首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Subcellular Localization of 5''-Nucleotidase in Rat Brain   总被引:2,自引:1,他引:1  
The subcellular distribution of the ectoenzyme, 5'-nucleotidase, in cerebral cortex and cerebellum of the rat was studied both biochemically and cytochemically. The fractions were characterized biochemically by marker enzymes. The localization of 5'-nucleotidase activity was also investigated cytochemically in the myelin, synaptosomal, mitochondrial, and microsomal fractions. Biochemically 5'-nucleotidase was found to be enriched in the membrane-containing fractions, i.e., myelin, synaptosomal, and microsomal fractions. Cytochemistry showed the reaction product in the myelin fraction to be associated with myelin profiles. In the synaptosomal fraction reaction product could occasionally be seen at synaptosomal membranes, although it could not be attributed unequivocally to the synaptosome itself, since in positions with reaction product unidentifiable membrane structures could always be seen attached. Mitochondria were virtually without any reaction product. In the microsomal fraction 5'-nucleotidase activity was associated with unidentifiable membrane structures. It is concluded that 5'-nucleotidase is associated with myelin profiles and that the high activity found in the synaptosomal fraction is probably not associated with nerve ending plasma membranes.  相似文献   

2.
The possible occurrence of sialyltransferase activity in the plasma membranes surrounding nerve endings (synaptosomal membranes) was studied, using calf brain cortex. The synaptosomal membranes were prepared by an improved procedure which provided: (a) a ?nerve ending fraction” consisting of at least 85% well-preserved nerve endings and containing only small quantities of membranes of intracellular origin; (b) a ?synaptosomal membrane fraction” carrying high amounts of authentic plasma membrane markers (Na+-K+ ATPase, 5′-nucleotidase, sialidase, gangliosides) with values of specific activity four to fivefold higher than those in the ?nerve ending fraction” and very small amounts of cerebroside sulphotransferase, marker of the Golgi apparatus, and of other markers of intracellular membranes (rotenone-insensitive NADH and NADPH: cytochrome c reductases), the specific activities of which were, respectively, 0.5- and 0.7-fold that in the ?nerve ending fraction”. Thus the preparation of synaptosomal membranes used had the characteristics of plasma membranes and carried a negligible contamination of membranes of intracellular origin. The distribution of sialyltransferase activity in the main brain subcellular fractions (microsomes; P2 fraction; nerve ending fraction; mitochondria) resembled most closely that of thiamine pyrophosphatase, the enzyme known to be linked to the Golgi apparatus and the plasma membranes and of acetylcholine esterase, the enzyme known to be linked to either intracellular or plasma membranes. The enrichment of sialyltransferase activity in the ?synaptosomal membrane fraction”, referred to the ?nerve ending fraction”, was practically the same as that exhibited by authentic plasma membrane markers. All this is consistent with the hypothesis that in calf brain cortex sialyltransferase has two different subcellular locations: one at the level of intracellular structures, most likely the Golgi apparatus (as described by other authors), the other in the synaptosomal plasma membranes. The basic properties (pH optimum, V/S, V/t and V/protein relationships) and detergent requirements of the synaptosomal membrane-bound sialyltransferase were established. The highest enzyme activities were recorded on exogenous acceptors, lactosylceramide and ds -fetuin. The Km values for CMP-NeuNAc were different using lactosylceramide and ds -fetuin as acceptor substrates (0.57 and 0.135 mm , respectively); the thermal stability of the enzyme acting on glycolipid acceptor was higher than that on the glycoprotein acceptor; the effect of detergents was different when using glycoprotein from glycolipid acceptors; no competition was observed between lactosylceramide and ds -fetuin. Thus the synaptosomal membranes carry at least two different sialyltransferase activities: one acting on lactosylceramide (and glycolipid acceptors), the other working on ds -fetuin (and glycoprotein acceptors). Ganglioside GM3 was recognized as the product of synaptosomal membrane-bound sialyltransferase activity working on lactosylceramide as acceptor substrate.  相似文献   

3.
1. Hexokinase activities were estimated in primary subcellular fractions from guinea-pig cerebral cortex and in sucrose-density-gradient subfractions of the mitochondrial and microsomal fractions. 2. Appreciable activities were observed in mitochondrial, microsomal and soluble fractions. The activity in the mitochondrial fraction was associated with the mitochondria rather than with myelin or nerve endings and that in the microsomal fraction was associated with membrane fragments. 3. Most of the mitochondrial activity was extracted in soluble form by osmotic ;shock'. The activity of the mitochondrial extract differed from the soluble activity in kinetic properties and in electrophoretic behaviour. 4. No evidence was obtained for the presence of a high-K(m) glucokinase in the brain. 5. The results are discussed in terms of relevance to considerations of glucose utilization by the brain.  相似文献   

4.
Abstract— A microscale modification for the preparation of subcellular fractions employing milligram and submilligram amounts of neuronal tissue (brain nuclei and autonomic ganglia) is described.
Electron microscope characterization and enzymic studies were carried out on the six subcellular fractions of sympathetic ganglia of cat thus prepared.
The synaptosomal preparations obtained from individual ganglia were poorer in their nerve ending content than those obtained from brain by previous investigators. The highest RSA for AChE was found in layer L2 which was rich in membranes and vesicle components. ChAc activity was also highly concentrated in layers L2 and L3 (membranes, nerve ending-like particles, mitochondria and 'ghosts'). MAO activity was particularly high in the layers L4 and L5 which contained a large number of mitochondria. Layer L1 (membrane fragments) and particularly layer L6 which contained mainly collagen fibres, were low in activity of all three enzymes.
After preganglionic denervation, both ChAc and AChE activities were significantly reduced in the purest nerve ending fraction, L3 while MAO activity was practically unchanged.  相似文献   

5.
Ganglioside distribution in various frog brain subcellular fractions (myelin, microsomes, mitochondria, synaptosomes, plasma membranes of nerve endings and synaptic vesicles) was investigated. The synaptosomes and plasma membranes of nerve endings were found to be the main places of ganglioside localization, ganglioside concentration being 2.42 and 1.79 times higher than that in homogenates. Gangliosides were shown to be present in synaptic vesicles. The characteristic features of gangliosides from frog brain and its subcellular fractions are the predominance of polysialogangliosides with 3-5 sialic acid residues (up to 57.4%), low content of monosialogangliosides (not more than 7%) and the presence of disialogangliosides with short carbohydrate chain. The increase of ganglioside content per one nerve cell during phylogenetic development of vertebrates is discussed.  相似文献   

6.
The subcellular distribution of proteins normally visible on two-dimension gels of rat brain tissue punches and crude brain homogenate was investigated using two-dimensional gel electrophoresis and computerized scanning densitometry. Seven enriched subcellular fractions (cytosol, mitochondria, microsomes, nucleus, crude synaptic vesicles, myelin and synaptic membrane) were generated from a crude extract of rat brain. Fifty microgram samples of the crude homogenate and each fraction were then taken and the proteins within these samples separated by two-dimensional gel electrophoresis. Proteins were stained with silver and the gels then analyzed by computerized scanning densitometry. Of 136 proteins visible on two-dimension gels of the crude homogenate that were quantitatively examined, a total of 73 (54%) were identified as being primarily located in a single subcellular fraction. The majority of these 73 proteins were found to be located primarily in either the cytosolic or mitochondrial fractions, while fewer proteins were identified as being primarily located in the microsomal, nuclear or crude synaptic vesicular subfractions. In contrast, the myelin and synaptic membrane fractions were found to be the primary location for only a single protein each that is clearly visible in the crude homogenate. In addition, gels of four of the subfractions (mitochondria, cytosol, nucleus and myelin) contained proteins that are not normally visible on gels generated using a crude extract. The subcellular location of a number of proteins found previously to be altered by specific experimental manipulations was also determined, providing further information on these proteins in brain. These results should prove useful in future experiments designed towards isolating and characterizing specific proteins of neurochemical interest.  相似文献   

7.
gamma-Hydroxybutyrate binding sites, first described on crude membranes from rat brain, have been further studied on subcellular fractions. The nerve ending fraction (fraction C) exhibits the maximal capacity for GHB binding. The two classes of binding sites (high and low affinities) described for the crude membrane preparation are enriched in this synaptosomal fraction. This result is further evidence in favor of a role for GHB as a neurotransmitter or neuromodulator in rat brain.  相似文献   

8.
1. The distribution of adenosine triphosphatase was studied in morphologically characterized subcellular fractions of guinea-pig brain. The conditions of homogenization were selected so as to favour the survival of nerve endings as organized structures. 2. A fraction consisting mainly of the external membranes of nerve endings was rich in a ouabain-sensitive Na+–K+-stimulated adenosine triphosphatase which closely resembled that present in the classical microsomal fraction studied by other workers, but which showed a higher specific activity. 3. A dinitrophenol-stimulated adenosine triphosphatase was located in the nerve-ending mitochondria. 4. The synaptic-vesicle fraction contained a small amount of adenosine triphosphatase that differed in its response to several ions and other compounds from the membrane, myelin and mitochondrial fractions, indicating freedom from contamination by these elements.  相似文献   

9.
We have made a monoclonal antibody which specifically recognizes smg p25A among many ras p21/ras p21-like GTP-binding proteins thus far purified from bovine brain membranes. By use of this antibody, we have investigated the localization and subcellular distribution of smg p25A in rat brain by light and electron microscopic immunocytochemistry and by immunoblotting. By light microscopic immunocytochemistry, specific immunoreactivity is widely distributed, most abundant in neuropil, weak in neuronal somata, and absent from white matter. By electron microscopic immunocytochemistry, intense labeling is demonstrated on most of the synapses and concentrated in the presynaptic area where synaptic vesicles are observed. Presynaptic plasma membranes are weakly labeled but mitochondria, postsynaptic plasma membranes, and postsynaptic densities are unlabeled. In subcellular fractionation analysis of cerebrum, about one-fifth of smg p25A is found in the soluble cytosol fraction and the rest is found in the particulate fraction. About half of the particulate-bound smg p25A is recovered in the P2 fraction containing synaptosomes, mitochondria, and myelin, among which a major portion of smg p25A is recovered in the synaptosomal fraction. In the synaptosomal fraction, smg p25A is concentrated about 8-fold in the fraction containing synaptic vesicles and about 3-fold in the fraction containing synaptic plasma membranes compared with the original homogenate. smg p25A is present at a low level in the fraction containing synaptosomal soluble substances but almost absent from the fractions containing intrasynaptosomal mitochondria or post-synaptic densities. These results suggest that smg p25A plays important roles in the regulation of synaptic functions such as exo-endocytotic recycling of synaptic vesicles during neurotransmitter release.  相似文献   

10.
Mice were injected intracerebrally with [14C]glucosamine, and incorporation into macromolecules in various subcellular fractions of brain was studied at a number of times after administration of the precursor. The [14C]glucosamine was rapidly incorporated into macromolecules of all the subcellular fractions of brain including both the soluble and particulate fractions of isolated nerve endings. Incorporation into macromolecules in the soluble fraction of nerve endings was quite extensive 3 hr after administration of the precursor and the specific acitvity of this fraction fell thereafter. In contrast there was only slight incorporation of [14C] leucine into the soluble protein from isolated nerve endings in the first few hours after administration, whereas the other subcellular fractions were maximally labelled at that time. The data suggests that, unlike protein which is largely transported to nerve endings in the axoplasm, there is extensive incorporation of carbohydrate into macromolecules in nerve endings. Whereas the protein component of a glycoprotein or mucopolysaccharide may be transported to the nerve ending from the perikaryon, the structure and function of this protein may be modified at the nerve ending by further incorporation of glucosamine, sialic acid and possibly other carbohydrates. The carbohydrate-containing macromolecules could influence nerve ending function immediately after these final synthetic reactions since these reactions occur at the nerve ending and not in the perikaryon.  相似文献   

11.
Mannose-rich glycopeptides derived from brain glycoproteins were obtained by proteolysis of bovine brain tissue or subcellular fractions derived from rat brain tissue. The dialyzable mannose-rich glycopeptides were isolated by colum electrophoresis and gel flitration. These glycopeptides contained, on the average, six mannose and two N-acetylglucosamine residues with variable amounts of fucose and galactose. Over 50% of the mannose-rich glycopeptides of rat brain were localized in the microsomal and synaptosomal fractions; myelin and the soluble fraction contained lesser amounts. None was recovered from the mitochondria. The amount, per mg protein, of mannose-rich oligosaccharide chains in the myelin exceeded the concentration found in the microsomal and synaptosomal fractions. The concentration of mannose-rich glycopeptides derived from glycoproteins was 50% higher in white matter than in gray. On the other hand, the non-dialyzable and acidic sialoglycopeptides showed a three-fold enrichment in gray matter compared to white. The relatively lower ratio of sialoglycopeptides to mannose-rich glycopeptides observed in white matter (2.5) compared to gray matter (6.9) is reflected in the lower value for the ratio in myelin (1.1) compared to synpatosomes (2.1). Although glycoproteins that contain mannose-rich oligosaccharide chains are present in the nerve cell and its terminals, these glycoproteins appear to be relatively enriched in myelin and/or glial membranes.  相似文献   

12.
RAPID TRANSPORT OF FUCOSYL GLYCOPROTEINS TO NERVE ENDINGS IN MOUSE BRAIN   总被引:4,自引:3,他引:1  
Abstract— Mice were injected intracerebrally with mixtures of [3H]fucose and [14C]gluco-samine, and incorporation into macromolecules in various subcellular fractions of brain was studied at 1, 2, 3 and 4 h after administration of the precursors. There was a lag of several hours between the incorporation of [3H]fucose into the glycoproteins of the whole brain fractions and of that into the soluble and particulate glycoproteins of the nerve ending fractions. In contrast, no lag was observed between the incorporation of [14C]glucosamine into the macromolecules of the whole brain fractions and of that into the soluble macro-molecules of the nerve ending fraction. We conclude that fucosyl glycoproteins of the nerve ending fraction were synthesized in the nerve cell bodies and transported to nerve endings by rapid axoplasmic transport, whereas a substantial proportion of the glucosamine in the soluble macromolecules of the nerve ending fraction was incorporated by the nerve endings themselves. In addition, our evidence indicates that cyclobeximide inhibited fucose incorporation into brain glycoproteins by inhibiting the synthesis of acceptor proteins rather than fucosyl transferase.  相似文献   

13.
—(1) ATP: creatine phosphotransferase of rat cerebral cortex is soluble to the extent of 57 per cent when the tissue is homogenized in 0.25 M-sucrose and 80 per cent when distilled water is used for tissue dispersion. Among particulate fractions, the crude mitochondria] fraction contains the highest percentage of enzyme activity. (2) Discontinuous sucrose gradient fractionation of the crude mitochondrial fraction yields about 55 per cent of the particulate activity in the nerve ending fractions and 24 per cent in the mitochondrial pellet. (3) Rupturing of the nerve-ending particles by a moderate osmotic shock designed to spare the mitochondria results in about 60 per cent of the ATP:creatine phosphotransferase becoming soluble, the remainder preserving the association with heavy particles, presumably mitochondria. (4) Subfractionation of the microsomal fraction on a discontinuous sucrose gradient reveals that this particulate component of the enzyme is an adsorption artifact. (5) The overall evidence points to at least two distinct subcellular localizations of the enzyme in rat brain cortex, a major soluble component and a particulate component. It has not been unequivocally shown whether the latter, in turn, reflects the presence of a single, mitochondrial component or whether the soluble matrix of the nerve ending particles represents a third locale for the enzyme.  相似文献   

14.
The subcellular distribution of 5'-nucleotidase and adenosine deaminase in rat brain hypothalamus and hippocampus was studied. In the hippocampus the 5'-nucleotidase activity was shown to be much higher than in the hypothalamus, while the adenosine deaminase activity, contrariwise, is nearly two times as high as that in the hypothalamus. During the analysis of subcellular distribution 5'-nucleotidase and adenosine deaminase were detected in all fractions under study, i. e., in nuclear, soluble, myelin fractions as well as in synaptic membranes, synaptosomes and "pure" mitochondria. The highest 5'-nucleotidase activity was found in the myelinic and synaptic fractions both in the hypothalamus and in the hippocampus. The highest adenosine deaminase activity was detected in the soluble fraction of the above structures. The enzyme activity in synaptic membranes and synaptosomes was nearly two times as low.  相似文献   

15.
The content and distribution of myelin basic protein (MBP) isoforms (17 and 21.5 kDa) as well as 2′,3′-cyclic nucleotide-3′-phosphodiesterase (CNPase) were determined in mitochondrial fractions (myelin fraction, synaptic and non-synaptic mitochondria) obtained after separation of brain mitochondria by Percoll density gradient. All the fractions could accumulate calcium, maintain membrane potential, and initiate the opening of the permeability transition pore (mPTP) in response to calcium overloading. Native mitochondria and structural contacts between membranes of myelin and mitochondria were found in the myelin fraction associated with brain mitochondria. Using Western blot, it was shown that addition of myelin fraction associated with brain mitochondria to the suspension of liver mitochondria can lead to binding of CNPase and MBP, present in the fraction with liver mitochondria under the conditions of both closed and opened mPTP. However, induction of mPTP opening in liver mitochondria was prevented in the presence of myelin fraction associated with brain mitochondria (Ca2+ release rate was decreased 1.5-fold, calcium retention time was doubled, and swelling amplitude was 2.8-fold reduced). These results indicate possible protective properties of MBP and CNPase.  相似文献   

16.
Studies have been made on the specific content of plasmalogen and diacylated forms of phosphatidylethanolamine and phosphatidylcholine in subcellular fractions (myelin, nuclei, microsomes, mitochondria, synaptosomes) from the brain of pigeons, as well as in the myelin fraction from the brain of the crow Corvus cornix and the hawk Accipiter gentelis. Fatty acid composition and fatty aldehyde composition of these two main phospholipids of the brain were studied in the subcellular fractions obtained. It was shown that plasmalogen forms of phospholipids are localized in birds mainly in the myelin fraction which exhibits the highest plasmalogen concentration as compared to the same fraction of all the vertebrates investigated. With respect to fatty acid and fatty aldehyde composition, as well as to the degree of their unsaturation, myelin plasmalogens from birds are similar to those from other cold-blooded and warm-blooded animals. This fact indicates that high relative content of plasmalogens together with their high unsaturation account for normal functional activity of myelin membranes in all vertebrates.  相似文献   

17.
The cerebral cortex of the rat was submitted to an extensive cell fractionation schedule and in the various fractions, protein, proteolipid protein, total phospholipids, cholesterol, galactolipids, plasmalogens, and gangliosides were determined. With increasing purification the different isolated membranous structures: i.e. myelin, nerve ending membranes, synaptic vesicles, mitochondria, and microsomes, show a definite biochemical specialization reflected in their lipid composition. The presence of gangliosides in some nerve ending membranes is confirmed, and the possible functional role of these acid glyco-lipids is discussed. The importance of proteolipids as structural components of membranes is recognized. The richness of these compounds in myelin is confirmed and a special localization in the nerve ending membranes is indicated. Analysis of the molar ratios of the different lipids and proteins in the isolated membranes demonstrates that each one has a specific pattern of molecular organization. This pattern is discussed in relation to the macromolecular structures revealed by electronmicroscopy and some of the molecular models postulated for cell membranes.  相似文献   

18.
An extensive scheme for the subcellular fractionation of myelinating mouse brain is presented. Several centrifugation procedures for the separation of membranes involved in myelinogenesis are critically appraised, and guidelines for selection of centrifugation conditions are given. Characteristics of subcellular fractions are presented in the form of electron micrographs; also presented are distribution of RNA and protein; electrophoretic profiles of membrane proteins, and verification of the myelin-specific basic proteins, proteolipid protein, and glycoprotein by the immuno-electroblot technique; and the distribution of eight marker enzyme activities. Myelin-related membranes were found to differ both qualitatively and quantitatively in their complement of myelin-specific proteins. These myelin-containing fractions appear to represent different stages of myelination that coexist in developing mouse brain. These results provide the fundamental methodologies and background information for kinetic radioisotope analysis of intracellular events in the assembly of myelin presented in a companion article.  相似文献   

19.
Ammodytoxin is a presynaptically neurotoxic (beta-neurotoxic) snake venom secretory phospholipase A(2) (sPLA(2)). We detected a 25 kDa protein which binds the toxin with very high affinity (R25) in porcine cerebral cortex. Here we show that R25 is an integral membrane protein with intracellular localisation. It is the first sPLA(2) receptor known to date that localises to intracellular membranes. Centrifugation on sucrose gradients was used to fractionate porcine cerebral cortex. The subcellular composition of the fractions was determined by following the distribution of organelle-specific markers. The distribution of R25 in the fractions matched the distribution of the mitochondrial marker succinate dehydrogenase, but not the markers for plasma membrane, lysosomes, endoplasmic reticulum, synaptic and secretory vesicles. R25 most likely resides in mitochondria, which are known to be targets for sPLA(2) neurotoxins in the nerve ending and are potentially implicated in the process of beta-neurotoxicity.  相似文献   

20.
—Disc electrophoresis was used to study the saline-soluble and detergent-soluble proteins of various parts of the auditory pathway in the guinea pig brain. The five areas studied were the cochlear nucleus, olivary complex, inferior colliculus, medial geniculate and the auditory cortex. A study was also made of the proteins extracted from subcellular fractions obtained from guinea pig cerebral cortex. The electrophoretic patterns showed small but significant differences in the five areas of the brain, both in the fast-running acidic proteins and in the very slow-moving proteins. The higher levels of the auditory pathway, to which the more complex information processing and storage is normally attributed, showed more complex electrophoretic patterns than the lower areas. Gross differences also occurred in the patterns of both the saline-soluble and T-X-100-soluble proteins of the subcellular fractions obtained by gradient density centrifugation. The simplest patterns were obtained from the myelin-rich fraction and the mitochondrial fraction whilst the most complex patterns were given by the proteins of the nerve ending fraction and the cell soluble fraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号