首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 649 毫秒
1.
2.
This study reports some of the modifications in dopaminergic signalling that accompany cocaine and morphine behavioural sensitization. Cocaine-sensitized rats showed increased phosphorylation of dopamine- and cyclic AMP-regulated phosphoprotein Mr 32 kDa (DARPP-32) at threonine-75 (Thr75) and decreased DARPP-32 phosphorylation at Thr34, in the caudate-putamen (CPu) and nucleus accumbens (NAc) 7 days after sensitization assessment. Conversely, in morphine-sensitized rats, no apparent modifications in DARPP-32 phosphorylation pattern were observed. Morphine-sensitized rats have increased binding and coupling of micro -opioid receptors and increased dopaminergic transmission in striatal areas and, upon morphine challenge, exhibit dopamine D1 receptor-dependent stereotypies. Thus, the DARPP-32 phosphorylation pattern was studied in morphine-sensitized rats at different times after morphine challenge. Morphine challenge increased levels of phospho-Thr75 DARPP-32 and decreased levels of phospho-Thr34 DARPP-32 in a time-dependent manner in the CPu and NAc. In order to assess whether these modifications were related to modified cyclic AMP-dependent protein kinase (PKA) activity, the phosphorylation levels of two other PKA substrates were examined, the GluR1 and NR1 subunits of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate and NMDA receptors respectively. The phosphorylation levels of GluR1 and NR1 subunits decreased in parallel with those of phospho-Thr-34 DARPP-32, supporting the hypothesis that morphine challenge elicited a decrease in PKA activity in morphine-sensitized rats.  相似文献   

3.
4.
In the striatum, stimulation of dopamine D2 receptors results in attenuation of glutamate responses. This effect is exerted in large part via negative regulation of AMPA glutamate receptors. Phosphorylation of the GluR1 subunit of the AMPA receptor has been proposed to play a critical role in the modulation of glutamate transmission, in striatal medium spiny neurons. Here, we have examined the effects of blockade of dopamine D2-like receptors on the phosphorylation of GluR1 at the cAMP-dependent protein kinase (PKA) site, Ser845, and at the protein kinase C and calcium/calmodulin-dependent protein kinase II site, Ser831. Administration of haloperidol, an antipsychotic drug with dopamine D2 receptor antagonistic properties, increases the phosphorylation of GluR1 at Ser845, without affecting phosphorylation at Ser831. The same effect is observed using eticlopride, a selective dopamine D2 receptor antagonist. In contrast, administration of the dopamine D2-like agonist, quinpirole, decreases GluR1 phosphorylation at Ser845. The increase in Ser845 phosphorylation produced by haloperidol is abolished in dopamine- and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32) knockout mice, or in mice in which the PKA phosphorylation site on DARPP-32 (i.e. Thr34) has been mutated (Thr34-->Ala mutant mice), and requires tonic activation of adenosine A2A receptors. These results demonstrate that dopamine D2 antagonists increase GluR1 phosphorylation at Ser845 by removing the inhibitory tone exerted by dopamine D2 receptors on the PKA/DARPP-32 cascade.  相似文献   

5.
6.
7.
8.
It is well known that dopamine imbalances are associated with many psychiatric disorders and that the dopaminergic receptor D2 is the main target of antipsychotics. Recently it was shown that levels of two proteins implicated in dopaminergic signaling, Neuronal calcium sensor-1 (NCS-1) and DARPP-32, are altered in the prefrontal cortex (PFC) of both schizophrenic and bipolar disorder patients. NCS-1, which inhibits D2 internalization, is upregulated in the PFC of both patients. DARPP-32, which is a downstream effector of dopamine signaling, integrates the pathways of several neurotransmitters and is downregulated in the PFC of both patients. Here, we used PC12 cells stably overexpressing NCS-1 (PC12-NCS-1 cells) to address the function of this protein in DARPP-32 signaling pathway in vitro. PC12-NCS-1 cells displayed downregulation of the cAMP/PKA pathway, with decreased levels of cAMP and phosphorylation of CREB at Ser133. We also observed decreased levels of total and phosphorylated DARPP-32 at Thr34. However, these cells did not show alterations in the levels of D2 and phosphorylation of DARPP-32 at Thr75. These results indicate that NCS-1 modulates PKA/cAMP signaling pathway. Identification of the cellular mechanisms linking NCS-1 and DARPP-32 may help in the understanding the signaling machinery with potential to be turned into targets for the treatment of schizophrenia and other debilitating psychiatric disorders.  相似文献   

9.
Glutamate receptors in mesolimbic areas such as the nucleus accumbens, ventral tegmental area, prefrontal cortex (PFC), and hippocampus (HIP) are a component of the mechanisms of drug-induced reward and can modulate the firing pattern of dopaminergic neurons in the reward system. In addition, several lines of study have indicated that cAMP response element-binding protein (CREB) and c-fos have important role in morphine-induced conditioned place preference (CPP) induced by drugs of abuse, such as morphine, cocaine, nicotine, and alcohol. Therefore, in the present study, we investigated the changes in phosphorylated CREB (p-CREB) and c-fos induction within the nucleus accumbens (NAc), HIP, and PFC after intracerebroventricular (ICV) administration of different doses of CNQX or vehicle during extinction period or reinstatement of morphine-induced CPP. In all groups, the CPP procedure was done; afterward, the conditioning scores were recorded by Ethovision software. After behavioral test recording, we dissected out the NAc, HIP, and PFC regions and measured the p-CREB/CREB ratio and c-fos level by Western blot analysis. Our results showed that administration of CNQX significantly shortened the extinction of morphine CPP. Besides, ICV microinjection of CNQX following extinction period decreased the reinstatement of morphine CPP in extinguished rats. In molecular section, in treatment group, all mentioned factors were dose-dependently decreased in comparison with vehicle group (DMSO) after ICV microinjection of different doses of CNQX but not in pre-extinction microinjection. These findings suggested that antagonism of AMPA receptor decreased p-CREB/CREB ratio and c-fos level in the PFC, NAc, and HIP. Modulation of the drug memory reconsolidation may be useful for faster extinction of drug-induced reward and attenuation of drug-seeking behavior.  相似文献   

10.
Miller CA  Marshall JF 《Neuron》2005,47(6):873-884
Relapse into drug taking among addicts often depends on learned associations between drug-paired cues and the rewarding effects of these drugs, such as cocaine (COC). Memory for drug-paired cues resists extinction and contributes to the high rate of relapse; however, the molecular mechanisms underlying these associations are not understood. We show that COC-conditioned place preference (CPP) activates ERK, CREB, Elk-1, and Fos in the nucleus accumbens core (AcbC) but not shell. Intra-AcbC infusions of U0126, an inhibitor of the ERK kinase MEK, prevent both the activation of ERK, CREB, Elk-1, and Fos and retrieval of COC-CPP. When tested again 24 hr or 14 days after intra-AcbC infusions of U0126 or another MEK inhibitor, PD98059, CPP retrieval and concomitant protein activation were significantly attenuated. Together, these findings indicate the necessity of the AcbC ERK signaling pathway for drug-paired contextual cue memories and suggest that these strong memories can become susceptible to disruption by therapeutic agents.  相似文献   

11.
AMPA receptor (AMPAR) plasticity at glutamatergic synapses in the mesostriatal dopaminergic pathway has been implicated in persistent cocaine-induced behavioral responses; however, the precise mechanism underlying these changes remains unknown. Utilizing cocaine psychomotor sensitization in mice we find that repeated cocaine results in a basal reduction of Ser 845 GluA1 and cell surface GluA1 levels in the dorsal striatum (dStr) following a protracted withdrawal period, an adaptation that is dependent on Cav1.3 channels but not those expressed in the VTA. We find that the basally-induced decrease in this phosphoprotein is the result of recruitment of the striatal dopamine D2 pathway, as evidenced by enhanced levels of D2 receptor (D2R) mRNA expression and D2R function as examined using the D2R antagonist, eticlopride, as well as alterations in the phosphorylation status of several downstream molecular targets of D2R’s, including CREB, DARPP-32, Akt and GSK3β. Taken together with our recently published findings examining similar phenomena in the nucleus accumbens (NAc), these results underscore the utilization of divergent molecular mechanisms in the dStr, in mediating cocaine-induced persistent behavioral changes.  相似文献   

12.
AMPA receptor (AMPAR) plasticity at glutamatergic synapses in the mesostriatal dopaminergic pathway has been implicated in persistent cocaine-induced behavioral responses; however, the precise mechanism underlying these changes remains unknown. Utilizing cocaine psychomotor sensitization in mice we find that repeated cocaine results in a basal reduction of Ser 845 GluA1 and cell surface GluA1 levels in the dorsal striatum (dStr) following a protracted withdrawal period, an adaptation that is dependent on Cav1.3 channels but not those expressed in the VTA. We find that the basally-induced decrease in this phosphoprotein is the result of recruitment of the striatal dopamine D2 pathway, as evidenced by enhanced levels of D2 receptor (D2R) mRNA expression and D2R function as examined using the D2R antagonist, eticlopride, as well as alterations in the phosphorylation status of several downstream molecular targets of D2R’s, including CREB, DARPP-32, Akt and GSK3β. Taken together with our recently published findings examining similar phenomena in the nucleus accumbens (NAc), these results underscore the utilization of divergent molecular mechanisms in the dStr, in mediating cocaine-induced persistent behavioral changes.  相似文献   

13.
Cyclin-dependent kinase 5 (Cdk5) is emerging as a neuronal protein kinase involved in multiple aspects of neurotransmission in both post- and presynaptic compartments. Within the reward/motor circuitry of the basal ganglia, Cdk5 regulates dopamine neurotransmission via phosphorylation of the postsynaptic signal transduction pathway integrator, DARPP-32 (dopamine- and cyclic AMP-regulated phosphoprotein, M(r) 32,000). Cdk5 has also been implicated in regulating various steps in the presynaptic vesicle cycle. Here we report that Cdk5 phosphorylates tyrosine hydroxylase (TH), the key enzyme for synthesis of dopamine. Using phosphopeptide mapping, site-directed mutagenesis, and phosphorylation state-specific antibodies, the site was identified as Ser31, a previously defined extracellular signal-regulated kinases 1/2 (ERK1/2) site. The phosphorylation of Ser31 by Cdk5 versus ERK1/2 was investigated in intact mouse striatal tissue using a pharmacological approach. The results indicated that Cdk5 phosphorylates TH directly and also regulates ERK1/2-dependent phosphorylation of TH through the phosphorylation of mitogen-activated protein kinase kinase 1 (MEK1). Finally, phospho-Ser31 TH levels were increased in dopaminergic neurons of rats trained to chronically self-administer cocaine. These results demonstrate direct and indirect regulation of the phosphorylation state of a Cdk5/ERK1/2 site on TH and suggest a role for these pathways in the neuroadaptive changes associated with chronic cocaine exposure.  相似文献   

14.
Methylphenidate (MPH), a dopamine uptake inhibitor, is the most commonly prescribed drug for the treatment of attention-deficit/hyperactivity disorder (ADHD) in children. We examined the effect of MPH on dopamine- and cAMP-regulated phosphoprotein, Mr 32 kDa (DARPP-32) phosphorylation at Thr34 (PKA-site) and Thr75 (Cdk5-site) using neostriatal slices from young (14-15- and 21-22-day-old) and adult (6-8-week-old) mice. MPH increased DARPP-32 Thr34 phosphorylation and decreased Thr75 phosphorylation in slices from adult mice. The effect of MPH was blocked by a dopamine D1 antagonist, SCH23390. In slices from young mice, MPH did not affect DARPP-32 phosphorylation. As with MPH, cocaine stimulated DARPP-32 Thr34 phosphorylation in slices from adult, but not from young mice. In contrast, a dopamine D1 agonist, SKF81297, regulated DARPP-32 phosphorylation comparably in slices from young and adult mice, as did methamphetamine, a dopamine releaser. The results suggest that dopamine synthesis and the dopamine transporter are functional at dopaminergic terminals in young mice. In contrast, the lack of effect of MPH in young mice is likely attributable to immature development of the machinery that regulates vesicular dopamine release.  相似文献   

15.
Neurotensin modulates dopaminergic transmission in the nigrostriatal system. DARPP-32, a dopamine- and cAMP-regulated phosphoprotein of Mr 32 kDa, is phosphorylated on Thr34 by cAMP-dependent protein kinase, resulting in its conversion into a potent inhibitor of protein phosphatase-1 (PP 1). Here, we examined the effect of neurotensin on DARPP-32 Thr34 phosphorylation using mouse neostriatal slices. Neurotensin stimulated DARPP-32 Thr34 phosphorylation by 4-7-fold with a K(0.5) of approximately 50 nM. The effect of neurotensin was antagonized by a combined neurotensin receptor type-1 (NTR1)/type-2 (NTR2) antagonist, SR142948. It was not antagonized by a NTR1 antagonist, SR48692 or by a NTR2 antagonist, levocabastine; neither was it antagonized by the two combined. Pretreatment with TTX or cobalt abolished the effect of neurotensin. The effect of neurotensin was antagonized by a dopamine D1 antagonist, SCH23390, and by ionotropic glutamate receptor antagonists, MK801 and CNQX. These results indicate that neurotensin stimulates the release of dopamine from nigrostriatal presynaptic terminals in an NMDA receptor- and AMPA receptor-dependent manner, leading to the increase in DARPP-32 Thr34 phosphorylation. Neurotensin stimulated the phosphorylation of Ser845 of the AMPA receptor GluR1 subunit in wild-type mice but not in DARPP-32 knockout mice. Thus, neurotensin, by stimulating the release of dopamine, activates the dopamine D1-receptor/cAMP/PKA/DARPP-32/PP 1 cascade.  相似文献   

16.
Abundant evidence points to a key role of dopamine in motor skill learning, although the underlying cellular and molecular mechanisms are still poorly understood. Here, we used a skilled-reaching paradigm to first examine changes in the expression of the plasticity-related gene Arc to map activity in cortico-striatal circuitry during different phases of motor skill learning in young animals. In the early phase, Arc mRNA was significantly induced in the medial prefrontal cortex (mPFC), cingulate cortex, primary motor cortex, and striatum. In the late phase, expression of Arc did not change in most regions, except in the mPFC and dorsal striatum. In the second series of experiments, we studied the learning-induced changes in the phosphorylation state of dopamine and cAMP-regulated phosphoprotein, 32k Da (DARPP-32). Western blot analysis of the phosphorylation state of DARPP-32 and its downstream target cAMP response element-binding protein (CREB) in the striatum revealed that the early, but not late, phase of motor skill learning was associated with increased levels of phospho-Thr34-DARPP-32 and phospho-Ser133-CREB. Finally, we used the DARPP-32 knock-in mice with a point mutation in the Thr34 regulatory site (i.e., protein kinase A site) to test the significance of this pathway in motor skill learning. In accordance with our hypothesis, inhibition of DARPP-32 activity at the Thr34 regulatory site strongly attenuated the motor learning rate and skilled reaching performance of mice. These findings suggest that the cAMP/PKA/DARPP-32 signaling pathway is critically involved in the acquisition of novel motor skills, and also demonstrate a dynamic shift in the contribution of cortico-striatal circuitry during different phases of motor skill learning.  相似文献   

17.
Exposure to cocaine generates silent synapses in the nucleus accumbens (NAc), whose eventual unsilencing/maturation by recruitment of calcium‐permeable AMPA‐type glutamate receptors (CP‐AMPARs) after drug withdrawal results in profound remodeling of NAc neuro‐circuits. Silent synapse‐based NAc remodeling was shown to be critical for several drug‐induced behaviors, but its role in acquisition and retention of the association between drug rewarding effects and drug‐associated contexts has remained unclear. Here, we find that the postsynaptic proteins PSD‐93, PSD‐95, and SAP102 differentially regulate excitatory synapse properties in the NAc. Mice deficient for either of these scaffold proteins exhibit distinct maturation patterns of silent synapses and thus provided instructive animal models to examine the role of NAc silent synapse maturation in cocaine‐conditioned place preference (CPP). Wild‐type and knockout mice alike all acquired cocaine‐CPP and exhibited increased levels of silent synapses after drug‐context conditioning. However, the mice differed in CPP retention and CP‐AMPAR incorporation. Collectively, our results indicate that CP‐AMPAR‐mediated maturation of silent synapses in the NAc is a signature of drug–context association, but this maturation is not required for establishing or retaining cocaine‐CPP.  相似文献   

18.
OX2R activation induces PKC-mediated ERK and CREB phosphorylation   总被引:1,自引:0,他引:1  
Guo Y  Feng P 《Experimental cell research》2012,318(16):2004-2013
Deficiencies in brain orexins and components of mitogen activated protein kinase (MAPK) signaling pathway have been reported in either human depression or animal model of depression. Brain administration of orexins affects behaviors toward improvement of depressive symptoms. However, the documentation of endogenous linkage between orexin receptor activation and MAPK signaling pathway remains to be insufficient. In this study, we report the effects of orexin 2 receptor (OX2R) activation on cell signaling in CHO cells over-expressing OX2R and in mouse hypothalamus cell line CLU172. Short-term extracellular signal-regulated kinase (ERK) phosphorylation and long-term cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) phosphorylation were subsequently observed in CHO cells that over-express OX2R while 20 min of ERK phosphorylation was significantly detected in mouse adult hypothalamus neuron cell line CLU172. Orexin A, which can also activate OX2R, mediated ERK phosphorylation was as the same as orexin B in CHO cells. A MAPK inhibitor eliminated ERK phosphorylation but not CREB phosphorylation in CHO cells. Also, ERK and CREB phosphorylation was not mediated by protein kinase A (PKA) or calmodulin kinase (CaMK). However, inhibition of protein kinase C (PKC) by GF 109203X eliminated the phosphorylation of ERK and CREB in CHO cells. A significant decrease in ERK and CREB phosphorylation was observed with 1 μM GF 109203X pre-treatment indicating that the conventional and novel isoforms of PKC are responsible for CREB phosphorylation after OX2R activation. In contrast, ERK phosphorylation induced by orexin B in CLU172 cells cannot be inhibited by 1 μM of protein kinase C inhibitor. From above observation we conclude that OX2R activation by orexin B induces ERK and CREB phosphorylation and orexin A played the same role as orexin B. Several isoforms of PKC may be involved in prolonged CREB phosphorylation. Orexin B induced ERK phosphorylation in mouse hypothalamus neuron cells differs from CHO cell line and cannot be inhibited by PKC inhibitor GF 109203X. And hypothalamus neuron cells may use different downsteam pathway for orexin B induced ERK phosphorylation. This result supports findings that orexins might have anti-depressive roles.  相似文献   

19.
Exposure within an environmental enrichment paradigm results in neurobiological adaptations and decreases the baseline of locomotor activity. The current study determined activation of DARPP-32 (dopamine- and cAMP-regulated phosphoprotein-32) and CREB (cAMP response element binding protein), and locomotor activity in rats raised in enriched (EC), impoverished (IC), and standard (SC) conditions following repeated administration of nicotine or saline. In the saline-control group, the basal phosphorylation state of DARPP-32 at Threonine-34 site (pDARPP-32 Thr34) in the prefrontal cortex (PFC) was lower in EC compared to IC and SC rats, which was positively correlated with their respective baseline activities. While nicotine (0.35 mg/kg, freebase) produced locomotor sensitization across all housing conditions when the nicotine-mediated locomotor activity was expressed as a percent change from their respective saline control, EC rats displayed greater sensitization to nicotine than IC and SC rats. Consistent with the behavioral findings, repeated nicotine injection increased pDARPP-32 Thr34 in PFC of EC and IC rats and in nucleus accumbens of EC rats; however, the magnitude of change from saline control in nicotine-induced enhancement of pDARPP-32 Thr34 in PFC was strikingly increased in EC rats relative to IC rats. Moreover, EC rats had lower basal phosphorylation levels of CREB at serine 133 in PFC and nucleus accumbens compared to IC and SC rats, whereas the nicotine-induced increase in phosphorylated CREB-Ser133 was more pronounced in PFC of EC rats relative to IC and SC rats. Collectively, these findings suggest innovative insights into advancing our understanding of the molecular mechanisms of enrichment-induced changes in the motivational effects of nicotine, and aiding in the identification of new therapeutic strategies for tobacco smokers.  相似文献   

20.
Walters CL  Cleck JN  Kuo YC  Blendy JA 《Neuron》2005,46(6):933-943
Environmental cues associated with nicotine delivery are an important part of the stimulus that sustains smoking behavior and is often coupled with craving and relapse; however, the neuronal circuitry and molecular substrates underlying this process are still poorly understood. Exposure to an environment previously associated with rewarding properties of nicotine results in an increase of CREB phosphorylation similar to that seen following nicotine administration, and this response is absent in MOR(-/-) mice. Moreover, a single administration of an opioid receptor antagonist, naloxone, blocks both the conditioned molecular response (CREB phosphorylation) and the conditioned behavioral response (nicotine reward) in a place preference paradigm. Lastly, repeated nicotine administration results in increased expression of MORs. However, this effect, along with rewarding properties of nicotine, is blocked in mice with a targeted disruption in the CREB gene. Together, pharmacologic and genetic manipulations indicate that phosphorylation of CREB and upregulation of functional MORs are required for nicotine-conditioned reward.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号