首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
B K Meyer  G H Perdew 《Biochemistry》1999,38(28):8907-8917
The unliganded aryl hydrocarbon receptor (AhR) exists in the cytoplasm in a tetrameric 9S core complex, consisting of the AhR ligand-binding subunit, a dimer of hsp90, and the hepatitis B virus X-associated protein 2 (XAP2), an immunophilin-related protein sharing homologous regions with FKBP12 and FKBP52. Interactions between the recently identified XAP2 subunit and other members of the unliganded AhR complex and its precise role in the AhR signal transduction pathway are presently unknown. Mapping studies indicate that XAP2 requires the PAS, hsp90, and ligand binding domain(s) of the AhR for binding, and that both proteins directly interact in the absence of hsp90. XAP2 is also able to interact with hsp90 complexes in the absence of the AhR, and C-terminal sequences of XAP2 are required for this interaction. XAP2 binds to the C-terminal end of hsp90, which contains a tetratricopeptide repeat domain acceptor site, whereas the AhR binds to a domain in the middle of hsp90. XAP2 was not found to be associated with the AhR-Arnt heterocomplex either in vitro or in nuclear extracts isolated from Hepa 1 cells treated with TCDD. Transient expression of XAP2 in COS-1 cells resulted in enhanced cytosolic AhR levels, suggesting a role for XAP2 in regulating the rate of AhR turnover.  相似文献   

2.
3.
4.
5.
The aryl hydrocarbon receptor (AhR) exists in the absence of a ligand as a tetrameric complex composed of a 95-105 kDa ligand binding subunit, a dimer of hsp90, and the immunophilin-like X-associated protein 2 (XAP2). XAP2 has a highly conserved carboxy terminal tetratricopeptide repeat domain that is required for both hsp90 and AhR binding. Hsp 90 appears to be involved in the initial folding of newly synthesized AhR, stabilization of ligand binding conformation of the receptor, and inhibition of constitutive dimerization with ARNT. XAP2 is capable of stabilizing the AhR, as well as enhancing cytoplasmic localization of the receptor. XAP2 binds to both the AhR and hsp90 in the receptor complex, and is capable of independently binding to both hsp90 and the AhR. However, the exact functional role for XAP2 in the AhR complex remains to be fully established.  相似文献   

6.
The hepatitis B virus X-associated protein 2 (XAP2) is an immunophilin homolog and core component of the aryl hydrocarbon receptor (AhR). Immunophilins are components of many steroid receptor complexes, serving a largely unknown function. Transiently expressed AhR.YFP (yellow fluorescent protein) localized to the nuclei of COS-1 and NIH-3T3 cells. Co-expression of AhR.YFP with XAP2 restored cytoplasmic localization, which was reversed by 2,3,7, 8-tetrachlorodibenzo-p-dioxin treatment (TCDD). The effect of XAP2 on AhR localization was specific involving a nuclear localization signal-mediated pathway. Examination of the ratio of AhR to XAP2 in the AhR complex revealed that approximately 25% of transiently expressed AhR was associated with XAP2, in contrast with approximately 100% when the AhR and XAP2 were co-expressed. Strikingly, TCDD did not influence these ratios, suggesting that ligand binding initiates nuclear translocation prior to complex dissociation. Analysis of endogenous AhR in Hepa-1 cells revealed that approximately 40% of the AhR complex was associated with XAP2, predicting observed AhR localization to cytoplasm and nuclei. This study reveals a novel functional role for the immunophilin-like component of a soluble receptor complex and provides new insight into the mechanism of AhR-mediated signal transduction, demonstrating the existence of two structurally distinct and possibly functionally unique forms of the AhR.  相似文献   

7.
8.
9.
Death-associated protein kinase (DAPK) has been found associated with HSP90, and inhibition of HSP90 with 17-alkylamino-17-demethoxygeldanamycin reduced expression of DAPK. These results were extended to determine whether the degradation of DAPK in the absence of HSP90 activity is dependent on the ubiquitin-proteasome pathway. Our results show that treatment of cells with geldanamycin (GA) leads to degradation of DAPK, and this degradation is attenuated by the proteasome inhibitor, lactacystin. GA-induced DAPK degradation is also dependent on phosphorylation of DAPK at Ser(308), and the cellular levels of phospho(Ser(308))-DAPK dramatically increase in response to GA treatment. Expression of two distinct ubiquitin E3 ligases, carboxyl terminus of HSC70-interacting protein (CHIP) or DIP1/Mib1, enhanced DAPK degradation, and conversely, short interfering RNA depletion of either CHIP or DIP1/Mib1 attenuated DAPK degradation. In vitro ubiquitination assays confirmed that DAPK is targeted for ubiquitination by both CHIP and DIP. Consistent with these results, DAPK is found in two distinct immune complexes, one containing HSP90 and CHIP and a second complex containing only DIP1/Mib. Collectively, these results indicate that strict modulation of DAPK activities is critical for regulation of apoptosis and cellular homeostasis.  相似文献   

10.
11.
12.
The aryl hydrocarbon receptor (AhR) has been shown to interact with an immunophilin-like molecule known as AhR-interacting protein (AIP) and to enhance AhR function. We show here that AIP associates with AhR homologues from mouse and fish, which can bind ligands such as dioxin, but nonligand binding homologues from Caenorhabditis elegans or Drosophila do not bind to AIP. However, a minimal ligand-binding domain of the AhR is incapable of binding AIP. The binding of AIP to AhR in reticulocyte lysate shows several of the characteristics of an hsp90-dependent process, including sensitivity to geldanamycin and temperature and a requirement for ATP or nonhydrolyzable analogues. Purified AIP binds to the C terminus of hsp90, and mutation of a conserved basic residue in the tetratricopeptide repeats of AIP (K266A, analogous to K97A in protein phosphatase 5) abolishes binding to hsp90. Mutation of K266A in AIP reduces binding to AhR by 75-80%; the geldanamycin sensitivity of this complex shows that AhR stabilizes the AIP-hsp90-AhR complex. The alpha-helical C terminus of AIP, which is outside the tetratricopeptide repeat domain, is absolutely required for binding to AhR as shown by deletions of the C-terminal 5 amino acids or alanine-scanning mutagenesis, but it is not required for binding of AIP to hsp90. The data support a model where 1) AIP binds to both hsp90 and AhR; 2) hsp90 is required for AhR-AIP binding; and 3) the binding of AhR to AIP stabilizes the AIP-hsp90-AhR complex.  相似文献   

13.
14.
The nitric oxide receptor soluble guanylyl cyclase (sGC) exists in multimeric protein complexes, including heat shock protein (HSP) 90 and endothelial nitric oxide synthase. Inhibition of HSP90 by geldanamycin causes proteasomal degradation of sGC protein. In this study, we have investigated whether COOH terminus of heat shock protein 70-interacting protein (CHIP), a co-chaperone molecule that is involved in protein folding but is also a chaperone-dependent ubiquitin E3 ligase, could play a role in the process of degradation of sGC. Transient overexpression of CHIP in COS-7 cells degraded heterologous sGC in a concentration-related manner; this downregulation of sGC was abrogated by the proteasome inhibitor MG-132. Transfection of tetratricopeptide repeats and U-box domain CHIP mutants attenuated sGC degradation, suggesting that both domains are indispensable for CHIP function. Results from immunoprecipitation and indirect immunofluorescent microscopy experiments demonstrated that CHIP is associated with sGC, HSP90, and HSP70 in COS-7 cells. Furthermore, CHIP increased the association of HSP70 with sGC. In in vitro ubiquitination assays using purified proteins and ubiquitin enzymes, E3 ligase CHIP directly ubiquitinated sGC; this ubiquitination was potentiated by geldanamycin in COS-7 cells, followed by proteasomal degradation. In rat aortic smooth muscle cells, endogenous sGC was also degraded by adenovirus-infected wild-type CHIP but not by the chaperone interaction-deficient K30A CHIP, whereas CHIP, but not K30A, attenuated sGC expression in, and nitric oxide donor-induced relaxation of, rat aortic rings, suggesting that CHIP plays a regulatory role under physiological conditions. This study reveals a new mechanism for the regulation of sGC, an important mediator of cellular and vascular function.  相似文献   

15.
Growth hormone receptor (GHR) endocytosis is a highly regulated process that depends on the binding and activity of the multimeric ubiquitin ligase, SCF(βTrCP) (Skp Cullin F-box). Despite a specific interaction between β-transducin repeat-containing protein (βTrCP) and the GHR, and a strict requirement for ubiquitination activity, the receptor is not an obligatory target for SCF(βTrCP)-directed Lys(48) polyubiquitination. We now show that also Lys(63)-linked ubiquitin chain formation is required for GHR endocytosis. We identified both the ubiquitin-conjugating enzyme Ubc13 and the ubiquitin ligase COOH terminus of Hsp70 interacting protein (CHIP) as being connected to this process. Ubc13 activity and its interaction with CHIP precede endocytosis of GHR. In addition to βTrCP, CHIP interacts specifically with the cytosolic tails of the dimeric GHR, identifying both Ubc13 and CHIP as novel factors in the regulation of cell surface availability of GHR.  相似文献   

16.
17.
Fibroblast growth factor receptor 3 (FGFR3) is a key regulator of growth and differentiation, whose aberrant activation causes a number of genetic diseases including achondroplasia and cancer. Hsp90 is a specialized molecular chaperone involved in stabilizing a select set of proteins termed clients. Here, we delineate the relationship of Hsp90 and co-chaperone Cdc37 with FGFR3 and the FGFR family. FGFR3 strongly associates with these chaperone complexes and depends on them for stability and function. Inhibition of Hsp90 function using the geldanamycin analog 17-AAG induces the ubiquitination and degradation of FGFR3 and reduces the signaling capacity of FGFR3. Other FGFRs weakly interact with these chaperones and are differentially influenced by Hsp90 inhibition. The Hsp90-related ubiquitin ligase CHIP is able to interact and destabilize FGFR3. Our results establish FGFR3 as a strong Hsp90 client and suggest that modulating Hsp90 chaperone complexes may beneficially influence the stability and function of FGFR3 in disease.  相似文献   

18.
19.
20.
BACKGROUND: Molecular chaperones recognize nonnative proteins and orchestrate cellular folding processes in conjunction with regulatory cofactors. However, not every attempt to fold a protein is successful, and misfolded proteins can be directed to the cellular degradation machinery for destruction. Molecular mechanisms underlying the cooperation of molecular chaperones with the degradation machinery remain largely enigmatic so far. RESULTS: By characterizing the chaperone cofactors BAG-1 and CHIP, we gained insight into the cooperation of the molecular chaperones Hsc70 and Hsp70 with the ubiquitin/proteasome system, a major system for protein degradation in eukaryotic cells. The cofactor CHIP acts as a ubiquitin ligase in the ubiquitination of chaperone substrates such as the raf-1 protein kinase and the glucocorticoid hormone receptor. During targeting of signaling molecules to the proteasome, CHIP may cooperate with BAG-1, a ubiquitin domain protein previously shown to act as a coupling factor between Hsc/Hsp70 and the proteasome. BAG-1 directly interacts with CHIP; it accepts substrates from Hsc/Hsp70 and presents associated proteins to the CHIP ubiquitin conjugation machinery. Consequently, BAG-1 promotes CHIP-induced degradation of the glucocorticoid hormone receptor in vivo. CONCLUSIONS: The ubiquitin domain protein BAG-1 and the CHIP ubiquitin ligase can cooperate to shift the activity of the Hsc/Hsp70 chaperone system from protein folding to degradation. The chaperone cofactors thus act as key regulators to influence protein quality control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号