首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Methanosarcinae are the only archaeobacteria known to undergo major morphologic changes during growth involving unicellular and multicellular forms, and Methanosarcina mazei S-6 is the only strain for which three distinct forms, packets, single cells, and lamina, have so far been observed. It is reported that two pairs of these forms, either packets and single cells or single cells and lamina, grew and interconverted in medium with the same composition, Ca2+ and Mg2+ concentrations, and growth substrate, and that the two forms in each pair displayed distinctive differences revealed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblotting, the same growth medium-substrate notwithstanding.  相似文献   

3.
A novel multicellular form of Methanosarcina mazei S-6 is described. It was termed lamina, and it formed during the exponential growth phase when packets or single cells were grown in 40 mM trimethylamine and a total concentration of 8.3 to 15.6 mM Ca2+ and/or Mg2+, in cultures that were not shaken. A distinct molecular event represented by the increment in expression and a spatial redistribution of an antigen during lamina formation is documented.  相似文献   

4.
When monomethylamine was the growth substrate, spontaneous disaggregation of Methanosarcina mazei S-6 commenced at the mid-exponential phase and resulted in the formation of a suspension containing 108 to 109 free cells per ml. Free cells were osmotically fragile and amenable to extraction of DNA. Hypertonic media for the manipulation and regeneration of free cells into aggregates were developed, and plating efficiencies of 100% were achieved for M. mazei S-6 and LYC. Free cells of strain S-6 required MgCl2 (10 mM) for growth, whereas aggregates did not. Specific growth rates of strains S-6 and LYC were increased by MgCl2. Treatment with pronase caused sphere formation and removal of the protein wall of cells of strain S-6, but protoplasts could not be regenerated. The disaggregating enzyme produced by strain S-6 facilitated the preparation of suspensions of free cells of some strains of Methanosarcina barkeri. Although this provided a means of extracting high-molecular-weight DNA from M. barkeri, less than 0.1% of free cells were viable.  相似文献   

5.
6.
The antigenic mosaics of archaeal species are complex and lead to the distinction of different immunotypes. We began the dissection of the antigenic mosaic of the methanogen Methanosarcina mazei S-6 by gene cloning and sequencing. The analysis of the sequence, organization, and in vitro (heterologous) and in vivo expression of two three-gene clusters that encode proteins localized to the cell envelope and that are recognized by antibodies for surface structures is presented in this report. The amino acid sequences and compositions share characteristics with S-layer proteins and, most notably, have repeats of conserved sequences and secondary structures. Expressed genes produced proteins with a tendency to oligomerize, and one of these proteins was susceptible to breakdown at regular intervals. Altogether, the data reveal a modular system (clusters of homologous genes, proteins of similar sequences with conserved repeats) seemingly suitable for assembling an enormous variety of final molecular structures by rearranging and combining genes, proteins, and repeats, and thus generate the observed wide spectrum of antigenic diversity. Received: 26 June 1997 / Accepted: 5 November 1997  相似文献   

7.
The morphology of Methanosarcina mazei was controlled by magnesium, calcium, and substrate concentrations and by inoculum size; these factors allowed manipulation of the morphology and interconversions between pseudosarcinal aggregates and individual, coccoid cells. M. mazei grew as aggregates in medium with a low concentration of catabolic substrate (either 50 mM acetate, 50 mM methanol, or 10 mM trimethylamine) unless Ca2+ and Mg2+ concentrations were high. Growth in medium high in Ca2+, Mg2+, and substrate (i.e., 150 mM acetate, 150 mM methanol, or 40 mM trimethylamine) converted pseudosarcinal aggregates to individual cocci. In such media, aggregates separated into individual cells which continued to grow exclusively as single cells during subsequent transfers. Conversion of single cells back to aggregates was complicated, because conditions which supported the aggregated morphology (e.g., low calcium or magnesium concentration) caused lysis of coccoid inocula. We recovered aggregates from coccoid cells by inoculating serial dilutions into medium high in calcium and magnesium. Cells from very dilute inocula grew into aggregates which disaggregated on continued incubation. However, timely transfer of the aggregates to medium low in calcium, magnesium, and catabolic substrates allowed continued growth as aggregates. We demonstrated the activity of the enzyme (disaggregatase) which caused the dispersion of aggregates into individual cells; disaggregatase was produced not only during disaggregation but also in growing cultures of single cells. Uronic acids, the monomeric constituents of the Methanosarcina matrix, were also produced during disaggregation and during growth as coccoids.  相似文献   

8.
9.
10.
Methanosarcina mazei S-6 grew faster and its morphology changed to individual coccoid cells in medium with elevated concentrations of divalent cations and a large amount of catabolic substrate.  相似文献   

11.
12.
The Archaeon Methanosarcina mazei and related species are of great ecological importance as they are the only organisms fermenting acetate, methylamines and methanol to methane, carbon dioxide and ammonia (in case of methylamines). Since acetate is the precursor of 60% of the methane produced on earth these organisms contribute significantly to the production of this greenhouse gas, e.g. in rice paddies. The 4,096,345 base pairs circular chromosome of M. mazei is more than twice as large as the genomes of the methanogenic Archaea currently completely sequenced (Bult et al., 1996; Smith et al., 1997). 3,371 open reading frames (ORFs) were identified. Based on currently available sequence data 376 of these ORFs are Methanosarcina-specific and 1,043 ORFs find their closest homologue in the bacterial domain. 544 of these ORFs reach significant similarity values only in the bacterial domain. They include 56 of the 102 transposases, and proteins involved in gluconeogenesis, proline biosynthesis, transport processes, DNA-repair, environmental sensing, gene regulation, and stress response. Striking examples are the occurrence of the bacterial GroEL/GroES chaperone system and the presence of tetrahydrofolate-dependent enzymes. These findings might indicate that lateral gene transfer has played an important evolutionary role in forging the physiology of this metabolically versatile methanogen.  相似文献   

13.
14.
15.
16.
17.
We have recently developed a method to simultaneously quantitate the level of gene expression and the level of secretion of a peptide from individual cells. Our approach has been to combine the reverse hemolytic plaque assay sequentially with in situ hybridization. We present data to show how we have used the pituitary lactotroph as a model to demonstrate the power of this technique. However, we are particularly excited about the potential application of this strategy to approach a broad spectrum of questions regarding the cellular and molecular mechanisms that regulate the coupling of peptide secretion and gene expression at the single cell level. The method can be used in any system in which an appropriate antibody for the reverse hemolytic plaque assay and probes complementary to the mRNA of interest are available.  相似文献   

18.
Strains of Vibrio vulnificus incubated in situ in natural estuarine waters during warm months continued to express katG (periplasmic catalase), rpoS (stress sigma factor), tufA (elongation factor), wza, and wzb (capsule synthesis). vvhA (hemolysin) was differentially expressed between environmental and clinical isolates. These results paralleled our in vitro findings.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号