首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reaction microcalorimetry and equilibrium dialysis have been used to study the binding of AMP and IMP to glycogen phosphorylase b (EC 2.4.1.1) at 25 degrees C and pH 6.9. The combination of both techniques has enabled us to obtain some of the thermodynamic parameters for these binding processes. Four binding sites were found to be present in the dimeric active enzyme for both AMP and IMP. The binding to two high-affinity sites, which, in our opinion, correspond to the activator sites, seems to be cooperative. The two low-affinity sites, which would then correspond to the inhibitor sites, appear to be independent when the nucleotides bind to the enzyme. The negative delta G0 of binding/site at 25 degrees C is the result in all cases of a balance between negative enthalpy and entropy changes. The large differences in delta H and delta S0 for the binding of AMP to the activator sites (-27 and -70 kJ mol-1; -22 and -150 J X K-1 mol-1) suggest the existence of rather extensive conformational changes taking place in phosphorylase b on binding with the allosteric activator. Whereas the affinity of AMP for the activator sites is about 1 order of magnitude higher than that of IMP, the affinity of both nucleotides, including their delta H and delta S0 values, seems to be the same for the inhibitor sites.  相似文献   

2.
Equilibrium dialysis and isothermal microcalorimetry experiments have been carried out to characterize the thermodynamics of the binding of AMP to glycogen phosphorylase b (EC 2.4.1.1) at pH 6.9 over the temperature range of 25-35 degrees C. Thermal titrations were performed at each temperature in various buffer systems, which have afforded the calculation of the number of protons exchanged when the AMP binds to each site in the protein. Thermodynamic parameters were obtained for the binding of AMP to the two nucleotide and the two inhibitor sites of the dimeric enzyme. The former show positive cooperativity while the latter behave as independent binding sites. A positive delta Cp value was obtained for the AMP binding to the two N sites (1.3 and 1.4 kJ K-1 mol-1), while the delta Cp was negative for the binding to the I sites (-1.9 kJ K-1 mol-1). The application of Sturtevant's method to our data (Sturtevant, J. M. (1977) Proc. Natl. Acad. Sci. U. S. A. 74, 2236-2240) and their comparison with a similar analysis undertaken with phosphorylase a (Mateo, P. L., González, J. F., Barón, C., Lopez-Mayorga, O., and Cortijo, M. (1986) J. Biol. Chem. 261, 17067-17072) has opened the way to some understanding of the thermodynamics of the allosteric transition in the protein.  相似文献   

3.
The thermodynamics of the enzymatic hydrolysis of cellobiose, gentiobiose, isomaltose, and maltose have been studied using both high pressure liquid chromatography and microcalorimetry. The hydrolysis reactions were carried out in aqueous sodium acetate buffer at a pH of 5.65 and over the temperature range of 286 to 316 K using the enzymes beta-glucosidase, isomaltase, and maltase. The thermodynamic parameters obtained for the hydrolysis reactions, disaccharide(aq) + H2O(liq) = 2 glucose(aq), at 298.15 K are: K greater than or equal to 155, delta G0 less than or equal to -12.5 kJ mol-1, and delta H0 = -2.43 +/- 0.31 kJ mol-1 for cellobiose; K = 17.9 +/- 0.7, delta G0 = -7.15 +/- 0.10 kJ mol-1 and delta H0 = 2.26 +/- 0.48 kJ mol-1 for gentiobiose; K = 17.25 +/- 0.7, delta G0 = -7.06 +/- 0.10 kJ mol-1, and delta H0 = 5.86 +/- 0.54 kJ mol-1 for isomaltose; and K greater than or equal to 513, delta G0 less than or equal to -15.5 kJ mol-1, and delta H0 = -4.02 +/- 0.15 kJ mol-1 for maltose. The standard state is the hypothetical ideal solution of unit molality. Due to enzymatic inhibition by glucose, it was not possible to obtain reliable values for the equilibrium constants for the hydrolysis of either cellobiose or maltose. The entropy changes for the hydrolysis reactions are in the range 32 to 43 J mol-1 K-1; the heat capacity changes are approximately equal to zero J mol-1 K-1. Additional pathways for calculating thermodynamic parameters for these hydrolysis reactions are discussed.  相似文献   

4.
Binding of branched-chain 2-oxo acids to bovine serum albumin.   总被引:4,自引:4,他引:0       下载免费PDF全文
1. Binding of branched-chain 2-oxo acids to defatted bovine serum albumin was shown by gel chromatography and equilibrium dialysis. 2. Equilibrium-dialysis data suggest a two-side model for binding in Krebs-Henseleit saline at 37 degrees C with n1 = 1 and n2 = 5. Site association constants were: 4-methyl-2-oxovalerate, k1 = 8.7 x 10(3) M-1, k2 = 0.09 x 10(3) M-1; 3-methyl-2-oxovalerate, k1 = 9.8 x 10(3) M-1, k2 = 0.08 x 10(3) M-1; 3-methyl-2-oxobutyrate, k1 = 1.27 x 10(3) M-1, k2 = less than 0.05 x 10(3) M-1. 3. Binding of 4-methyl-2-oxovalerate to defatted albumin in a phosphate-buffered saline, pH 7.4, gave the following thermodynamic parameters: primary site delta H0(1) = -28.6kJ . mol-1 and delta S0(1) = -15.2J . mol-1 . K-1 (delta G0(1) = -24.0kJ . mol-1 at 37 degrees C) and secondary sites delta H0(2) = -25.4kJ . mol-1 and delta S0(2) = -46.1J . mol-1 . K-1 (delta G0(1) = -11.2kJ . mol-1 at 37 degrees C). Thus binding at both sites is temperature-dependent and increases with decreasing temperature. 4. Inhibition studies suggest that 4-methyl-2-oxovalerate may associate with defatted albumin at a binding site for medium-chain fatty acids. 5. Binding of the 2-oxo acids in bovine, rat and human plasma follows a similar pattern to binding to defatted albumin. The proportion bound in bovine and human plasma is much higher than in rat plasma. 6. Binding to plasma protein, and not active transport, explains the high concentration of branched-chain 2-oxo acids leaving rat skeletal muscle relative to the concentration within the tissue, but does not explain the 2-oxo acid concentration gradient between plasma and liver.  相似文献   

5.
Cytoplasmic pyruvate decarboxylase (EC 4.1.1.1, from Saccharomyces carlsbergensis) exhibits in its circular dichroic spectrum in the 250--320-nm range a multiple two-signal band. This couplet disappears on increasing the pH up to pH 8.5. Two classes of two protons each can be quantified by these spectral changes. The first class dissociates rapidly and the apparent pK is 7.84. The thermodynamic data are delta G = 87.7 kJ mol-1, delta H = + 56.0 kJ mol-1, delta S = - 108 J mol-1 K-1, very characteristic for the deprotonation of an amino-acid side chain. The second class of the protons has the following thermodynamic data: delta G = 88.3 kJ mol-1, delta H = - 64.3 kJ mol-1, delta S = - 520 J mol-1 K-1 which, in conjunction with kinetic reasoning and in view of enzyme stoichiometry and symmetry, suggests a conformational equilibrium exposing the second two protons. Th enzyme dissociates into two dimeric subunits. This dissociation step is considered to be rate-determining for the overall process. The data are kp = 1.4 . 10(-3), delta H not equal to = + 128.3 kJ mol-1, delta S not equal = + 136 J mol-1 K-1. If there is a conformational equilibrium, the rate constant of product formation kp will be modified by a factor beta = kc/(1 + Kc) (0 < beta less than or equal to 1) where Kc is the conformational equilibrium constant. The subunit dissociation appears to be controlled by the enthalpy of activation indicating that a number of interactions, i.e. ionic, hydrogen and hydrophobic bridges, are to be broken. Optimal conditions for the preparation of the apo-enzyme are derived from the data.  相似文献   

6.
Thermodynamics of the Ca2+ binding to bovine alpha-lactalbumin   总被引:1,自引:0,他引:1  
Bovine alpha-lactalbumin contains one strong Ca2+-binding site. The free energy (delta G0), enthalpy (delta H0), and entropy (delta S0) of binding of Ca2+ to this site have been calculated from microcalorimetric experiments. The enthalpy of binding was dependent on the metal-free bovine alpha-lactalbumin concentration. At 0.8 mg ml-1, metal-free bovine alpha-lactalbumin delta H0 was -110 +/- 6 kJ mol-1. At this concentration the binding constant was estimated from a mathematical analysis of the titration curves to be greater than 10(7) M-1. This means that delta G0 is smaller than -40 kJ mol-1 and delta S0 is less negative than -235 J.K-1 mol-1. The binding of Ca2+ is therefore enthalpy-driven. From binding experiments as a function of temperature, a delta Cp value of -4.1 kJ.K-1 mol-1 was calculated. This value is dependent on the protein concentration. A tentative explanation for this large value is given.  相似文献   

7.
K Takahashi  H Fukada 《Biochemistry》1985,24(2):297-300
The binding of Streptomyces subtilisin inhibitor (SSI) to subtilisin of Bacillus subtilis strain N' (subtilisin BPN', EC 3.4.21.14) was studied by isothermal calorimetry at pH 7.0 and at various temperatures ranging from 5 to 30 degrees C. Thermodynamic quantities for the binding reaction were derived as a function of temperature by combining the data reported for the dissociation constant with the present calorimetric results. At 25 degrees C, the values are delta G degrees = -57.9 kJ mol-1, delta H = -19.8 kJ mol-1, delta S degree = 0.13 kJ K-1 mol-1, and delta Cp = -1.02 kJ K-1 mol-1. The entropy and the heat capacity changes are discussed in terms of the contributions from the changes in vibrational modes and in hydrophobic interactions.  相似文献   

8.
Opioid mu-receptors are membrane bound receptors. The mechanism by which they transduce their biological effect into the inner compartment of the postsynaptic cell is still not fully understood. The present study was attempted to the measurement of changes of the thermodynamic parameters of the receptor--agonist/antagonist interaction. We have set up the binding assays of a mu-receptor agonist (3H-dihydromorphine) as well as an antagonist (3H-naloxone). The saturation isotherms of both ligands have been assayed at various temperatures and from the resulting KD values the standard changes of Gibbs energy, enthalpy and entropy have been calculated. While the binding of the mu-receptor agonist 3H-dihydromorphine appears to be entropy driven (delta S0 = 230 J mol-1 K-1) and endothermic (delta H0 = 19 kJ mol-1), the binding of the mu-receptor antagonist 3H-naloxone is apparently driven by a decrease of standard enthalpy (delta H0 = -27 kJ mol-1; i.e. the reaction is exothermic) and is also characterized by an increase of standard entropy (delta S0 = 76 J mol-1 K-1). The maximal number of 3H-naloxone binding sites has to be determined by incubation at 0-4 degrees C. The present data to not support the view that opioid mu-receptors transduce their biological signal through the adenylatecyclase system by a mechanism similar to beta-adrenergically stimulated adenylatecyclase.  相似文献   

9.
The thermodynamics of the equilibria between aqueous ribose, ribulose, and arabinose were investigated using high-pressure liquid chromatography and microcalorimetry. The reactions were carried out in aqueous phosphate buffer over the pH range 6.8-7.4 and over the temperature range 313.15-343.75 K using solubilized glucose isomerase with either Mg(NO3)2 or MgSO4 as cofactors. The equilibrium constants (K) and the standard state Gibbs energy (delta G degrees) and enthalpy (delta H degrees) changes at 298.15 K for the three equilibria investigated were found to be: ribose(aq) = ribulose(aq) K = 0.317, delta G degrees = 2.85 +/- 0.14 kJ mol-1, delta H degrees = 11.0 +/- 1.5 kJ mol-1; ribose(aq) = arabinose(aq) K = 4.00, delta G degrees = -3.44 +/- 0.30 kJ mol-1, delta H degrees = -9.8 +/- 3.0 kJ mol-1; ribulose(aq) = arabinose(aq) K = 12.6, delta G degrees = -6.29 +/- 0.34 kJ mol-1, delta H degrees = -20.75 +/- 3.4 kJ mol-1. Information on rates of the above reactions was also obtained. The temperature dependencies of the equilibrium constants are conveniently expressed as R in K = -delta G degrees 298.15/298.15 + delta H degrees 298.15[(1/298.15)-(1/T)] where R is the gas constant (8.31441 J mol-1 K-1) and T the thermodynamic temperature.  相似文献   

10.
Calcium binding isotherms were determined for thermolysin in the range pH 5.6-10.5, and from 5 to 45 degrees C. An extensive statistical analysis of the binding data suggests that at least two of the four binding sites bind Ca2+ with complete positive cooperativity and independently of the other two. Nonlinear regression analysis of the binding data was used to calculate cooperative (K1) and independent (K2) binding constants for the four calcium sites. Thermodynamic parameters obtained from a van't Hoff analysis indicate that calcium binding to both cooperative and independent sites is an entropy-driven process. At pH 7.0, delta H1 = 90.4 kJ/mol; delta H2 = 97.5 kJ/mol; delta S1 = 456 J K-1 mol-1; delta S2 = 262 J K-1 mol-1. These results are compared to those obtained for other calcium-binding proteins. An analysis of the pH dependence of the calcium binding constants indicates that the binding of four protons at the cooperative site and one to two protons at the independent sites, modulates the calcium affinity. This confirms an earlier structural assignment of the double-site as the locus of the two cooperatively binding Ca2+. Calcium binding to thermolysin is enhanced in the presence of an active site directed inhibitor, suggesting that there may be positive cooperativity between substrate and calcium binding.  相似文献   

11.
The binding of Streptomyces subtilisin inhibitor (SSI) to alpha-chymotrypsin (CT) (EC 3.4.21.1) was studied by isothermal and differential scanning calorimetry at pH 7.0. Thermodynamic quantities for the binding of SSI to the enzyme were derived as functions of temperature from binding constants (S. Matsumori, B. Tonomura, and K. Hiromi, private communication) and isothermal calorimetric experiments at 5-30 degrees C. At 25 degrees C, the values are delta G degrees b = -29.9 kJ mol-1, delta Hb = +18.7 (+/- 1.3) kJ mol-1, delta S degrees b = +0.16 kJ K-1 mol-1, and delta C p,b = -1.08 (+/- 0.11) kJ mol-1. The binding of SSI to CT is weak compared with its binding to subtilisin [Uehara, Y., Tonomura, B., & Hiromi, K. (1978) J. Biochem. (Tokyo) 84, 1195-1202; Takahashi, K., & Fukada, H. (1985) Biochemistry 24, 297-300]. This difference is due primarily to a less favorable enthalpy change in the formation of the complex with CT. The hydrophobic effect is presumably the major source of the entropy and heat capacity changes which accompany the binding process. The unfolding temperature of the complex is about 7 degrees C higher than that of the free enzyme. The enthalpy and the heat capacity changes for the unfolding of CT were found to be 814 kJ mol-1 and 17.3 kJ K-1 mol-1 at 49 degrees C. The same quantities for the unfolding of the SSI-CT complex are 1183 kJ mol-1 and 39.2 kJ K-1 mol-1 at 57 degrees C.  相似文献   

12.
The thermodynamics of binding of both the substrate glutathione (GSH) and the competitive inhibitor S-hexylglutathione to the mutant Y49F of human glutathione S-transferase (hGST P1-1), a key residue at the dimer interface, has been investigated by isothermal titration calorimetry and fluorescence spectroscopy. Calorimetric measurements indicated that the binding of these ligands to both the Y49F mutant and wild-type enzyme is enthalpically favorable and entropically unfavorable over the temperature range studied. The affinity of these ligands for the Y49F mutant is lower than those for the wild-type enzyme due mainly to an entropy change. Therefore, the thermodynamic effect of this mutation is to decrease the entropy loss due to binding. Calorimetric titrations in several buffers with different ionization heat amounts indicate a release of protons when the mutant binds GSH, whereas protons are taken up in binding S-hexylglutathione at pH 6.5. This suggests that the thiol group of GSH releases protons to buffer media during binding and a group with low pKa (such as Asp98) is responsible for the uptake of protons. The temperature dependence of the free energy of binding, DeltaG0, is weak because of the enthalpy-entropy compensation caused by a large heat capacity change. The heat capacity change is -199.5 +/- 26.9 cal K-1 mol-1 for GSH binding and -333.6 +/- 28.8 cal K-1 mol-1 for S-hexylglutathione binding. The thermodynamic parameters are consistent with the mutation Tyr49 --> Phe, producing a slight conformational change in the active site.  相似文献   

13.
Thermodynamics of the enzyme-catalyzed (alkaline phosphatase, EC 3.1.3.1) hydrolysis of glucose 6-phosphate, mannose 6-phosphate, fructose 6-phosphate, ribose 5-phosphate, and ribulose 5-phosphate have been investigated using microcalorimetry and, for the hydrolysis of fructose 6-phosphate, chemical equilibrium measurements. Results of these measurements for the processes sugar phosphate2- (aqueous) + H2O (liquid) = sugar (aqueous) + HPO2++-(4) (aqueous) at 25 degrees C follow: delta Ho = 0.91 +/- 0.35 kJ.mol-1 and delta Cop = -48 +/- 18 J.mol-1.K-1 for glucose 6-phosphate; delta Ho = 1.40 +/- 0.31 kJ.mol-1 and delta Cop = -46 +/- 11 J.mol-1.dK-1 for mannose 6-phosphate; delta Go = -13.70 +/- 0.28 kJ.mol-1, delta Ho = -7.61 +/- 0.68 kJ.mol-1, and delta Cop = -28 +/- 42 J.mol-1.K-1 for fructose 6-phosphate; delta Ho = -5.69 +/- 0.52 kJ.mol-1 and delta Cop = -63 +/- 37 J.mol-1.K-1 for ribose 5-phosphate; and delta Ho = -12.43 +/- 0.45 kJ.mol-1 and delta Cop = -84 +/- 30 J.mol-1.K-1 for the hydrolysis of ribulose 5-phosphate. The standard state is the hypothetical ideal solution of unit molality. Estimates are made for the equilibrium constants for the hydrolysis of ribose and ribulose 5-phosphates. The effects of pH, magnesium ion concentration, and ionic strength on the thermodynamics of these reactions are considered.  相似文献   

14.
Flow microcalorimetric titrations of calmodulin with melittin at 25 degrees C revealed that the formation of the high-affinity one-to-one complex in the presence of Ca2+ (Comte, M., Maulet, Y., and Cox, J. A. (1983) Biochem, J. 209, 269-272) is entirely entropy driven (delta H0 = 30.3 kJ X mol-1; delta S0 = 275 J X K-1 X mol-1). Neither the proton nor the Mg2+ concentrations have any significant effect on the strength of the complex. In the absence of Ca2+, a nonspecific calmodulin-(melittin)n complex is formed; the latter is predominantly entropy driven, accompanied by a significant uptake of protons and fully antagonized by Mg2+. Enthalpy titrations of metal-free calmodulin with Ca2+ in the presence of an equimolar amount of melittin were carried out at pH 7.0 in two buffers of different protonation enthalpy. The enthalpy and proton release profiles indicate that: protons, absorbed by the nonspecific calmodulin-melittin complex, are released upon binding of the first Ca2+; Ca2+ binding to the high-affinity configuration of the calmodulin-melittin complex displays an affinity constant greater than or equal to 10(7) M-1, i.e. 2 orders of magnitude higher than that of free calmodulin; the latter is even more entropy driven (delta H0 = 7.2 kJ X site-1; delta S0 = 158 J X K-1 X site-1) than binding to free calmodulin (delta H0 = 4.7 kJ X site-1; delta S0 = 112 J X K-1 X site-1), thus underlining the importance of hydrophobic forces in the free energy coupling involved in the ternary complex.  相似文献   

15.
The thermodynamics of the hydrolysis of lactose to glucose and galactose have been investigated using both high pressure liquid chromatography and heat-conduction microcalorimetry. The reaction was carried out over the temperature range 282-316 K and in 0.1 M sodium acetate buffer at a pH of 5.65 using the enzyme beta-galactosidase to catalyze the reaction. For the process lactose(aq) + H2O(liq) = glucose(aq) + galactose(aq), delta G0 = -8.72 +/- 0.20 kJ.mol-1, K0 = 34 +/- 3, delta H0 = 0.44 +/- 0.11 kJ.mol-1, delta S0 = 30.7 +/- 0.8 J.mol-1.K-1, and delta Cop = 9 +/- 20 J.mol-1.K-1 at 298.15 K. The standard state is the hypothetical ideal solution of unit molality. Thermochemical cycle calculations using enthalpies of combustion and solution, entropies, solubilities, activity coefficients, and apparent molar heat capacities have also been performed. These calculations indicate large discrepancies which are attributable primarily to errors in literature data on the enthalpies of combustion and/or third law entropies of the crystalline forms of the substrates.  相似文献   

16.
The temperature induced unfolding of barstar wild-type of bacillus amyloliquefaciens (90 residues) has been characterized by differential scanning microcalorimetry. The process has been found to be reversible in the pH range from 6.4 to 8.3 in the absence of oxygen. It has been clearly shown by a ratio of delta HvH/delta Hcal near 1 that denaturation follows a two-state mechanism. For comparison, the C82A mutant was also studied. This mutant exhibits similar reversibility, but has a slightly lower transition temperature. The transition enthalpy of barstar wt (303 kJ mol-1) exceeds that of the C82A mutant (276 kJ mol-1) by approximately 10%. The heat capacity changes show a similar difference, delta Cp being 5.3 +/- 1 kJ mol-1 K-1 for the wild-type and 3.6 +/- 1 kJ mol-1 K-1 for the C82A mutant. The extrapolated stability parameters at 25 degrees C are delta G0 = 23.5 +/- 2 kJ mol-1 for barstar wt and delta G0 = 25.5 +/- 2 kJ mol-1 for the C82A mutant.  相似文献   

17.
The bicyclic colchicine analogue 2-methoxy-5-(2',3',4'-trimethoxyphenyl)-2,4,6-cycloheptatrien-1-on e (MTC) has been used to study the thermodynamics of specific ligand binding to the colchicine site of tubulin, employing isothermal reaction microcalorimetry. The binding of MTC to purified calf brain tubulin, in 10 mM sodium phosphate buffer, pH 7.0, is characterized by delta H degree = -19 +/- 1 kJ.mol-1, delta G degree = -31.8 +/- 0.6 kJ.mol-1, and delta S degree = 43 +/- 5 J.mol-1.K-1 at 298 K, with a slight variation in the temperature range from 283 to 308 K. The binding thermodynamics of colchicine and allocolchicine are similar to MTC under the conditions examined, suggesting related molecular interactions of the three ligands with the protein binding site. The standard enthalpy changes of binding of colchicine and MTC at 308 K coincide within experimental error. Therefore the more favorable free energy change of binding of colchicine must come from a larger binding entropy change (by about 20 J.mol-1.K-1). This difference could be attributed to the presence of the middle ring of colchicine, which is absent in MTC. Consistently, a similar entropy change is observed by the comparison of allocolchicine to MTC binding at several temperatures. In addition, allocolchicine binding is about 6 kJ.mol-1 less exothermic than MTC binding, which could be attributed to the presence in allocolchicine of a substituted phenyl ring instead of the colchicine-MTC tropolone ring. The present results and analysis are fully compatible with the previously proposed bifunctional binding of colchicine and MTC (through their trimethoxybenzene and tropolone moieties) to a bifocal protein binding site, and also with a partial immobilization of intramolecular rotation of MTC upon binding, which in colchicine is already constrained by its middle ring (Andreu, J. M., Gorbunoff, M. J., Lee, J. C., and Timasheff, S. (1984) Biochemistry 23, 1742-1752).  相似文献   

18.
Thermodynamics of the hydrolysis of sucrose   总被引:1,自引:0,他引:1  
A thermodynamic investigation of the hydrolysis of sucrose to fructose and glucose has been performed using microcalorimetry and high-pressure liquid chromatography. The calorimetric measurements were carried out over the temperature range 298-316 K and in sodium acetate buffer (0.1 M, pH 5.65). Enthalpy and heat capacity changes were obtained for the hydrolysis of aqueous sucrose (process A): sucrose(aq) + H2O(liq) = glucose(aq) + fructose (aq). The determination of the equilibrium constant required the use of a thermochemical cycle calculation involving the following processes: (B) glucose 1-phosphate2-(aq) = glucose 6-phosphate2-(aq); (C) sucrose(aq) + HPO4(2-)(aq) = glucose 1-phosphate2-(aq) + fructose(aq); and (D) glucose 6-phosphate2-(aq) + H2O(liq) = glucose(aq) + HPO4(2-)(aq). The equilibrium constants determined at 298.15 K for processes B and C are 17.1 +/- 1.0 and 32.4 +/- 3.0, respectively. Equilibrium data for process D was obtained from the literature, and in conjunction with the data for processes B and C, used to calculate a value of the equilibrium constant for the hydrolysis of aqueous sucrose. Thus, for process A, delta G0 = -26.53 +/- 0.30 kJ mol-1, K0 = (4.44 +/- 0.54) x 10(4), delta H0 = -14.93 +/- 0.16 kJ mol-1, delta So = 38.9 +/- 1.2 J mol-1 K-1, and delta CoP = 57 +/- 14 J mol-1 K-1 at 298.15 K. Additional thermochemical cycles that bear upon the accuracy of these results are examined.  相似文献   

19.
The fluorescence of N-dansylgalactosamine [N-(5-dimethylaminonaphthalene-1-sulphonyl)galactosamine] was enhanced 11-fold with a 25 nm blue-shift in the emission maximum upon binding to soya-bean agglutinin (SBA). This change was used to determine the association constants and thermodynamic parameters for this interaction. The association constant of 1.51 X 10(6) M-1 at 20 degrees C indicated a very strong binding, which is mainly due to a relatively small entropy value, as revealed by the thermodynamic parameters: delta G = -34.7 kJ X mol-1, delta H = -37.9 kJ X mol-1 and delta S = -10.9 J X mol-1 X K-1. The specific binding of this sugar to SBA shows that the lectin can accommodate a large hydrophobic substituent on the C-2 of galactose. Binding of non-fluorescent ligands, studied by monitoring the fluorescence changes when they are added to a mixture of SBA and N-dansylgalactosamine, indicates that a hydrophobic substituent at the anomeric position increases the affinity of the interaction. The C-6 hydroxy group also stabilizes the binding considerably. Kinetics of binding of N-dansylgalactosamine to SBA studied by stopped-flow spectrofluorimetry are consistent with a single-step mechanism and yielded k+1 = 2.4 X 10(5) M-1 X s-1 and k-1 = 0.2 s-1 at 20 degrees C. The activation parameters indicate an enthalpicly controlled association process.  相似文献   

20.
The thermodynamics of the enzymatic conversion (penicillin acylase) of aqueous penicillin G to phenylacetic acid and 6-aminopenicillanic acid have been studied using both high-pressure liquid-chromatography and microcalorimetry. The reaction was carried out in aqueous phosphate buffer over the pH range 6.0-7.6, at ionic strengths from 0.10 to 0.40 mol kg-1, and at temperatures from 292 to 322 K. The data have been analyzed using a chemical equilibrium model with an extended Debye-Hückel expression for the activity coefficients. For the reference reaction, penicillin G- (aq) + H2O(l) = phenylacetic acid-(aq) + 6-aminopenicillanic acid-(aq) + H+ (aq), the following parameters have been obtained: K = (7.35 +/- 1.5) X 10(-8) mol kg-1, delta G0 = 40.7 +/- 0.5 kJ mol-1, delta H0 = 29.7 +/- 0.6 kJ mol-1, and delta C0p = -240 +/- 50 J mol-1 K-1 at 298.15 K and at the thermochemical standard state. The extent of reaction for the overall conversion is highly dependent upon the pH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号