, is a spontaneous autosomal recessive mutation in the mouse producing progressive hindlimb impairment caused by spinal muscular atrophy. We used an intersubspecific intercross between B6.BKs-nmd
2J/+ and Mus musculus castaneus (CAST/Ei) to map the nmd mutation to mouse Chromosome (Chr) 19 with the most likely gene order: nmd-(D19Se12, Pygm)-Cntf-Pomc2-D19Mit16-Cyp2c-Got1. nmd maps near muscle deficient, mdf, and has a very similar clinical phenotype, but allele tests and histological differences suggest that nmd is a distinct mutation at a different locus. Although closely linked, nmd recombined with the candidate genes muscle glycogen phosphorylase, Pygm, and ciliary neurotrophic factor, Cntf. 相似文献
16.
17.
18.
The effects of tau hyperphosphorylation and aggregation on axonal transport were investigated in the optic nerve of mice transgenic for human mutant P301S tau. Transport was examined using cholera toxin B tracing. Retrograde transport was reduced in transgenic mice at 3 and 5 months of age, when compared to C57/Bl6 control mice. Anterograde axonal transport was also reduced in 3-month-old transgenic mice. Mild excitotoxic injury of retinal ganglion cells resulted in greater nerve cell loss in retinas from 3- and 5-month old P301S transgenic mice, when compared to controls. In conjunction with the detection of abnormal tau in the optic nerve in human and experimental glaucoma, the present findings suggest that tau hyperphosphorylation and aggregation may constitute targets for neuroprotective therapies in glaucoma as well as tauopathies. 相似文献
19.
20.
Akiko Goto Yu-Lai Wang Tomohiro Kabuta Rieko Setsuie Hitoshi Osaka Akira Sawa Shoichi Ishiura Keiji Wada 《Neurochemistry international》2009,54(5-6):330-338
Local axonal degeneration is a common pathological feature of peripheral neuropathies and neurodegenerative disorders of the central nervous system, including Alzheimer's disease, Parkinson's disease, and stroke; however, the underlying molecular mechanism is not known. Here, we analyzed the gracile axonal dystrophy (gad) mouse, which displays the dying-back-type of axonal degeneration in sensory neurons, to find the molecules involved in the mechanism of axonal degeneration. The gad mouse is analogous to a null mutant of ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1). UCH-L1 is a deubiquitinating enzyme expressed at high levels in neurons, as well as testis and ovary. In addition, we recently discovered a new function of UCH-L1—namely to bind to and stabilize mono-ubiquitin in neurons, and found that the level of mono-ubiquitin was decreased in neurons, especially in axons of the sciatic nerve, in gad mice. The low level of ubiquitin suggests that the target proteins of the ubiquitin proteasome system are not sufficiently ubiquitinated and thus degraded in the gad mouse; therefore, these proteins may be the key molecules involved in axonal degeneration. To identify molecules involved in axonal degeneration in gad mice, we compared protein expression in sciatic nerves between gad and wild-type mice at 2 and 12 weeks old, using two-dimensional difference gel electrophoresis. As a result, we found age-dependent accumulation of several proteins, including glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and 14-3-3, in gad mice compared with wild-type mice. Histochemical analyses demonstrated that GAPDH and 14-3-3 were localized throughout axons in both gad and wild-type mice, but GAPDH accumulated in the axons of gad mice. Recently, it has been suggested that a wide range of neurodegenerative diseases are characterized by the accumulation of intracellular and extracellular protein aggregates, and it has been reported that oxidative stress causes the aggregation of GAPDH. Furthermore, histochemical analysis demonstrated that sulfonated GAPDH, a sensor of oxidative stress that elicits cellular dysfunction, was expressed in the axons of gad mice, and 4-hydroxy-2-nonenal, a major marker of oxidative stress, was also only detected in gad mice. Our findings suggest that GAPDH may participate in a process of the dying-back-type of axonal degeneration in gad mice and may provide valuable insight into the mechanisms of axonal degeneration. 相似文献