首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
To determine the rat PRL (rPRL) promoter sequences that mediate pituitary-specific and cAMP-induced gene expression in vivo, various lengths of the rPRL promoter were ligated to the luciferase reporter gene and introduced into pituitary and non-pituitary cell lines. A 30-fold increase in rPRL promoter activity was observed in GH4 rat pituitary tumor cells compared to nonpituitary Rat2 fibroblast and HeLa cervical carcinoma cells. About 45% of this cell-specific promoter activity was competed by a plasmid containing the -67 to -45 rPRL promoter region, which is the most proximal binding site for a lactotroph-specific factor. Compared to a -425 rPRL construct, transfection with rPRL 5'-end points of -212, -178, and -127 contained 23%, 45%, and 1%, respectively, of luciferase activity. Forskolin stimulation resulted in a 10-fold induction of all the rPRL promoter fragments tested. Of note, a -127 deletion which was devoid of any basal promoter activity was also induced 10-fold by forskolin. The forskolin effect was abolished when GH4 rat pituitary cells were cotransfected with a plasmid encoding a protein kinase A inhibitor, indicating protein kinase A is involved in the activation mechanism. These data document that both positive and negative effectors influence basal rPRL promoter activity. Furthermore, the minimum sequences required for pituitary-specific rPRL promoter activity are altered by intracellular cAMP levels. Taken together, the data indicate that hormone-activated and cell-specific factors may interact to establish a particular setpoint for rPRL gene expression.  相似文献   

3.
Expression of PRL, a member of the GH family of genes, is restricted to the lactotroph cells of the anterior pituitary. The proximal promoter of the rat PRL (rPRL) gene contains four factor-binding sites. Three nonadjacent elements, footprints (FP) I, III, and IV, are separated by an integral number of helical turns and bind a pituitary-specific factor, LSF-1. FP II binds another factor present in pituitary and nonpituitary cells. The mechanisms by which DNA-bound proteins influence RNA polymerase-II activity over large distances are not fully understood, but protein-protein interactions, with looping of intervening DNA, may bring distant sites into close proximity. Here, we demonstrate, using protein titration studies, that LSF-1 binds to the most proximal FP I element with the highest affinity, whereas it binds the more distal elements, FP III and FP IV, with progressively lower affinities. Time-course and salt-sensitivity studies reveal that binding of LSF-1 to all three pituitary-specific rPRL promoter sites occurs rapidly (less than or equal to 1 min) and requires fairly high salt concentrations (greater than or equal to 300 mM KCl) to destabilize protein-DNA interactions. Moreover, once bound, the pituitary nuclear factor(s) induces a conformational change in rPRL DNA structure with greatly delayed kinetics (greater than 15 min) and at a different salt concentration than are required for simply factor binding. Taken together, these data suggest a model in which LSF-1 initially binds fairly rapidly to multiple nonadjacent elements and then interacts with itself or other DNA-bound proteins much more slowly, possibly looping or bending the rPRL promoter.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
5.
6.
Rat (rGH) is expressed exclusively in cells from the anterior lobe of the pituitary gland. Using DNAsel footprinting assays, we have examined both pituitary and nonpituitary cell nuclear extracts for proteins which bind specifically to the rGH promoter and 5'-flanking region. In agreement with previous studies, we have located binding sites between -96 and -65, and between -148 and -118 for proteins which have been termed GC1 and GC2, respectively. The GC2 footprint is found using extracts from both pituitary and nonpituitary cells, but GC1 is observed only in pituitary cells. We have also located a binding site for an additional pituitary-specific protein upstream from the GC1 binding site, between -241 and -220. The footprint for this protein, which we call GC3, is found with pituitary extracts, but not with extracts from nine other nonpituitary cell types. Although this pattern of activity is similar to that of GC1, competition experiments with synthetic oligonucleotides show that the two proteins are distinct. Deletion of the GC3 binding site has only a small effect on rGH promoter activity in transiently transfected pituitary cells and fibroblasts.  相似文献   

7.
8.
Pituitary thyrotroph cells specialize in the synthesis of TSH, and thus represent a model to study cell-specific gene expression. We have used the murine TSH beta (mTSH beta) gene promoter and TSH-producing and nonproducing transplantable tumors derived from murine thyrotroph cells, referred to as TtT-97 and MGH 101A, respectively, to identify nuclear factors which selectively interact with the mTSH beta gene. DNase I protection analyses demonstrate that factors present in TtT-97 nuclear extracts bind with high affinity to five separate sites in the TSH beta promoter region, denoted as distal D1 (-253 to -227) and proximal, P1 (-76 to -68), P2 (-106 to -98), P3 (-126 to -112), and P4 (-142 to -131) footprints. By contrast, non-TSH beta expressing thyrotroph cell nuclear extracts and L-cell nonpituitary cell extracts did not appear to footprint the D1 site; whereas the nonpituitary nuclear extracts revealed minimal DNase I protection in the P1-P4 regions. These data show that the distal D1 site is thyrotroph specific and contains a 6 base pair direct repeat sequence (5'-AGATAT-3'). Factor occupancy of the D1 site is protein dependent, occurs rapidly (less than 15 sec), is destabilized by 170 mM KCl, and results in an associated DNase I hypersensitive region. A double-stranded oligonucleotide spanning the D1 footprint competes only the distal factor binding region. Transfection of plasmid constructs containing progressive 5'-deletions of the mTSH beta promoter linked to the reporter gene luciferase into primary TtT-97 cells demonstrate a marked decrease in activity between the regions -270 and -79, which contains the D1 region.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
Regulation of the mitogen-activated protein kinase (MAPK) family by prolactin-releasing peptide (PrRP) in both GH3 rat pituitary tumor cells and primary cultures of rat anterior pituitary cells was investigated. PrRP rapidly and transiently activated extracellular signal-regulated protein kinase (ERK) in both types of cells. Both pertussis toxin, which inactivates G(i)/G(o) proteins, and exogenous expression of a peptide derived from the carboxyl terminus of the beta-adrenergic receptor kinase I, which specifically blocks signaling mediated by the betagamma subunits of G proteins, completely blocked the PrRP-induced ERK activation, suggesting the involvement of G(i)/G(o) proteins in the PrRP-induced ERK activation. Down-regulation of cellular protein kinase C did not significantly inhibit the PrRP-induced ERK activation, suggesting that a protein kinase C-independent pathway is mainly involved. PrRP-induced ERK activation was not dependent on either extracellular Ca(2+) or intracellular Ca(2+). However, the ERK cascade was not the only route by which PrRP communicated with the nucleus. JNK was also shown to be significantly activated in response to PrRP. JNK activation in response to PrRP was slower than ERK activation. Moreover, to determine whether a MAPK family cascade regulates rat prolactin (rPRL) promoter activity, we transfected the intact rPRL promoter ligated to the firefly luciferase reporter gene into GH3 cells. PrRP activated the rPRL promoter activity in a time-dependent manner. Co-transfection with a catalytically inactive form of a MAPK construct or a dominant negative JNK, partially but significantly inhibited the induction of the rPRL promoter by PrRP. Furthermore, co-transfection with a dominant negative Ets completely abolished the response of the rPRL promoter to PrRP. These results suggest that PrRP differentially activates ERK and JNK, and both cascades are necessary to elicit rPRL promoter activity in an Ets-dependent mechanism.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号