首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
myo-Inositol-1-phosphate synthase (mIPS) catalyzes the conversion of glucose-6-phosphate (G-6-P) to inositol-1-phosphate. In the sulfate-reducing archaeon Archaeoglobus fulgidus it is a metal-dependent thermozyme that catalyzes the first step in the biosynthetic pathway of the unusual osmolyte di-myo-inositol-1,1'-phosphate. Several site-specific mutants of the archaeal mIPS were prepared and characterized to probe the details of the catalytic mechanism that was suggested by the recently solved crystal structure and by the comparison to the yeast mIPS. Six charged residues in the active site (Asp225, Lys274, Lys278, Lys306, Asp332, and Lys367) and two noncharged residues (Asn255 and Leu257) have been changed to alanine. The charged residues are located at the active site and were proposed to play binding and/or direct catalytic roles, whereas noncharged residues are likely to be involved in proper binding of the substrate. Kinetic studies showed that only N255A retains any measurable activity, whereas two other mutants, K306A and D332A, can carry out the initial oxidation of G-6-P and reduction of NAD+ to NADH. The rest of the mutant enzymes show major changes in binding of G-6-P (monitored by the 31P line width of inorganic phosphate when G-6-P is added in the presence of EDTA) or NAD+ (detected via changes in the protein intrinsic fluorescence). Characterization of these mutants provides new twists on the catalytic mechanism previously proposed for this enzyme.  相似文献   

2.
Archaeoglobus fulgidus accumulates di-myo-inositol phosphate (DIP) and diglycerol phosphate (DGP) in response to heat and osmotic stresses, respectively, and the level of glycero-phospho-myo-inositol (GPI) increases primarily when the two stresses are combined. In this work, the pathways for the biosynthesis of these three compatible solutes were established based on the detection of the relevant enzymatic activities and characterization of the intermediate metabolites by nuclear magnetic resonance analysis. The synthesis of DIP proceeds from glucose-6-phosphate via four steps: (i) glucose-6-phosphate was converted into l-myo-inositol 1-phosphate by l-myo-inositol 1-phosphate synthase; (ii) l-myo-inositol 1-phosphate was activated to CDP-inositol at the expense of CTP; this is the first demonstration of CDP-inositol synthesis in a biological system; (iii) CDP-inositol was coupled with l-myo-inositol 1-phosphate to yield a phosphorylated intermediate, 1,1'-di-myo-inosityl phosphate 3-phosphate (DIPP); (iv) finally, DIPP was dephosphorylated into DIP by the action of a phosphatase. The synthesis of the two other polyol-phosphodiesters, DGP and GPI, proceeds via the condensation of CDP-glycerol with the respective phosphorylated polyol, glycerol 3-phosphate for DGP and l-myo-inositol 1-phosphate for GPI, yielding the respective phosphorylated intermediates, 1X,1'X-diglyceryl phosphate 3-phosphate (DGPP) and 1-(1X-glyceryl) myo-inosityl phosphate 3-phosphate (GPIP), which are subsequently dephosphorylated to form the final products. The results disclosed here represent an important step toward the elucidation of the regulatory mechanisms underlying the differential accumulation of these compounds in response to heat and osmotic stresses.  相似文献   

3.
4.
Many Archaea and Bacteria isolated from hot, marine environments accumulate di-myo-inositol-phosphate (DIP), primarily in response to heat stress. The biosynthesis of this compatible solute involves the activation of inositol to CDP-inositol via the action of a recently discovered CTP:inositol-1-phosphate cytidylyltransferase (IPCT) activity. In most cases, IPCT is part of a bifunctional enzyme comprising two domains: a cytoplasmic domain with IPCT activity and a membrane domain catalyzing the synthesis of di-myo-inositol-1,3′-phosphate-1′-phosphate from CDP-inositol and l-myo-inositol phosphate. Herein, we describe the first X-ray structure of the IPCT domain of the bifunctional enzyme from the hyperthermophilic archaeon Archaeoglobus fulgidus DSMZ 7324. The structure of the enzyme in the apo form was solved to a 1.9-Å resolution. The enzyme exhibited apparent Km values of 0.9 and 0.6 mM for inositol-1-phosphate and CTP, respectively. The optimal temperature for catalysis was in the range 90 to 95°C, and the Vmax determined at 90°C was 62.9 μmol · min−1 · mg of protein−1. The structure of IPCT is composed of a central seven-stranded mixed β-sheet, of which six β-strands are parallel, surrounded by six α-helices, a fold reminiscent of the dinucleotide-binding Rossmann fold. The enzyme shares structural homology with other pyrophosphorylases showing the canonical motif G-X-G-T-(R/S)-X4-P-K. CTP, l-myo-inositol-1-phosphate, and CDP-inositol were docked into the catalytic site, which provided insights into the binding mode and high specificity of the enzyme for CTP. This work is an important step toward the final goal of understanding the full catalytic route for DIP synthesis in the native, bifunctional enzyme.  相似文献   

5.
myo-Inositol-1-phosphate synthase (mIPS) catalyzes the first step in the synthesis of l-myo-inositol-1-phosphate. We have solved and refined the structure of the mIPS from the hyperthermophilic sulfate reducer Archaeoglobus fulgidus at 1.9 A resolution. The enzyme crystallized from poly(ethylene glycol) in the P1 space group with one tetramer in the asymmetric unit and provided a view of the entire biologically active oligomer. Despite significant changes in sequence length and amino acid composition, the general architecture of the archaeal enzyme is similar to that of the eukaryotic mIPS from Saccharomyces cerevisiae and bacterial mIPS from Mycobacterium tuberculosis. The enhanced thermostability of the archaeal enzyme as compared to that from yeast is consistent with deletion of a number of surface loops that results in a significantly smaller protein. In the structure of the A. fulgidus mIPS, the active sites of all four subunits were fully ordered and contained NAD(+) and inorganic phosphate. The structure also contained a single metal ion (identified as K(+)) in two of the four subunits. The analysis of the electrostatic potential maps of the protein suggested the presence of a second metal-ion-binding site in close proximity to the first metal ion and NAD(+). The modeling of the substrate and known inhibitors suggests a critical role for the second metal ion in catalysis and provides insights into the common elements of the catalytic cycle in enzymes from different life kingdoms.  相似文献   

6.
Pereira MP  Brown ED 《Biochemistry》2004,43(37):11802-11812
CDP-ribitol synthase catalyzes the formation of CDP-ribitol from ribulose 5-phosphate, NADPH, and CTP. CDP-ribitol is an activated precursor for the synthesis of virulence-associated polysaccharides in the capsule of the Gram-negative pathogen Haemophilus influenzae and in the cell walls of Gram-positive pathogens including Staphylococcus aureus. We showed previously that CDP-ribitol synthase activity in H. influenzae is catalyzed by the bifunctional enzyme Bcs1 in a two-step reaction with reduction preceding cytidylyl transfer [Zolli, M., et al. (2001) Biochemistry 40, 5041-5048]. In the work reported here, we predicted a CDP-ribitol synthesis locus in S. aureus tandemly arranged as tarI, encoding an orthologue of the cytidylyltransferase domain of Bcs1, and tarJ, coding for an analogue of the reductase domain of Bcs1. We have shown the formation of a functional CDP-ribitol synthase complex between TarI and TarJ. Steady-state mechanistic studies of the CDP-ribitol synthases TarIJ and Bcs1 revealed that the analogous reductases and orthologous cytidylyltransferases undergo ordered mechanisms. The sequence of substrate binding and product release of the orthologous cytidylyltransferases differed. Steady-state analysis of the reductase and cytidylyltransferase activities of TarIJ indicated a 100-fold difference in the turnover where the primary reductase was rate limiting. Rapid mixing experiments revealed the presence of approximately 12 microM ribitol 5-phosphate at steady state, 100-fold lower than the observed K(m) for this intermediate. Analysis of the approach to steady state suggested that channeling was not occurring in the coupled enzyme complex and was an unlikely driving force in the convergent recruitment of reductase and cytidylyltransferase activities in the two CDP-ribitol synthases.  相似文献   

7.
The synthesis of di-myo-inositol phosphate (DIP), a common compatible solute in hyperthermophiles, involves the consecutive actions of inositol-1-phosphate cytidylyltransferase (IPCT) and di-myo-inositol phosphate phosphate synthase (DIPPS). In most cases, both activities are present in a single gene product, but separate genes are also found in a few organisms. Genes for IPCT and DIPPS were found in the genomes of 33 organisms, all with thermophilic/hyperthermophilic lifestyles. Phylogeny of IPCT/DIPPS revealed an incongruent topology with 16S RNA phylogeny, thus suggesting horizontal gene transfer. The phylogenetic tree of the DIPPS domain was rooted by using phosphatidylinositol phosphate synthase sequences as out-group. The root locates at the separation of genomes with fused and split genes. We propose that the gene encoding DIPPS was recruited from the biosynthesis of phosphatidylinositol. The last DIP-synthesizing ancestor harboured separated genes for IPCT and DIPPS and this architecture was maintained in a crenarchaeal lineage, and transferred by horizontal gene transfer to hyperthermophilic marine Thermotoga species. It is plausible that the driving force for the assembly of those two genes in the early ancestor is related to the acquired advantage of DIP producers to cope with high temperature. This work corroborates the view that Archaea were the first hyperthermophilic organisms.  相似文献   

8.
Biosynthesis of di-myo-inositol-1,1′-phosphate (DIP) is proposed to occur with myo-inositol and myo-inositol 1-phosphate (I-1-P) used as precursors. Activation of the I-1-P with CTP and condensation of the resultant CDP-inositol (CDP-I) with myo-inositol then generates DIP. The sole known biosynthetic pathway of inositol in all organisms is the conversion of d-glucose-6-phosphate to myo-inositol. This conversion requires two key enzymes: l-I-1-P synthase and I-1-P phosphatase. Enzymatic assays using 31P nuclear magnetic resonance spectroscopy as well as a colorimetric assay for inorganic phosphate have confirmed the occurrence of l-I-1-P synthase and a moderately specific I-1-P phosphatase. The enzymatic reaction that couples CDP-I with myo-inositol to generate DIP has also been detected in Methanococcus igneus. 13C labeling studies with [2,3-13C]pyruvate and [3-13C]pyruvate were used to examine this pathway in M. igneus. Label distribution in DIP was consistent with inositol units formed from glucose-6-phosphate, but the label in the glucose moiety was scrambled via transketolase and transaldolase activities of the pentose phosphate pathway.Di-myo-inositol-1,1′-phosphate (DIP) is an unusual inositol derivative that has been identified as a major solute in hyperthermophilic archaea including Pyrococcus woesei (22), Pyrococcus furiosus (16), Methanococcus igneus (5), and several eubacteria of the order Thermotogales (15). Intracellular DIP increases with increasing extracellular concentrations of NaCl in both M. igneus (5) and P. furiosus (16). DIP also increases dramatically at supraoptimal growth temperatures (>80°C for M. igneus and 98 to 101°C for P. furiosus). The unusual intracellular high concentration of K+ ions and the extreme optimal growth temperatures (100 to 104°C) of P. woesei (30) suggested the role of DIP as a main counterion of K+ with a possible thermostabilizing action. Scholz et al. (22) demonstrated that among several salts, the potassium salt of DIP provided optimum enzyme stabilization when the activity of glyceraldehyde-3-phosphate dehydrogenase of P. woesei was tested at 105°C under anaerobic conditions.Since de novo synthesis of DIP occurs in response to external levels of NaCl and temperature, there must be regulatory biosynthetic mechanisms linked to osmotic pressure and temperature. To study the regulation, the enzymes and/or other proteins responsible for synthesis of this compatible solute must be isolated. This requires knowledge of the biosynthetic pathways involved in the synthesis of DIP. The sole known pathway for inositol biosynthesis in all other organisms is the conversion of d-glucose-6-phosphate to l-myo-inositol 1-phosphate (l-I-1-P) via l-myo-inositol 1-monophosphate (I-1-P) synthase and hydrolysis of I-1-P to myo-inositol via a specific phosphatase, I-1-P phosphatase (13, 14). Similar enzymes are likely to exist in methanogens. A logical pathway for the biosynthesis of DIP would then use myo-inositol and I-1-P as precursors. Activation of the I-1-P with CTP and condensation of the resultant CDP-inositol (CDP-I) with myo-inositol would generate DIP. As summarized in Fig. Fig.1,1, DIP biosynthesis requires four key enzymes: I-1-P synthase (step 1), I-1-P phosphatase (step 2), CTP:I-1-P cytidylyltransferase (step 3), and DIP synthase (step 4). The enzymes that catalyze steps 1 and 2 have been well studied in plants, yeasts, and mammalian tissues. However, the enzymes invoked for steps 3 and 4 are novel activities, although based on similar chemical transformations in cells. Open in a separate windowFIG. 1Proposed biosynthetic pathway for DIP showing the four key enzymatic activities. Based on similar transformations in other organisms, cofactors are indicated for several of the steps.This work describes the use of 31P nuclear magnetic resonance (NMR) and colorimetric assays to verify the existence of three of these activities in cell extracts of M. igneus. Specific labeling of DIP with [13C]pyruvate was also used to probe the DIP biosynthetic pathway. The pattern of 13C label incorporation from [3-13C]pyruvate and [2,3-13C]pyruvate coupled with the known stereochemistry of DIP provided evidence that M. igneus also has enzymes of the pentose phosphate pathway (transaldolase and transketolase) that scramble label in glucose-6-phosphate.  相似文献   

9.
CTP:glycerol-3-phosphate cytidylyltransferase (GCT) catalyzes the synthesis of CDP-glycerol for teichoic acid biosynthesis in certain Gram-positive bacteria. This enzyme is a model for a cytidylyltransferase family that includes the enzymes that synthesize CDP-choline and CDP-ethanolamine for phosphatidylcholine and phosphatidylethanolamine biosynthesis. We have used quenching of intrinsic tryptophan fluorescence to measure binding affinities of substrates to the GCT from Bacillus subtilis. Binding of either CTP or glycerol-3-phosphate to GCT was biphasic, with two binding constants of about 0.1-0.3 and 20-40 microm for each substrate. The stoichiometry of binding was 2 molecules of substrate/enzyme dimer, so the two binding constants represented distinctly different affinities of the enzyme for the first and second molecule of each substrate. The biphasic nature of binding was observed with the wild-type GCT as well as with several mutants with altered Km or kcat values. This negative cooperativity of binding was also seen when a catalytically defective mutant was saturated with two molecules of CTP and then titrated with glycerol-3-phosphate. Despite the pronounced negative cooperativity of substrate binding, negative cooperativity of enzyme activity was not observed. These data support a mechanism in which catalysis occurs only when the enzyme is fully loaded with 2 molecules of each substrate/enzyme dimer.  相似文献   

10.
Li Y  Chen Z  Li X  Zhang H  Huang Q  Zhang Y  Xu S 《Journal of biotechnology》2007,128(4):726-734
The need for novel antimicrobial agents to combat the emergence of multi-drug-resistant strains of Mycobacterium tuberculosis is a worldwide urgency. This study has investigated the effects on phosphorothioate-modified antisense oligodeoxyribonucleotides (PS-ODNs) against the mRNA of inositol-1-phosphate synthase, the key enzyme in the first step in inositol synthesis. Inositol is utilized by M. tuberculosis in the production of its major thiol, which is an antioxidant that helps M. tuberculosis to get rid of reactive oxygen species and electrophilic toxins. Real-time RT-PCR analysis revealed that mRNA expression of inositol-1-phosphate (I-1-P) synthase was significantly reduced upon addition of 20 microM PS-ODNs. Treatment with antisense PS-ODNs also reduced the level of mycothiol and the proliferation of M. tuberculosis and enhanced susceptibility to antibiotics. The experiments indicated that the antisense PS-ODNs could enter the cytoplasm of M. tuberculosis and inhibit the expression of I-1-P synthase. This study demonstrates that the M. tuberculosis I-1-P synthase is a target for the development of novel antibiotics and PS-ODN to I-1-P synthase is a promising antimycobaterial candidate.  相似文献   

11.
Higher plants express 3-deoxy-D-manno-octulosonate 8-phosphate synthase   总被引:3,自引:1,他引:2  
Abstract. The enzymatic activity of 3-deoxy- D-manno -octulosonate 8-phosphate (KDOP) synthase was detected in eight diverse plant species, thus providing enzymological data consistent with recent reports of the presence of 3-deoxy- D-manno -octulosonate in plant cell walls. KDOP synthase from spinach was partially purified and characterized. It possessed weak activity as 3-deoxy- D-arabino -heptulosonate 7-phosphate (DAHP) synthase. In the presence of phosphoenolpyruvate, which conferred dramatic thermostability, KDOP synthase had a catalytic temperature optimum of about 53°C. The pH optimum was 6.2, and divalent cations were neither stimulatory nor required for activity. The Km values for arabinose 5-P and phosphoenolpyruvate were 0.27 mol m−3 and about 35 mmol m−3, respectively. The kinetics of periodate oxidation of KDOP formed by spinach KDOP synthase indicate that the same stereochemical configuration exists as with bacterial KDOP. The possibility that an unregulated species of DAHP synthase found in some bacteria might in fact be a KDOP synthase exhibiting substrate ambiguity of the type seen in higher plants was examined. However, the DAHP synthase isozyme, DS-O, from Acinetobacter calcoaceticus was found to be specific for erythrose 4-P. The KDOP synthase of Acinetobacter calcoaceticus was also found to be specific for arabinose 5-P.  相似文献   

12.
The most commonly occurring sialic acid Neu5Ac (N-acetylneuraminic acid) and its deaminated form, KDN (2-keto-3-deoxy-D-glycero-D-galacto-nonulosonic acid), participate in many biological functions. The human Neu5Ac-9-P (Neu5Ac 9-phosphate) synthase has the unique ability to catalyse the synthesis of not only Neu5Ac-9-P but also KDN-9-P (KDN 9-phosphate). Both reactions are catalysed by the mechanism of aldol condensation of PEP (phosphoenolpyruvate) with sugar substrates, ManNAc-6-P (N-acetylmannosamine 6-phosphate) or Man-6-P (mannose 6-phosphate). Mouse and putative rat Neu5Ac-9-P synthases, however, do not show KDN-9-P synthase activity, despite sharing high sequence identity (>95%) with the human enzyme. Here, we demonstrate that a single mutation, M42T, in human Neu5Ac-9-P synthase can abolish the KDN-9-P synthase activity completely without compromising the Neu5Ac-9-P synthase activity. Saturation mutagenesis of Met42 of the human Neu5Ac-9-P synthase showed that the substitution with all amino acids except leucine retains only the Neu5Ac-9-P synthase activity at levels comparable with the wild-type enzyme. The M42L mutant, like the wild-type enzyme, showed the additional KDN-9-P synthase activity. In the homology model of human Neu5Ac-9-P synthase, Met42 is located 22 A (1 A=0.1 nm) away from the substrate-binding site and the impact of this distant residue on the enzyme functions is discussed.  相似文献   

13.
Tyvelose is a 3,6-dideoxyhexose found in the O-antigen of the surface lipopolysaccharides of some pathogenic bacteria. It is synthesized via a complex biochemical pathway that is initiated by the formation of CDP-D-glucose. The production of this ligand is catalyzed by the enzyme glucose-1-phosphate cytidylyltransferase, which utilizes alpha-D-glucose 1-phosphate and MgCTP as substrates. Previous x-ray crystallographic investigations have demonstrated that the Salmonella typhi enzyme complexed with the product CDP-glucose is a fully integrated hexamer displaying 32 point group symmetry. The binding pocket for CDP-glucose is shared between two subunits. Here we describe both a detailed kinetic analysis of the cytidylyltransferase and a structural investigation of the enzyme complexed with MgCTP. These data demonstrate that the reaction catalyzed by the cytidylyltransferase proceeds via a sequential rather than a Bi Bi ping-pong mechanism as was previously reported. Additionally, the enzyme utilizes both CTP and UTP equally well as substrates. The structure of the enzyme with bound MgCTP reveals that the binding pocket for the nucleotide is contained within one subunit rather than shared between two. Key side chains involved in nucleotide binding include Thr(14), Arg(15), Lys(25), and Arg(111). In the previous structure of the enzyme complexed with CDP-glucose, those residues defined by Thr(14) to Ile(21) were disordered. The kinetic and x-ray crystallographic data presented here support a mechanism for this enzyme that is similar to that reported for the glucose-1-phosphate thymidylyltransferases.  相似文献   

14.
Sphingosine 1-phosphate: synthesis and release   总被引:4,自引:0,他引:4  
Sphingosine 1-phosphate (Sph-1-P) is a bioactive sphingolipid, acting both as an intracellular second messenger and extracellular mediator, in mammalian cells. In cell types where Sph-1-P acts as an intracellular messenger, stimulation-dependent synthesis of Sph-1-P, possibly resulting from sphingosine (Sph) kinase activation, is essential. Since this important kinase has recently been cloned, precise regulation of intracellular Sph-1-P synthesis will be clarified in the near future. As an intercellular mediator, elucidation of sources for extracellular Sph-1-P is important, in addition to identification of the cell surface receptors for this phospholipid. Blood platelets are very unique in that they store Sph-1-P abundantly (possibly due to the existence of highly active Sph kinase and a lack of Sph-1-P lyase) and release this bioactive lipid extracellularly upon stimulation. It is likely that platelets are an important source for extracellular Sph-1-P, especially for plasma and serum Sph-1-P. Platelet-derived Sph-1-P seems to play an important role in vascular biology.  相似文献   

15.
Galactose-1-phosphate uridyltransferase (EC 2.7.7.10), responsible for the conversion of galactose-1-phosphate (Gal-1-P) to uridine diphosphate galactose (UDPgal) was examined in fruit peduncles of Cucumis sativus L. Two uridyltransferases (pyrophosphorylases), from I and II, were partially purified and resolved on a diethylamino-ethyl-cellulose column. Form I can utilize glucose-1-phosphate (Glc-1-P), while form II can utilize either Gal-1-P or Glc-1-P, with a preference for Gal-1-P. Form I was more heat stable than form II. Both Glc-1-P and Gal-1-P activities of form II were inactivated at the same rate by heating. The finding of a uridyltransferase with preference for Gal-1-P indicates that cucumber may have a Gal-1-P uridyltransferase (pyrophosphorylase) pathway for the catabolism of stachyose in the peduncles. The absence of the enzyme UDP-glucose-hexose-1-phosphate uridyltransferase (EC 2.7.7.12) in this tissue rules out catabolism by the classical Leloir pathway. The incorporation of carbon from UDPglc into Glc-1-P as opposed to sucrose may be regulated by the activities of the uridyltransferases. Pyrophosphate, in the same concentration range, inhibits UDP-gal formation (Ki=0.58±0.10 mM) and stimulates Glc-1-P formation. The ratio of units of pyrophosphatase to units of Gal-1-P uridyltransferase was higher in peduncles from growing fruit than from unpollinated fruit. Modulation of carbon partitioning through a uridyltransferase pathway may be a factor controlling growth of the cucumber fruit.Abbreviations Gal-1-P Galactose-1-phosphate - Glc-1-P glucose-1-phosphate - UDPgal uridine diphosphate galactose - UDPglc uridine diphosphate glucose Paper No. 6908 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh. The use of trade names in this publication does not imply endorsement by the North Carolina Agricultural Research Service of products named, nor criticism of similar ones not mentioned  相似文献   

16.
Sphingosine 1-phosphate (Sph-1-P) is a bioactive sphingolipid, acting both as an intracellular second messenger and extracellular mediator, in mammalian cells. In cell types where Sph-1-P acts as an intracellular messenger, stimulation-dependent synthesis of Sph-1-P, possibly resulting from sphingosine (Sph) kinase activation, is essential. Since this important kinase has recently been cloned, precise regulation of intracellular Sph-1-P synthesis will be clarified in the near future. As an intercellular mediator, elucidation of sources for extracellular Sph-1-P is important, in addition to identification of the cell surface receptors for this phospholipid. Blood platelets are very unique in that they store Sph-1-P abundantly (possibly due to the existence of highly active Sph kinase and a lack of Sph-1-P lyase) and release this bioactive lipid extracellularly upon stimulation. It is likely that platelets are an important source for extracellular Sph-1-P, especially for plasma and serum Sph-1-P. Platelet-derived Sph-1-P seems to play an important role in vascular biology.  相似文献   

17.
LiCl-induced (5 mEq/kg) regional differences in the cerebral phosphoinositide (PI) cycle were studied by measuring inositol-1-phosphate (Ins-1-P), an, intermediate in the PI cycle, in male Sprague Dawley and Han/Wistar rats by gas chromatography/mass spectrometry. Control Ins-1-P levels were higher frontally than caudally in both rat strains. LiCl increased Ins-1-P levels 1.8 to 7.4 fold in different, regions of brain of Sprague Dawley rats but only 1.2 to 1.8 fold in Han/Wistar rats. This strain difference offers a way to compare the effects of lithium on PI metabolism versus receptor-G protein-phospholipase C coupling mechanisms.  相似文献   

18.
19.
Howe DL  Sundaram AK  Wu J  Gatti DL  Woodard RW 《Biochemistry》2003,42(17):4843-4854
Escherichia coli 3-deoxy-D-manno-octulosonate 8-phosphate (KDO8-P) synthase is able to utilize the five-carbon phosphorylated monosaccharide, 2-deoxyribose 5-phosphate (2dR5P), as an alternate substrate, but not D-ribose 5-phosphate (R5P) nor the four carbon analogue D-erythrose 4-phosphate (E4P). However, E. coli KDO8-P synthase in the presence of either R5P or E4P catalyzes the rapid consumption of approximately 1 mol of PEP per active site, after which consumption of PEP slows to a negligible but measurable rate. The mechanism of this abortive utilization of PEP was investigated using [2,3-(13)C(2)]-PEP and [3-F]-PEP, and the reaction products were determined by (13)C, (31)P, and (19)F NMR to be pyruvate, phosphate, and 2-phosphoglyceric acid (2-PGA). The formation of pyruvate and 2-PGA suggests that the reaction catalyzed by KDO8-P synthase may be initiated via a nucleophilic attack to PEP by a water molecule. In experiments in which the homologous enzyme, 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAH7-P) synthase was incubated with D,L-glyceraldehyde 3-phosphate (G3P) and [2,3-(13)C(2)]-PEP, pyruvate and phosphate were the predominant species formed, suggesting that the reaction catalyzed by DAH7-P synthase starts with a nucleophilic attack by water onto PEP as observed in E. coli KDO8-P synthase.  相似文献   

20.
A cDNA of the mouse homologue of Escherichia coli N-acetylneuraminic acid (Neu5Ac) synthase (neuB gene product) was cloned by the PCR-based method. The mouse homologue consists of 359 amino acids, and the cDNA sequence displays 33% identity to that of the E. coli Neu5Ac synthase. The recombinant mouse homologue which is transiently expressed in HeLa cells does not exhibit the Neu5Ac synthase activity, which catalyzes condensation of phosphoenolpyruvate (PEP) and N-acetylmannosamine (ManNAc) to synthesize Neu5Ac, but the Neu5Ac 9-phosphate (Neu5Ac-9-P) synthase activity, which catalyzes condensation of PEP and ManNAc 6-phosphate (ManNAc-6-P) to synthesize Neu5Ac-9-P. Thus, the mouse homologue of E. coli Neu5Ac synthase is the Neu5Ac-9-P synthase. The Neu5Ac-9-P synthase is a cytosolic enzyme and ubiquitously distributed in mouse various tissues. Notably, the Neu5Ac-9-P synthase can not catalyze the synthesis of deaminoneuraminic acid (KDN) or KDN-9-P from PEP and Man or ManNAc-6-P, thus suggesting that the enzyme is not involved in the synthesis of KDN. This is consistent with the previous observation that only a very low activity to synthesize KDN is found in mouse B16 cells [Angata, T., et al. (1999) Biochem. Biophys. Res. Commun. 261, 326-331].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号