首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carotenoids of 20 species of dragonflies (including 14 species of Anisoptera and six species of Zygoptera) were investigated from the viewpoints of comparative biochemistry and chemical ecology. In larvae, β-carotene, β-cryptoxanthin, lutein, and fucoxanthin were found to be major carotenoids in both Anisoptera and Zygoptera. These carotenoids were assumed to have originated from aquatic insects, water fleas, tadpoles, and small fish, which dragonfly larvae feed on. Furthermore, β-caroten-2-ol and echinenone were also found in all species of larvae investigated. In adult dragonflies, β-carotene was found to be a major carotenoid along with lutein, zeaxanthin, β-caroten-2-ol, and echinenone in both Anisoptera and Zygoptera. On the other hand, unique carotenoids, β-zeacarotene, β,ψ-carotene (γ-carotene), torulene, β,γ-carotene, and γ,γ-carotene, were present in both Anisoptera and Zygoptera dragonflies. These carotenoids were not found in larvae. Food chain studies of dragonflies suggested that these carotenoids originated from aphids, and/or possibly from aphidophagous ladybird beetles and spiders, which dragonflies feed on. Lutein and zeaxanthin in adult dragonflies were also assumed to have originated from flying insects they feed on, such as flies, mosquitoes, butterflies, moths, and planthoppers, as well as spiders. β-Caroten-2-ol and echinenone were found in both dragonfly adults and larvae. They were assumed to be metabolites of β-carotene in dragonflies themselves. Carotenoids of dragonflies well reflect the food chain during their lifecycle.  相似文献   

2.
Carotenoids of 47 species of insects belonging to Hemiptera, including 16 species of Sternorrhyncha (aphids and a whitefly), 11 species of Auchenorrhyncha (planthoppers, leafhoppers, and cicadas), and 20 species of Heteroptera (stink bugs, assassin bugs, water striders, water scorpions, water bugs, and backswimmers), were investigated from the viewpoints of chemo-systematic and chemical ecology. In aphids, carotenoids belonging to the torulene biosynthetic pathway such as β-zeacarotene, β,ψ-carotene, and torulene, and carotenoids with a γ-end group such as β,γ-carotene and γ,γ-carotene were identified. Carotenoids belonging the torulene biosynthetic pathway and with a γ-end group were also present in water striders. On the other hand, β-carotene, β-cryptoxanthin, and lutein, which originated from dietary plants, were present in both stink bugs and leafhoppers. Assassin bugs also accumulated carotenoids from dietary insects. Trace amounts of carotenoids were detected in cicadas. Carotenoids of insects belonging to Hemiptera well-reflect their ecological life histories.  相似文献   

3.
The presence of 27 carotenoids was determined in the Pteridophyta. The carotenoids characteristic of club-moss and horsetail species are β-carotene, β-cryptoxanthin, lutein epoxide and zeaxanthin, and fern species are β-cryptoxanthin, lutein epoxide, zeaxanthin, violaxanthin and rhodoxanthin.  相似文献   

4.
Among three species, Gossypium hirsutum, Rhizophora mangle, and Monstera deliciosa, which were transferred from low to high growth PFD, only small decreases in the efficiency of photochemical energy conversion were observed in those plants which exhibited an increase in photosynthetic capacity. Leaves of plants which showed no increase in photosynthetic capacity experienced a continuous decrease in photochemical efficiency, accompanied by a more pronounced loss of chlorophyll than that observed in the former group. In all species marked increases in the xanthophyll/β-carotene ratio resulted from small increases in lutein, and several-fold increases in the sum of the three components of the xanthophyll cycle, zeaxanthin, antheraxanthin, and violaxanthin. A strong increase in the level of zeaxanthin was only partially matched by a decrease of violaxanthin to zero, and was further paralleled by a decrease in β-carotene. Antiparallel changes in the sum of zeaxanthin + antheraxanthin + violaxanthin and β-carotene between morning and evening were observed in all species. These diel changes were overlaid on a net increase in β-carotene as well as total carotenoid content in those plants in which photosynthetic capacity increased. In those, however, which exhibited no photosynthetic acclimation upon transfer to high light, a decrease in both β-carotene and total carotenoid content was observed. Rhizophora mangle grown at 100 % seawater exhibited a particularly high capacity for increasing the level of zeaxanthin in response to high light.  相似文献   

5.
Zhu L  Wu X  Li O  Qian C  Gao H 《PloS one》2012,7(4):e35099
Most Sphingomonas species synthesize the yellow carotenoid nostoxanthin. However, the carotenoid biosynthetic pathway of these species remains unclear. In this study, we cloned and characterized a carotenoid biosynthesis gene cluster containing four carotenogenic genes (crtG, crtY, crtI and crtB) and a β-carotene hydroxylase gene (crtZ) located outside the cluster, from the gellan-gum producing bacterium Sphingomonas elodea ATCC 31461. Each of these genes was inactivated, and the biochemical function of each gene was confirmed based on chromatographic and spectroscopic analysis of the intermediates accumulated in the knockout mutants. Moreover, the crtG gene encoding the 2,2'-β-hydroxylase and the crtZ gene encoding the β-carotene hydroxylase, both responsible for hydroxylation of β-carotene, were confirmed by complementation studies using Escherichia coli producing different carotenoids. Expression of crtG in zeaxanthin and β-carotene accumulating E. coli cells resulted in the formation of nostoxanthin and 2,2'-dihydroxy-β-carotene, respectively. Based on these results, a biochemical pathway for synthesis of nostoxanthin in S. elodea ATCC 31461 is proposed.  相似文献   

6.
Dunaliella bardawil Ben-Amotz & Avron, but not most other Dunaliella species, has a unique property of being able to accumulate, in addition to glycerol, large amounts of β-carotene when cultivated under appropriate conditions. These include high light intensity, a high sodium chloride concentration, nitrate deficiency and extreme temperatures. Under conditions of maximal carotene accumulation D. bardawil contains at least 8% of its dry weight as β-carotene while D. salina grown under similar conditions contains only about 0.3%. Electron micrographs of D. bardawil grown under conditions of high β-carotene accumulation show many β-carotene containing globules located in the interthylakoid spaces of the chloroplast. The same algae grown under conditions where β-carotene does not accumulate, contain few to no β-carotene globules. The β-carotene-rich globules were released from the algae into an aqueous medium by a two-stage osmotic shock technique and further purified by centrifugal ion on 10% sucrose. The isolated purified globules were shown by electron microscopy to be free of significant contamination and composed of membrane-free osmiophilic droplets with an average diameter of 150 nm. Reversed phase high performance liquid chromatography of a total pigment extract of the cells revealed the presence of β-carotene as the major pigment, together with chlorophylls a and b, α-carotene and the xanthophylls lutein, neoxauthin and zeaxanthin. β-Carotene accounted for essentially all the pigment in the purified globules. Analysis of the algal and globule β-carotene fractions by HPLC showed that the β-carotene was composed of approximately equal amounts of all-trans β-carotene and of its 9-cis isomer. Intact D. bardawil cells contained on a dry weight basis about 30% glycerol, 30% protein, 18% lipid, 11% carbohydrate, 9%β-carotene and 1% chlorophyll. The β-carotene globules were composed of practically only neutral lipids, more than half of which was β-carotene. It is suggested that the β-carotene globules may serve to protect D. bardawil against injury by the high intensity irradiation to which this alga is usually exposed in nature.  相似文献   

7.
To determine the vitamins A, C, and E and β-carotene content of Vicia species that can be used in animal feed, a high performance liquid chromatography (HPLC) method was used to investigate the vitamin and β-carotene content in mature and immature seeds of seven Vicia species (Vicia anatolica Turrill., V. ervilia (L.) Willd., V. michauxii Sprengel, V. mollis Boiss. et Hausskn. ex Boiss., V. noeana Reuter ex Boiss., V. peregrina L., and V. sericocarpa Fenzl.), which are useful plants in animal feed in the eastern Anatolia region in Turkey. The vitamin content was found to differ between mature and immature seeds. The levels of vitamins A, C, and E and β-carotene were higher in mature seeds than in immature seeds (P < 0.01).  相似文献   

8.
CPTA and cycocel cause accumulation of lycopene and γ-carotene, simultaneously inhibiting the formation of β-carotene and β-zeacarotene in Phycomyces blakesleeanus mutant strain C115. Phytoene synthesis is enhanced. CPTA is more effective than cycocel. Kinetic studies show that with increasing concentrations of CPTA, lycopene and γ-carotene increase with the concomitant decrease in β-carotene, the total of these three carotenes being almost equal to β-carotene present in the control. When CPTA-treated mycelium is washed free of the chemical and resuspended in phosphate buffer solution containing 2·5% glucose (pH 5·6), β-carotene is formed at the expense of both γ-carotene and lycopene. β-Zeacarotene, which is not present in the mycelium, reappears upon resuspension. These results indicate that CPTA is inhibiting the enzymes causing cyclization both at neurosporene and lycopene levels. Studies on the effect of CPTA on the high lycopene mutant strain C9 reveal that with increasing concentrations of the compound, lycopene increases slightly and both β-carotene and γ-carotene decrease. Phytoene synthesis is stimulated up to a certain level of CPTA and then becomes steady. In the albino mutant strain C5, there is a slight increase in phytoene formation on the addition of CPTA to the medium. No other carotenoid is formed, suggesting that CPTA cannot remove the block caused by genetic mutation and exerts its influence in an already existing biosynthetic pathway.  相似文献   

9.
10.
Pyridine, imidazole and some of their derivatives stimulate lycopene and γ-carotene synthesis-simultaneously inhibiting β-carotene formation in Phycomyces blakesleeanus Strain C115. Isonicotinoly-hydrazine has a toxic effect on Strains C9 and C115 and 1-methylimidazole on Strain C115 in the concentrations of 1 g/l. Compounds which cause an accumulation of lycopene and γ-carotene usually cause an increase in phytoene synthesis and the disappearance of β-zeacarotene. The effect of succinimide, 4-hydroxypyridine, and isonicotinoylhydrazine on Strain C9 has also been studied. When β-picoline and 2-methylimidazole treated C115 mycelia were washed and resuspended in phosphate buffer at pH 5·6 β-zeacarotene reappeared and β-carotene increased with the simultaneous decrease in lycopene and γ-carotene. The sum of β-carotene, γ-carotene up to 3days of resuspension was almost equal to the total of these at zero time. These results show that the inhibitory action of these compounds is on the enzymes responsible for cyclization of acyclic carotenes. This inhibition varies with the nature of the substituent on the heterocyclic ring and pyridine derivatives having pKa values of 6 ± 1 show the greatest degree of inhibition.  相似文献   

11.
ATP and NADPH are two important cofactors for production of terpenoids compounds. Here we have constructed and optimized β-carotene synthetic pathway in Escherichia coli, followed by engineering central metabolic modules to increase ATP and NADPH supplies for improving β-carotene production. The whole β-carotene synthetic pathway was divided into five modules. Engineering MEP module resulted in 3.5-fold increase of β-carotene yield, while engineering β-carotene synthesis module resulted in another 3.4-fold increase. The best β-carotene yield increased 21%, 17% and 39% after modulating single gene of ATP synthesis, pentose phosphate and TCA modules, respectively. Combined engineering of TCA and PPP modules had a synergistic effect on improving β-carotene yield, leading to 64% increase of β-carotene yield over a high producing parental strain. Fed-batch fermentation of the best strain CAR005 was performed, which produced 2.1 g/L β-carotene with a yield of 60 mg/g DCW.  相似文献   

12.
The formation, stability and in vitro digestion of milk fat globule membrane (MFGM) proteins stabilized emulsions with 0.2 wt% β-carotene were investigated. The average particle size of β-carotene emulsions stabilized with various MFGM proteins levels (1%, 2%, 3%, 4%, 5% wt%) decreased with the increase of MFGM proteins levels. When MFGM proteins concentration in emulsions is above 2%, the average particle size of β-carotene emulsions is below 1.0 μm. A quite stable emulsion was formed at pH 6.0 and 7.0, but particle size increased with decrease in acidity of the β-carotene emulsion. β-carotene emulsions stabilized with MFGM proteins were stable with a certain salt concentrations (0–500 mMNaCl). β-carotene emulsions were quite stable to aggregation of the particles at elevated temperature and time (85 °C for 90 min). At the same time, β-carotene emulsions were stable against degradation under heat treatment conditions. In vitro digestion of β-carotene emulsion showed the mean particle size of β-carotene emulsions stabilized with MFGM proteins in the simulated stomach conditions and intestinal conditions is larger than that of initial emulsions and simulated mouth conditions. Confocal laser scanning microscopy of β-carotene MFGM proteins emulsions also showed the corresponding results to different vitro digestion model. There was a rapid release of free fatty acid (FFA) during the first 10 min and after this period, an almost constant 70% digestion extent was reached. Approximately 80% of β-carotene was released within 2 h of incubation under the simulated intestinal fluid. These results showed that MFGM protein can be used as a good emulsifier in emulsion stabilization, β-carotene rapid release as well as lipophilic bioactive compounds delivery.  相似文献   

13.
In order to investigate the antioxidant effect of β-carotene in vivo, phospholipid hydroperoxides and β-carotene isomers in red blood cells (RBC), plasma and tissue organelles were quantitatively measured after the oral administration of β-carotene (94.8% all-trans-β-carotene) to mice. Three groups of 24 mice each were fed for 1 week on a semisynthetic diet supplemented with either 0.6% or 3.0% β-carotene/diet or maintained on a control (β-carotene-unsupplemented) diet. The RBC phospholipid hydroperoxides showed a significant decrease followed by an increase of β-carotene intakes; i.e., 201, 16 and 4 pmol of phosphatidylcholine hydroperoxide/ml packed RBC, and 108, 22 and 8 pmol of phosphatidylethanolamine hydroperoxide/ml packed RBC, in the mice given the control diet, 0.6% carotene diet and 3.0% carotene diet, respectively. The RBC β-carotene increased from 14 to 43 pmol/ml packed RBC as followed by the increase of β-carotene intakes. Such a potent antioxidant effect of β-carotene as observed in RBC was not confirmed in the plasma, liver or lungs, although their β-carotene contents increased. The β-carotene ingestion increased the all-trans-β-carotene d and retinol contents in RBC, plasma, liver and lungs, but the α-tocopherol content decreased. In the β-carotene-supplemented (6 g and 30 g/kg diet) mice, cis-β-carotene content was relatively higher in the RBC (25–35% of total β-carotene) than that in plasma, liver and lungs. The present findings indicate that not only does β-carotene act as a potent antioxidant in vivo but also its antioxidant effect is very specific in the RBC phospholipid bilayers rather than in the plasma and other tissue organelles.  相似文献   

14.
We investigated the antioxidant activity of supramolecular water-soluble fullerenes, polyvinylpyrrolidone (PVP)-entrapped C60, and γ-cyclodextrin (CD)-bicapped C60, based on comparable β-carotene bleaching assay. Antioxidant activity against reactive oxygen species (ROS) generated by three different methods, (i) autoxidation of linoleic acid, (ii) hydrogen peroxide promoter, and (iii) photoirradiation, was evaluated as percent of inhibition relative to a control experiment in view of the bleaching rate constant (k obs) as well as the persistent absorbancy of β-carotene. Water-soluble fullerenes exhibit significant inhibitory effects on the oxidative discoloration of β-carotene in any system.  相似文献   

15.
Journal of Industrial Microbiology & Biotechnology - In natural produced bacteria, β-carotene hydroxylase (CrtZ) and β-carotene ketolase (CrtW) convert β-carotene into...  相似文献   

16.
Metabolic engineering of ketocarotenoid biosynthesis in higher plants   总被引:1,自引:0,他引:1  
Ketocarotenoids such as astaxanthin and canthaxanthin have important applications in the nutraceutical, cosmetic, food and feed industries. Astaxanthin is derived from β-carotene by 3-hydroxylation and 4-ketolation at both ionone end groups. These reactions are catalyzed by β-carotene hydroxylase and β-carotene ketolase, respectively. The hydroxylation reaction is widespread in higher plants, but ketolation is restricted to a few bacteria, fungi, and some unicellular green algae. The recent cloning and characterization of β-carotene ketolase genes in conjunction with the development of effective co-transformation strategies permitting facile co-integration of multiple transgenes in target plants provided essential resources and tools to produce ketocarotenoids in planta by genetic engineering. In this review, we discuss ketocarotenoid biosynthesis in general, and characteristics and functional properties of β-carotene ketolases in particular. We also describe examples of ketocarotenoid engineering in plants and we conclude by discussing strategies to efficiently convert β-carotene to astaxanthin in transgenic plants.  相似文献   

17.
We describe a procedure for the selection of β-carotenerich mutants of the halotolerant alga Dunaliella bardawil Ben-Amotz & Avron. Under normal growth conditions the isolated mutants had a several-fold higher content of β-carotene than the wild type. Under carotene-induction conditions, the mutants also possessed a higher β-carotene content than the wild type. Both the production rate of phytoene and the conversion rate of phytoene to lycopene and β-carotene were accelerated in the mutants. Cycloheximide, which (in the wild type) inhibits the inductive synthesis of the proteins required for β-carotene production, had a much smaller effect on β-carotene biosynthesis in the mutants. We suggest that the mutants are affected in the regulatory path, which controls the induction of high β-carotene production in Dunaliella.  相似文献   

18.
19.
The research carried out by several scientists has made possible the industrial preparation of β-carotene by fermentation. A fungus, Blakeslea trispora, abundantly synthesizes carotenoids when its two opposite forms are cultivated together in a special fatty medium. When ionones or other natural substances are introduced into the culture, a very obvious increase in the biosynthesis of carotenoids, more specifically of β-carotene, is obtained. Our own work has shown that; (1) several synthetic products chemically related to β-ionone, such as 2,6,6-trimethyl-l-acetyleyelohexene, can advantageously replace either partially or totally the ionones as inductors of the biosysnthesis of β-carotene; (2) various nitrogen-containing substances when added to the culture medium can considerably enhance the biosysnthesis of carotenoids while sometimes very specically orienting it. Their action comes on top of that of the ionones or their substitutes; actually this action is unexplained. Thus certain amides, imides, lactams, hydrazides, or substituted pyradines, and in particular succinimide and isonicotinoylhydrazine, have produced a two or threefold increase in the quantity of β-carotene present in the culture media of Blackeslea trispora. Conversely some heterocyclic substances such as pyridine itself or imidazole totally inhibit the biosysnthesis of β-carotene but induce the production of very important quantities of lycopene.  相似文献   

20.
Dunaliella bardawil Ben-Amotz & Avron, a β-carotene-accumulating halotolerant alga, was analyzed for the effect of growth temperatures on its pigment content and on the stereoisomeric composition of β-carotene by the use of advanced liquid chromatography and photodiode array detection. Decreasing culture temperature from 30° to 10°C increased the β-carotene content twofold and the ratio of 9-cis to all-trans β-carotene fourfold, with no significant changes in the other cell pigments. The variation of total β-carotene content by temperature was correlated with the integral irradiance received by the algal culture during a cell division cycle, whereas the 9-cis stereoisomer increased over the amount expected by that integration. The massive accumulation of 9-cisβ-carotene within the β-carotene globules is interpreted as indicating that the oily 9-cis stereoisomer protects against the crystallization of all-trans β-carotene at low temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号