首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The whole-cell patch-clamp technique coupled with intracellular [Ca2+] measurements was used to investigate the sodium-calcium exchange mechanism in rat skeletal muscle cells in primary culture. Replacing external Na+ ions with Li+ or N-methyl-D-glucamine (NMDG+) ions generated outward currents which were correlated with significant increases of free cytosolic-calcium concentration. These results strongly argue for a functional Na+-Ca2+ exchange mechanism working in its reverse mode. Moreover, the outward currents were sensitive to the new compound KB-R7943 (10 microM), which has been shown to be a potent inhibitor of the sodium-calcium exchanger. Outward Na+-Ca2+ exchange current densities were reduced in the presence of external Li+ as compared to those measured in the presence of NMDG+. After replacing internal sodium by lithium ions, rapid changes of external lithium concentrations generated sarcolemmal currents which were accompanied by subsequent variations of intracellular calcium activity. The currents were dependent on extracellular Li+ with a half-maximal activation at 67 mM and a Hill coefficient of 2.9. This work shows that the Na+-Ca2+ exchanger is able to significantly influence the myoplasmic calcium concentration of cultured rat myotubes. On the other hand, our results suggest that Li+ ions may substitute Na+ ions to catalyse an electrogenic Li+/Ca2+ counter transport.  相似文献   

2.
Transverse tubule vesicles isolated from frog skeletal muscle display sodium-calcium exchange activity, which was characterized measuring 45Ca influx in vesicles incubated with sodium. The initial rates of exchange varied as a function of the membrane diffusion potentials imposed across the membrane vesicles, increasing with positive intravesicular potentials according to an electrogenic exchange with a stoichiometry greater than 2 sodium ions per calcium ion transported. The exchange activity was a saturable function of extravesicular free calcium, with an apparent K0.5 value of 3 microM and maximal rates of exchange ranging from 3 to 5 nmol/mg protein per 5 s. The exchange rate increased when intravesicular sodium concentration was increased; saturation was approached when vesicles were incubated with concentrations of 160 mM sodium. The isolated transverse tubule vesicles, which are sealed with the cytoplasmic side out, had a luminal content of 112 +/- 39 nmol calcium per mg protein. In the absence of sodium, the exchanger carried out electroneutral calcium-calcium exchange, which was stimulated by increasing potassium concentrations in the intravesicular side. Calcium-calcium exchange showed an extravesicular calcium dependence similar to the calcium dependence of the sodium-calcium exchange, with an apparent K0.5 of 6 microM. Sodium-calcium and calcium-calcium exchange were both inhibited by amiloride. The sodium-calcium exchange system operated both in the forward and in the reverse mode; sodium, as well as calcium, induced calcium efflux from 45Ca-loaded vesicles. This system may play an important role in decreasing the intracellular calcium concentration in skeletal muscle following electrical stimulation.  相似文献   

3.
Mononuclear metal complexes of a hexaimino cryptand containing three naphthyl groups have been prepared and the structure of the copper(I) complex was determined by X-ray diffraction. The complexes show acceleration of hydrolysis of p-nitrophenyl phosphate ester.  相似文献   

4.
Potentiometric and spectroscopic (UV-Vis, CD and EPR) studies were carried out on copper(II) complexes with chicken prion protein N-terminal fragments, Ac-(PHNPGY)4-NH2, and the mutated residue, Ac-(PHNPGF)4-NH2, to assess the role of tyrosine in the copper coordination. Both thermodynamic and spectroscopic results indicate that chicken prion fragments are not able to bind more than two copper ions and only with the involvement of side chain tyrosine groups. The prevailing complex shows one copper ion bound to four imidazole nitrogen atoms in the 1:1 metal to ligand ratio systems. The superoxide dismutase (SOD)-like activity of copper(II) complexes with the avian peptides and mammal analogue, Ac-(PHGGGWGQ)4-NH2, was also investigated by means of Pulse radiolysis. The copper(II) complexes with avian peptides do not display SOD-like activity, while very low activity has been detected for the copper(II) complexes with mammalian tetraoctarepeat.  相似文献   

5.
Five new copper and zinc heteroleptic complexes with saccharin and aminoacids with general stoichiometry Na2[M(sac)2(aa)2]⋅nH2O (M denotes Cu or Zn, sac the saccharinate ion, and aa the aminoacids) were synthesized and characterized by elemental and thermogravimetric analysis, conductimetric measurements and IR, Raman and UV–vis spectroscopies. In all the complexes, copper and zinc ions coordinated with the aminoacids through the terminal amine and carboxylate residues and with saccharin through the heterocyclic nitrogen atom. Besides, the superoxide dismutase-like activity of the heteroleptic copper complexes was evaluated and compared with the homoleptic copper amino acid complexes with the aim to observe the influence of the saccharin coordination.  相似文献   

6.
The superoxide anion radical is a highly reactive toxic species produced during the metabolic processes. A number of copper (II) complexes with amino acids and peptides are known to show superoxide dismutase (SOD) like activity. The design and application of synthetic low molecular weight metal complexes as SOD mimics have received considerable attention during the last decade. A variety of di- and tri-peptides containing histidyl residue in different positions have been employed to bind Cu(II) and to show the activity. But reports on Cu(II) complex with tetra-peptide having histidine amino acid in this regard are limited. As the HGGGW peptide having His at its N-terminal is reported to be a potential moiety for Cu(2+) binding, in the present work the synthesis of HisGlyGlyTrp peptide and its complexation with copper (II) ions has been reported. The interaction of synthesized peptide with Cu(II) was studied by electron spray ionization-mass spectrometer (ESI-MS) and UV-Vis spectroscopic methods. The species distribution was studied by combined spectrophotometric and potentiometric methods. The studies were performed at 25 ± 0.1 °C with constant ionic strength (μ = 0.1 M NaNO(3)) in aqueous solution using Bjerrum-Calvin's pH-titration technique as adopted by Irving and Rossotti for binary systems. The solution studies suggested that the pH of the medium play important role in the different species formation of the copper complexes. Species distribution curves indicate that Cu complexation takes place at all physiological pH values from 3-11. The resultant copper (II) peptide complex at physiological pH was tested for superoxide dismutase activity using standard NBT method. The complex has SOD activity with the IC(50) value of 1.32 μM.  相似文献   

7.
The kinetics of Na+ transport by (221)C10-cryptand through thin lipid membranes were determined by performing temperature-jump relaxation experiments on large unilamellar vesicles (L.U.V.) loaded with a fluorescent pH indicator. Applying temperature jumps of 4 to 7 degrees C to liposomes having phosphate as internal buffer and Tris as external buffer resulted in transmembrane delta pH's of about 0.104 to 0.182. After a temperature-jump, a decay in the delta pH was observed which corresponded to a Na+/H+ exchange occurring through membranes in the simultaneous presence of the cryptand and a proton carrier. The transport of Na+ ions by (221)C10 was found to be a fast kinetic process. Its initial rate increased with both the temperature and the cryptand concentrations. In addition, the temperature-induced changes in the apparent rate constants of the translocation of Na+ by (221)C10 were carrier concentration-dependent, and the apparent activation energy required to activate the transport decreased significantly with increasing cryptand concentrations. The results are discussed in terms of the structural, physico-chemical and electrical characteristics of carriers and complexes.  相似文献   

8.
The involvement of transition metal ions in paraquat toxicity was studied in bacterial model system. We show that the addition of micromolar, or lower, concentrations of copper dramatically enhanced the rate of bacterial inactivation. In contrast, the addition of chelating agents totally eliminated the killing of E. coli. No inactivation was observed under anaerobic exposure to paraquat, both in the absence and presence of copper. However, in the presence of copper, the anaerobic addition of hydrogen peroxide resulted in complete restoration of inactivation as under aerobiosis.

Paraquat either produces superoxide ions or directly reduces bound copper ions in a catalytic mode. The reduced cuprous complexes react with hydrogen peroxide to locally form hydroxyl radicals (OH) which are probably responsible for the deleterious effects.

This study indicates the involvement of a site-specific metal-mediated Haber-Weiss mechanism in paraquat toxicity. It is in agreement with earlier observations that copper unusually enhance biological damage induced by either superoxide or ascorbate.  相似文献   

9.
Radical scavenging activities of flavonoids rutin, taxifolin, (-)-epicatechin, luteolin, and their complexes with transition metal (Fe2+, Fe3+, and Cu2+) towards superoxide were determined using illumination of riboflavin as source and NBT as detector of O*2-. The scavenger potencies of flavonoid metal complexes were significantly higher than those of the parent flavonoids. To elucidate the mechanism of this phenomenon, the rates of superoxide-dependent oxidation of flavonoids and their metal complexes in photochemical system with riboflavin were examined. It was found for the first time that flavonoids bound to metal ions were much less subjected to oxidation compared with those of free compounds. The findings directly demonstrate superoxide scavenging activity of metal ions in complexes with flavonoids and support earlier suggestions that flavonoid metal complexes may exhibit superoxide dismuting activity.  相似文献   

10.
The influence of copper (II) ions on the growth, accumulation properties and superoxide dismutase (SOD) activity of a growing culture of Aspergillus niger B-77 were studied. Microbial growth, the level of copper (II) accumulation and SOD activity depended on the initial copper (II) concentration. Aspergillus niger is able to accumulate large amounts of copper (II) from the nutrient medium with 200 mg x l(-1) copper (II) ions without loosing its biological activities. Addition of copper (II) ions increased the SOD activity in the growing cell cultures. The changes in enzyme activity induced by heavy metal ions might be used as an indicator of intracellular oxy-intermediate generation in a cell culture growing under stress conditions.  相似文献   

11.
Phosphate buffer solutions of two dipeptides prevalent in striated muscle, L-carnosine (beta-alanyl-L-histidine) and L-anserine (beta-alanyl-L-1-methylhistidine), produce active oxygen species as measured by bleaching of N,N-dimethyl-4-nitrosoaniline (RNO). Activity is enhanced 5-14-fold in the presence of 2-mercaptoimidazoles such as ergothioneine, carbimazole (3-methyl-2-mercaptoimidazole-1-carboxylate), methimazole (2-mercapto-1-methylimidazole) and 2-mercaptoimidazole but only slightly by thiourea and dimethylthiourea. Activity is proportional to carnosine concentration and to mercaptoimidazole concentration at a fixed concentration of the second component. A variety of imidazoles closely related to carnosine and anserine are inactive, even after addition of transition metal ions. Activity is moderately increased above the pKa of the carnosine imidazole ring (pH 7.2, 7.5 and 8.0) versus below the pKa (pH 6.5 and 6.8). Activity is slightly increased by addition of copper or cobalt ions but not by addition of ferrous or ferric ions. Activity is decreased by Chelex 100 pretreatment of phosphate buffer and stimulated when copper or cobalt ions are added to the chelated buffer but there is no significant stimulation by ferric ions. Catalase eliminates most activity but superoxide dismutase has little effect. We propose that metal-carnosine and metal-anserine complexes produce superoxide and also serve as superoxide dismutases with resultant accumulation of hydrogen peroxide. An unidentified radical produced from hydrogen peroxide subsequently bleaches RNO. From the biological distributions of carnosine, anserine and ergothioneine, we infer that deleterious effects are probably minimal under normal physiological circumstances due to tissue and cellular compartmentalization and to sequestration of these compounds and transition metal ions.  相似文献   

12.
ATPases, an important target of insecticides, are enzymes that hydrolyze ATP and use the energy released in that process to accomplish some type of cellular work. Pachymerus nucleorum (Fabricius) larvae possess an ATPase, that presents high Ca-ATPase activity, but no Mg-ATPase activity. In the present study, the effect of zinc and copper ions in the activity Ca-ATPase of that enzyme was tested. More than 90% of the Ca-ATPase activity was inhibited in 0.5 mM of copper ions or 0.25 mM of zinc ions. In the presence of EDTA, but not in the absence, the inhibition by zinc was reverted with the increase of calcium concentration. The inhibition by copper ions was not reverted in the presence or absence of EDTA. The Ca-ATPase was not inhibited by treatment of the ATPase fraction with copper, suggesting that the copper ion does not bind directly to the enzyme. The results suggest that zinc and copper ions form a complex with ATP and bind to the enzyme inhibiting its Ca-ATPase activity.  相似文献   

13.
14.
The ways and mechanisms of the Ca2+ concentration regulation in myometrium cells are analyzed. The plasma membrane is thoroughly studied for its role in the calcium control provision for the contractile activity of the uterus. The systems of Mg2+-ATP-dependent transport of Ca2+, sodium-calcium metabolism as well as regularities of the Ca2+ passive transfer in the sarcolemma vesicles are considered. The systems of the Mg2+-ATP- and N+-dependent transport of calcium are discussed for their contribution into regulation of calcium concentration in the myoplasm. Oxytocin and ions of bivalent metals (stimulators of the contractile activity of the uterus) are studied for their effect on the activity of the sarcolemma calcium pump.  相似文献   

15.
Like superoxide dismutase (SOD), human ceruloplasmin (Cp) scavenges superoxide anion radicals injected into the solution with the aid a high-voltage generator, hydrogen peroxide being the product of reaction. The O2-/H2O2 ratio is close to 2:1. The dismutase activity of Cp is about 1500 times lower than that of Cu, Zn-SOD isolated from human erythrocytes. The dismutation of O2- accomplished by SOD, "free" copper ions, native Cp or partly copper-depleted Cp, is inhibited with equal efficiency by cyanide. All the copper ions of the multicopper catalytic center of Cp are not essentially required for the dismutation of O2-, since the enzyme depleted of all type 2 Cu2+ and partly of type 1 Cu2+ lost none of its dismutase activity. Type 1 copper ions of Cp seem to play the leading role in the one-electron transfer occurring upon dismutation of O2-.  相似文献   

16.
The four binding constants of zinc(II) ions to apo-bovine superoxide dismutase were measured by the method of equilibrium dialysis. The binding constants (10(11.1)-10(10.9) M-1) of zinc ions to the native zinc sites were much larger than those to the native copper sites (10(7.8)-10(6.5) M-1) at pH 6.25. The competitive reaction between copper(II) and zinc(II) ions for the native copper sites of copper free bovine superoxide dismutase was also investigated. The native copper sites of bovine superoxide dismutase selectively react with copper ions, because the binding constants of copper ions for the native copper sites were much larger (10(6) times) than those of zinc ions.  相似文献   

17.
Superoxide anion generation plays an important role in the development of paraquat toxicity. Although superoxide dismutase mimetics (SODm) have provided protection against organ injury involving generation of superoxide anions, they often suffer problems, e.g., regarding their bioavailability or potential pro-oxidant activity. The aim here was to investigate and compare the therapeutic potential of two novel SODm, manganese(II) and copper(II) complexes of the calcium chelator ethylenebis(oxyethylenenitrilo)tetraacetic acid (EGTA) and of the contrast agent ethylenebis(hydroxyphenylglycine) (EHPG), against paraquat-induced renal toxicity in vitro. Incubation of renal NRK-52E cells with paraquat (1 mM) for 24 h produced submaximal, yet significant, reduction in cellular viability and cell death and produced significant increases in superoxide anion and hydroxyl radical generation. Manganese and copper complexes of EGTA (10-100 microM) and EHPG (30-100 microM) reduced paraquat-induced renal cell toxicity and reduced superoxide anion and hydroxyl radical generation significantly. Manganese complexes displayed greater efficacy than copper complexes and, at equivalent concentrations, manganese complexed with EHPG provided the greatest protection. Furthermore, these metal complexes did not interfere with the uptake of [methyl-(14)C]paraquat into NRK-52E cells, suggesting that they provided protection against paraquat cytotoxicity via intracellular mechanisms. These complexes did not display cytotoxicity at the concentrations examined. Together, these results suggest that manganese and copper complexes of EGTA and EHPG, and especially the manganese-EHPG complex, could provide benefit against paraquat nephrotoxicity.  相似文献   

18.
Copper and genomic stability in mammals   总被引:1,自引:0,他引:1  
Linder MC 《Mutation research》2001,475(1-2):141-152
As the free ion and in the form of some complexes, there is no doubt that copper can promote damage to cellular molecules and structures through radical formation. At the same time, and perhaps as a consequence, mammals have evolved means of minimizing levels of free copper ions and destructive copper complexes that enter the organism and its cells. These means include tight binding of copper ions to protein carriers and transporters; direct exchange of copper between protein carriers, transporters, and cuproenzymes; and mobilization of secretory mechanisms and excretory pathways, as needed. As a consequence, normally, and except under certain genetic conditions, copper is likely to be benign to most mammals and not responsible for genomic instability, including fragmentation of and/or alterations to DNA, induction of mutations or apoptosis, or other toxic events. Indeed, cuproenzymes are important members of the antioxidant system of the organism.  相似文献   

19.
Synthetic superoxide dismutase mimetics have emerged as a potential novel class of drugs for the treatment of oxidative stress related diseases. Among these agents, metal complexes with macrocyclic ligands constitute an important group. In this work we synthesized five macrocyclic copper(II) complexes and evaluated their ability to scavenge the superoxide anions generated by the xanthine-xanthine oxidase system. Two different endpoints were used, the nitro blue tetrazolium (NBT) reduction assay (colorimetric method) and the dihydroethidium (DHE) oxidation assay (fluorimetric method). IC(50) values in the low micromolar range were found in four out of five macrocyclic complexes studied, demonstrating their effective ability to scavenge the superoxide anion. The IC(50) values obtained with the NBT assay for the macrocyclic copper(II) complexes, were consistently higher, approximately threefold, than those obtained with the DHE assay. Spectroscopic and electrochemical studies were performed in order to correlate the structural features of the complexes with their superoxide scavenger activity. Cytotoxicity assays were also performed using the MTT method in V79 mammalian cells and we found that the complexes, in the range of concentrations tested in the superoxide scavenging assays were not considerably toxic. In summary, some of the presented macrocyclic copper(II) complexes, specially those with a high stability constant and low IC(50), appear to be promising superoxide scavenger agents, and should be considered for further biological assays.  相似文献   

20.
《Free radical research》2013,47(1):179-185
Carnosine, anserine and homocarnosine are natural compounds which are present in high concentrations (2–20 mM) in skeletal muscles and brain of many vertebrates. We have demonstrated in a previous work that these compounds can act as antioxidants, a result of their ability to scavenge peroxyl radicals, singlet oxygen and hydroxyl radicals. Carnosine and its analogues have been shown to be efficient chelating agents for copper and other transition metals. Since human skeletal muscle contains one-third of the total copper in the body (20–47 mmol/kg) and the concentration of carnosine in this tissue is relatively high, the complex of carnosine:copper may be of biological importance. We have studied the ability of the coppenarnosine (and other carnosine derivatives) complexes to act as superoxide dismutasc. The results indicate that the complex of copper:carnosine can dismute superoxide radicals released by neutrophils treated with PMA in an analogous mechanism to other amino acids and copper complexes. Copper:anserine failed to dismute superoxide radicals and coppwhomocarnosine complex was efficient when the cells were treated with PMA or with histone-opsonized streptococci and cytochalasine B. The possible role of these compounds to act as physiological antioxidants that possess superoxide dismutase activity is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号