首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Skeletal muscle explants from normal subjects were established from biopsy material on collagen. Cellular outgrowth appeared within 3-4 days, and fusion of myoblasts was observed in 5-10 days. Multinucleated myotubes were impaled under high optical magnification, at 37 degrees C, with conventional glass microelectrodes. The mean resting potential was -44.4 mV +/- 2.4 (n = 399); -33 +/- 2.3 mV at 9 days (n = 10) vs -48 +/- 2.5 mV (n = 15) at 27 days. The average input resistance (Rin) was 9.7 M omega (n = 83). Action potentials could be elicited by electrical stimulation and had a mean amplitude of 55.9 +/- 2.1 mV with a mean maximum rate of rise (Vmax) of 72.1 +/- 7.5 V/s. The mean overshoot was 13.9 +/- 2.3 mV, and the action potential duration determined at 50% of repolarization (APD50) was 8.0 msec (n = 7). The resting membrane potential showed a depolarization of 23 mV/decade for extracellular potassium ion concentration ([K]o) between 4.5-100 mM. Thus, we have established the normal resting potential and maximum rate of rise of the action potential for human myotubes in culture. We have shown that the values for these are less than those previously reported in cultured avian and rodent cells. In addition, we have shown that the response in our system of the resting potential to change in extracellular potassium concentration is blunted compared to studies using isolated muscle, suggesting an increase in ratio of sodium to potassium permeability. Cultured human muscle cells depolarized in the presence of ouabain.  相似文献   

2.
Intracellular recordings were made from immature, growing oocytes of the crayfish Pacifastacus leniusciulus. Oocytes had a relatively negative resting potential of -74.7+/-2.2 mV (n=26; range -53 to -90) and a mean input resistance of 0.86+/-0.19 MOmega (n=22; range 0.17-3.3). Octopamine induced a long-lasting response involving biphasic changes in input resistance, together with bi- or multiphasic changes in membrane potential. The resistance-decreasing phase involved (in different oocytes) membrane hyperpolarization, depolarization or both. The resistance-increasing phase was usually a depolarization. The hyperpolarizing form of the resistance-decreasing response, and the depolarizing resistance-increasing response reversed in polarity at membrane potentials of (respectively) -90 and -92 mV, suggesting increases and decreases in K(+) conductance underly the biphasic changes in input resistance. The threshold concentration for the response was remarkably low (>10(-12) M) and showed little or no dose-dependence over the concentration range 10(-12)-10(-6) M. Similar responses were evoked by dopamine and serotonin (at 10(-9) M), although a higher proportion of oocytes responded to octopamine and/or dopamine than to serotonin.  相似文献   

3.
While responses to angiotensin II have previously been induced in Xenopus laevis oocytes after injection of messenger RNA extracted from mammalian tissue, no endogenous responses of ovarian tissue to this hormone have been reported. Here we describe such an endogenous dose-dependent response to angiotensin II, detected by conventional electrophysiological techniques, in follicular oocytes. The ED50 of the response was estimated to be 0.15 +/- 0.07 microM (S.E.M.). Maximal depolarization, obtained at 1 microM angiotensin II, was 18.3 +/- 1.4 mV (n = 18, three experiments using oocytes from two toads, mean resting membrane potential = -42 +/- 2 mV). The response was absent from collagenase-treated oocytes or follicular oocytes treated with octanol, suggesting that the receptors are predominantly in the follicular layer surrounding the oocytes.  相似文献   

4.
The resting membrane potential, Em, and the cell input resistance, Rinp, of cultured human Chang liver cells were measured using the single electrode 'double-pulse' current clamp technique, following exposure of the cells to the insecticide DDT (20 microM). In control (unexposed) cells, the mean Em was -24 mV, and the mean Rinp was 30 M omega. Neither parameter was significantly impaired after 1 h of cell exposure to DDT. But after 7 and 48 h, the Em was depolarized by 15 and 25 mV, respectively, in parallel with a decrease of the cell input resistance. The strongly time-delayed effect of DDT on Chang liver cell membranes may indicate a mode of interaction different from excitable membranes.  相似文献   

5.
The ciliary muscle which is involved in accommodation and regulation of aqueous humour outflow resistance resembles smooth muscle in other parts of the body. In the present investigation we used an established primary cell line (H7CM) to study the effects of endothelin, a novel vasoconstrictor peptide, on membrane voltage (V) and intracellular calcium in cultured human ciliary muscle cells. Membrane voltage was measured in confluent monolayers of H7CM cells using conventional microelectrodes. Intracellular calcium concentration [( Ca]i) was measured in single H7CM cells using the fluorescent calcium indicator fura-2. Under resting conditions V averaged -66.9 +/- 0.7 mV (mean +/- SEM, n = 125). Endothelin (10(-10)-10(-6)M) induced a dose-dependent reversible membrane voltage depolarization and a dose-dependent rise in [Ca]i. The initial calcium peak was followed by a recovery phase during which oscillations of [Ca]i occurred. The initial calcium peak was not dependent on the presence of extracellular calcium and was not abolished in the presence of the calcium antagonist verapamil (10(-4)M). Thus it is probably mediated by a release of calcium from intracellular reservoirs. We conclude that cultured human ciliary muscle cells express a functional endothelin receptor.  相似文献   

6.
Electrophysiological properties of isolated rat liver cells   总被引:2,自引:0,他引:2  
The electrophysiological properties of isolated rat liver cells were studied using the patch clamp method in whole-cell configuration. The membrane potential in isolated hepatocytes was -42 +/- 7 mV (n = 20). The input resistance (Rin) and the time constant (tau m) were 51 +/- 17 M (the range of 34 to 180 M omega) (n = 20) and 4.2 +/- 1.0 msec (the range of 3 to 16.5 ms) (n = 20). Assuming that the specific membrane capacitance is 1 microF/cm2, the membrane resistance and membrane capacitance were 42. +/- 9.0 K omega cm2 and 87 +/- 27 pF. These values indicate that isolated rat hepatocytes are not abnormally permeable or leaky. The current-voltage relationship was linear with no rectification. The depolarizing pulse from the resting potential did not induce fast or slow inward currents even when norepinephrine or high Ca2 (3.6 mM) were applied. This indicates that there is no voltage-sensitive Ca2+ channel in the isolated hepatocytes.  相似文献   

7.
A packed Cytodex 3 microbead array was fabricated as a simple three-dimensional (3-D) cell-based biosensing format. Resting membrane potentials and voltage-gated calcium channel (VGCC) function of SH-SY5Y human neuroblastoma cells cultured on the microbead array versus collagen-coated flat (2-D) substrates were evaluated by confocal microscopy with a potentiometric dye, tetramethylrhodamine methyl ester, and a calcium fluorescent indicator, Calcium Green-1. SH-SY5Y cells, differentiated with 1mM dibutyryl cAMP and 2.5 microM 5-bromodeoxyuridine, showed significant resting membrane potential establishment on the topographical scaffolds in a period of 13 days into differentiation, in contrast to the previously reported insignificant resting membrane potential establishment of the same cells within collagen hydrogels. On days 2, 8 and 13 into differentiation, cells on collagen-coated flat substrates developed resting membrane potentials of -6.0+/-19.5 mV (n=198), -30.5+/-19.9 mV (n=191) and -21.7+/-18.9 mV (n=308), in contrast to values for cells on 3-D scaffolds of -25.8+/-14.7 mV (n=112), -37.6+/-13.1 mV (n=120) and -28.7+/-12.2 mV (n=158), respectively. The development of VGCC function, as measured by percentage of cells responsive to 50 mM high K(+) depolarization, was significantly slower for cells on 3-D scaffolds (20.0% on day 13 into differentiation) than for cells on 2-D substrates (30.7% on day 8 into differentiation). The exaggerated 2-D cell calcium dynamics, in comparison with those of 3-D cells, is consistent with previous 2-D/3-D comparative studies. This study established the rationale and feasibility of the microbead array format for 3-D cell-based biosensing.  相似文献   

8.
Ca2+ entry under resting conditions may be important for contraction of vascular smooth muscle, but little is known about the mechanisms involved. Ca2+ leakage was studied in the A7r5 smooth muscle-derived cell line by patch-clamp techniques. Two channels that could mediate calcium influx at resting membrane potentials were characterized. In 110 mM Ba2+, one channel had a slope conductance of 6.0 +/- 0.6 pS and an extrapolated reversal potential of +41 +/- 13 mV (mean +/- SD, n = 8). The current rectified strongly, with no detectable outward current, even at +90 mV. Channel gating was voltage independent. A second type of channel had a linear current-voltage relationship, a slope conductance of 17.0 +/- 3.2 pS, and a reversal potential of +7 +/- 4 mV (n = 9). The open probability increased e-fold per 44 +/- 10 mV depolarization (n = 5). Both channels were also observed in 110 mM Ca2+. Noise analysis of whole-cell currents indicates that approximately 100 6-pS channels and 30 17-pS channels are open per cell. These 6-pS and 17-pS channels may contribute to resting calcium entry in vascular smooth muscle cells.  相似文献   

9.
新生大鼠离体脊髓薄片侧角中间外侧核细胞的电生理特性   总被引:1,自引:0,他引:1  
祝延  马如纯 《生理学报》1989,41(1):63-69
在新生大鼠离体脊髓薄片的中间外侧核作细胞内记录,研究细胞膜的静态与动态电生理特性。细胞的静息电位(RP)变动于-46—-70mV,膜的输入阻抗为108.3±67.9MΩ(X±SD,下同),时间常数9.9±5.6ms,膜电容138.6±124.2pF。用去极化电流进行细胞内刺激时,大部份细胞(85.4%)能产生高频率连续发放,其余细胞(15.6%)仅产生初始单个发放。胞内直接刺激引起的动作电位(AP)幅度为63.4±9.0mV,时程2.4±0.6ms,阈电位水平在RP基础上去极18.7±6.2mV。大部份细胞的锋电位后存在明显的超极化后电位,其幅度为5.1±2.7mV、持续90±31.8ms。刺激背根可在记录细胞引起EPSP或顺向AP,少数细胞尚出现IPSP。而刺激腹根则可引起逆向AP。  相似文献   

10.
Intracellular recording of white adipocytes was performed in an in vitro preparation. Resting potential, input resistance and membrane time constant averaged: -34 +/- 9 mV, 295 +/- 161 M omega, and 58 +/- 19 ms respectively (mean +/- SD, n = 32). Intracellular injection of positive and negative square current pulses elicited membrane voltage responses, characterized by a rectification of the voltage change evoked by positive pulses, and a slow return to baseline at the offset of hyperpolarizing pulses. The amplitude and duration of the slow return to resting potential was dependent on membrane potential, pulse duration, and extracellular K+ concentration. This response was depressed when external Ca2+ was replaced by Co2+, and by external application of 4-aminopyridine. These results indicate that white adipocytes can generate membrane voltage responses which may mostly be a consequence of the activity of ionic channels. The properties of the slow return to baseline suggest that it may be due to a transient K+ current.  相似文献   

11.
郑谦  东英穗 《生理学报》1989,41(6):543-554
用大鼠脑干脑片,给三叉神经中脑核79个神经元作了细胞内记录,测算了20个神经元膜的电学特性:静息电位-60.3±5.6mV;输入阻抗为10.5±5.4MΩ;时间常数1.3±0.5ms。电刺激可诱发动作电位,测算32个神经元的有关参数:阈电位-50—-55mV;波幅69.5±6.1mV;超射11.9±3.6mV;波宽0.8±0.2ms。TTX(0.3μmol/L)或无钠使之消失。通以长时程矩形波电流可引起200—250Hz的2—15个重复放电,但在通电停止前终止,TEA或4-AP可延长放电。膜电位-60—-55mV时在动作电位之后可看到阈下电位波动,它不受TTX的影响,无钙时消失,TEA或4-AP使波幅增大。静息电位去极化可使45个神经元中的40个发生外向整流作用,并被TEA,4-AP或无钙抑制,超极化则发生内向整流作用,Cs或无钠抑制之。灌流液中加入各种钾通道阻断药时神经元的稳态I-V曲线发生相应变化,提示I_(DR),l_A,I_(K(Ca))及I_Q可能都与静息时的膜电导有关。  相似文献   

12.
The influence of high K solution on the longitudinal movement of Lucifer Yellow CH along dog atrial trabeculae was investigated. It was found that in normal heart muscle the dye diffused from cell-to-cell and the average diffusion coefficient (D) was 4.3 +/- 1.3 X 10(-7) cm2/s. In muscles exposed to 20, 40 or 60 mM K solution the resting potential was reduced from -78 mV (S.E. +/- 0.71) (control) to -41 mV (S.E. +/- 0.95), -30 mV (S.E. +/- 0.64) and -22.5 mV (S.E. +/- 0.64), respectively. Despite the maintained depolarization the cell-to-cell diffusion of Lucifer Yellow CH did not change. These findings indicate that the junctional permeability in heart muscle is not influenced by the non-junctional membrane potential.  相似文献   

13.
Upon penetration in an unfertilized Xenopus egg bathed in 1/10 Ringer, the voltage recorded by a microelectrode shows an abrupt jump to a negative voltage (Ep) followed by a rapid depolarization to a steady value (Er) (Ep = -39.4 +/- 1.9 mV and Er = -11.5 +/- 0.5 SE, 54 eggs from 9 females). The same is true for fertilized eggs impaled 16-35 min after insemination (Ep = -29.5 +/- 2.1 mV, Er = -11.5 +/- 0.9 mV, SE, 18 eggs from 3 females). The voltage recorded by a second microelectrode inserted into the same egg does not show the transient initial negativity. The stationary level of the membrane potential is close to the diffusion potential calculated from the Goldman equation with equal permeabilities for all the relevant ions. It is concluded that the low resting potentials measured in Xenopus eggs before and after fertilization are largely due to damage caused by the electrode. Using an upper limit of -39 mV for the true membrane potential and correlating the input resistance with the stationary membrane potential, a lower limit of 22 M omega (about 1 M omega cm2) for the membrane resistance can be obtained. Insertion of a microelectrode during the first 3 min after insemination shows a steady positive potential while, at later times (3-16 min post-insemination), a positive peak followed by a repolarization can be observed. This indicates that the measurement of the peak of the fertilization potential is not seriously affected by the electrode penetration while its time course after the first 3 min may be deformed by the presence of a large leakage conductance.  相似文献   

14.
Resting potentials (Vm) were measured in mouse Leydig cells, using the whole-cell patch-clamp technique. In contrast to conventional microelectrode measurements, where a biphasic potential was observed, we recorded a stable Vm around -32.2 +/- 1.2 mV (mean +/- SEM, n = 159), at 25 degrees C, and an input resistance larger than 2.7 x 109 W. Although Vm is sensitive to changes in the extracellular concentrations of potassium and chloride, the relationship between Vm and these ions' concentrations cannot be described by either the Goldman-Hodgkin-Katz or the Nernst equation. Perifusing cells with potassium-free solution or 10?3 M ouabain induced a marked depolarization averaging 20.1 +/- 3.2 mV (n = 9) and 23.1 +/- 2.8 mV, (n = 7), respectively. Removal of potassium or addition of ouabain with the cell voltage-clamped at its Vm, resulted in an inwardly directed current, due to inhibition of the Na+K+ATPase. The pump current increased with temperature with a Q10 coefficient of 2.3 and had an average value of -6.5 +/- 0.4 pA (n = 21) at 25 degrees C. Vm also varied strongly with temperature, reaching values as low as -9.2 +/- 1.2 mV (n = 22) at 15 degrees C. Taking the pump current at 25 degrees C and a minimum estimate for the membrane input resistance, we can see that the Na+K+ATPase could directly contribute with 17.7 mV to the Vm of Leydig cells, which is a major fraction of the ?32.2 +/- 1.2 mV (n = 159) observed.  相似文献   

15.
Fertilization potential and electrical properties of the Xenopus laevis egg   总被引:6,自引:0,他引:6  
The membrane potential of Xenopus eggs was monitored continuously from prior to fertilization until early cleavage. A rapid decay of the initial potential of -33.1 +/- 8.1 (SD) mV (N = 14) upon impalement to a value of -19.3 +/- 4.2 (SD) mV (N = 68) suggested that insertion of the first electrode caused depolarization. Outward and inward rectification were observed when the resting potential was made more positive than about 5 mV or more negative than about -30 mV. Eggs were not activated by this level of current injection. Fertilization and activation evoked a membrane depolarization which was influenced by the external Cl- concentration, the nature of the halide species, and 4,4-diisothiocyanostilbene-2,2-disulfonic acid. Smaller transient depolarizations were associated with the initial stages of the fertilization potential but not with activation. Only when the fertilization potential was significantly diminished, as in high external Cl- or in the presence of Br- or I- solutions did polyspermy ensue. The input resistance of the unfertilized egg was 13.2 +/- 9.8 M omega (N = 26) and decreased about 200-fold at the peak of the fertilization potential to 0.077 +/- 0.020 M omega (N = 9). Ninety minutes after the onset of the fertilization potential and about 6 min after the start of furrow formation the membrane began a series of cleavage cycle-associated hyperpolarizations. These were unaffected by either the external Cl- concentration or other halide species. Reduction in amplitude of the fertilization potential had no apparent effect upon the normal elevation of the fertilization envelope or upon cleavage and later development. The fast electrical block to polyspermy appears to have a lower threshold in Xenopus compared with other species and is also effective at negative membrane potentials.  相似文献   

16.
For malignant cells cultured from a human astrocytoma, electrophysiological characteristics of the plasma membrane included specific resistivity of 446.82 ± 279.5 ohm·cm2, specific capacitance of 0.758 ± 0.52 microfarads/cm2, time constant 0.318± 0.10 msec. The resting membrane potential averaged-14.07 ± 7.4 mV; the mean input resistance 8.1 ± 4.0 megohms. The average cell area was 1638 ± 585 ±2 for contactual and 1919 ± 989 ±2 for noncontactual cells. Changes in input resistance and resting membrane potential were observed with increasing time in culture, possibly reflecting cell cycling. There did not appear to be electrical coupling in this cell line.  相似文献   

17.
《Molecular membrane biology》2013,30(1-2):147-153
Fragmented epithelia of newborn rat small intestine were successfully cultured for periods of up to 4 weeks. Stable intracellular recordings of membrane potential were obtained from these cultured cells. Membrane resting potential varied according to cell location along a villus. The potentials ranged from -70 to -15 mV, being highest at the tip of the villus. The mean resting potential and membrane resistance were -72.4 mV and 8.6 M Ω, respectively. The membrane potential was markedly dependent on the extracellular K+ concentration ([K]0], but not significantly on [Na]0 and [Cl]0-Deprivation of Ca2+ from the surrounding medium depolarized the membrane by 20 mV. When the cells were cooled down to 6°C, membrane potential was reduced by 40 mV. Based on these data, basic mechanisms underlying the resting potential are discussed in connection with cell differentiation or maturation.  相似文献   

18.
The anterior stomach of larval Aedes aegypti was isolated and perfused via two pipettes. For transepithelial voltage (V(te)) measurement, the inflow pipette and the bath were connected via agar bridges to calomel electrodes. For voltage-clamping, the lumen of the tissue contained an Ag/AgCl wire held by the outflow pipette, and the preparation was placed in a bath within a spiral of Ag/AgCl wire. After equilibrating the tissue in mosquito saline on both sides, a V(te) of -8+/-1 mV was measured (+/-S.E.M., N=32). Current-voltage curves (+/-100 mV) demonstrated ohmic behaviour of the epithelium. Short-circuiting resulted in a current (I(sc)) of 103+/-16 microA cm(-2) and a mean transepithelial conductance (G(te)) of 11.8+/-1.3 mS cm(-2) (+/-S.E.M., N=32). A Yonath-Civan plot of G(te) of individual preparations over the corresponding I(sc) resulted in a straight line (r(2)=0.8422), indicating that the difference in I(sc) of individual preparations is mainly based on different transcellular conductances (G(c)). This analysis allowed to estimate the mean leak conductance (G(l) approximately 3.9 mS cm(-2)) and the mean transcellular electromotive force (E(c) approximately 13 mV). After administering 0.2 micromol L(-1) serotonin, I(sc) and G(te) significantly increased, to 457+/-49 microA cm(-2) and to 21.3+/-2.3 mS cm(-2) (+/-S.E.M., N=31, P<0.05), respectively. The Yonath-Civan plot after serotonin resulted again in a straight line (r(2)=0.8219), indicating a mean G(l) of about 1 mS cm(-2) and a mean E(c) of about 22 mV. Dinitrophenol (2.5 mmol L(-1)) almost abolished I(sc) and significantly reduced G(te) (N=6). Concanamycin A (100 micromol L(-1)) reduced I(sc) by more than 90% without significantly affecting G(te).  相似文献   

19.
The action of thyrotropin on the rat thyroid follicular cell has been investigated using continuous transmembrane potential and input resistance recording from individual cells in in vitro preparations. The membrane potential in this study was -68.0 mV +/- 0.6 (mean+/-S.E.). Over a wide range of concentrations (1.5-50 mU/ml), thyrotropin failed to affect membrane potential or input resistance while 20 mU/ml thyrotropin was shown to elicit complex time-dependent changes in tissue levels of both cyclic AMP and cyclic GMP. The present results reveal that thyrotropin-receptor interaction does not affect plasma membrane permeability, but is characterized by complex changes in endogenous cyclic nucleotide metabolism.  相似文献   

20.
The electrical properties of neurons in the supraoptic nucleus (so.n.) have been studied in the hypothalamic slice preparation by intracellular and extracellular recording techniques, with Lucifer Yellow CH dye injection to mark the recording site as being the so.n. Intracellular recordings from so.n. neurons revealed them to have an average membrane potential of -67 +/- 0.8 mV (mean +/- s.e.m.), membrane resistance of 145 +/- 9 M omega with linear current-voltage relations from 40 mV in the hyperpolarizing direction to the level of spike threshold in the depolarizing direction. Average cell time constant was 14 +/- 2.2 ms. So.n. action potentials ranged in amplitude from 55 to 95 mV, with a mean of 76 +/- 2 mV, and a spike width of 2.6 +/- 0.5 ms at 30% of maximal spike height. Both single spikes and trains of spikes were followed by a strong, long-lasting hyperpolarization with a decay fitted by a single exponential having a time constant of 8.6 +/- 1.8 ms. Action potentials could be blocked by 10(-6) M tetrodotoxin. Spontaneously active so.n. neurons were characterized by synaptic input in the form of excitatory and inhibitory postsynaptic potentials, the latter being apparently blocked when 4 M KCl electrodes were used. Both forms of synaptic activity were blocked by application of divalent cations such as Mg2+, Mn2+ or Co2+. 74% of so.n. neurons fired spontaneously at rates exceeding 0.1 spikes per second, with a mean for all cells of 2.9 +/- 0.2 s-1. Of these cells, 21% fired slowly and continuously at 0.1 - 1.0 s-1, 45% fired continuously at greater than 1 Hz, and the remaining 34% fired phasically in bursts of activity followed by silence or low frequency firing. Spontaneously firing phasic cells showed a mean burst length of 16.7 +/- 4.5 s and a silent period of 28.2 +/- 4.2 s. Intracellular recordings revealed the presence of slow variations in membrane potential which modified the neuron's proximity to spike threshold, and controlled phasic firing. Variations in synaptic input were not observed to influence firing in phasic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号