共查询到18条相似文献,搜索用时 62 毫秒
1.
高等植物对磷饥饿自我拯救的分子生物学机制 总被引:10,自引:0,他引:10
磷饥饿状态下,植物通过一系列生理、生化变化主动适应胁迫逆境,包括植物对土壤难溶性磷的活化、根系对低浓度有机磷的有效吸收,以及对吸收磷的再利用等。而这些生理生化反应都有其特定的分子生物学基础。本文着重综述与这三方面特性有关的分子生物学研究进展,包括与根系有机酸合成以活化难溶性磷有关的PEP羧化酶(PEPC);与有效吸收低浓度有机磷有关的高亲和力磷转运子;以及与利用生长介质中的有机磷有关的RNase、磷酸酶(APase);Ca2+-ATPase;低磷营养胁迫导致的植物与菌根菌互作的分子生物学;以及磷饥饿诱导差异表达的基因等。 相似文献
2.
磷饥饿提高了番茄幼苗质膜H^ -ATP酶活性并促进了番茄幼苗根部的H^+分泌和。动力学分析表明,磷饥饿使番茄功苗根部质膜H^ -ATP酶的K m值明显降低,亦即提高了该酶对其底物的亲和力,但对该酶的Vmax影响不大。另外,磷饥饿并不改变ATP酶的最适pH值(最适pH值为6.5)。钡酸盐显著抑制番茄幼苗根部质膜ATP酶的活性以及H^+分泌,也显著抑制番茄幼苗的Pi吸收。与对照相比,上述抑制作用在饥饿处理的植物中表现得更强,以上结果表明,磷饥饿时高亲和性Pi传递系统的诱导很可能包含质膜H^ -ATP酶的参与。 相似文献
3.
磷饥饿提高了番茄幼苗质膜H+-ATP酶活性并促进了番茄幼苗根部的H+分泌。动力学分析表明,磷饥饿使番茄幼苗根部质膜H+-ATP酶的Km值明显降低,亦即提高了该酶对其底物的亲和力,但对该酶的Vmax影响不大。另外,磷饥饿并不改变ATP酶的最适pH值(最适pH值为6.5)。钒酸盐显著抑制番茄幼苗根部质膜ATP酶的活性以及H+分泌,也显著抑制番茄幼苗的Pi吸收。与对照相比,上述抑制作用在饥饿处理的植物中表现得更强。以上结果表明,磷饥饿时高亲和性Pi传递系统的诱导很可能包含质膜H+-ATP酶的参与。 相似文献
4.
磷饥饿提高了番茄幼苗质膜H ATP酶活性并促进了番茄幼苗根部的H 分泌。动力学分析表明 ,磷饥饿使番茄幼苗根部质膜H ATP酶的Km 值明显降低 ,亦即提高了该酶对其底物的亲和力 ,但对该酶的Vmax影响不大。另外 ,磷饥饿并不改变ATP酶的最适 pH值 (最适 pH值为 6.5)。钒酸盐显著抑制番茄幼苗根部质膜ATP酶的活性以及H 分泌 ,也显著抑制番茄幼苗的Pi吸收。与对照相比 ,上述抑制作用在饥饿处理的植物中表现得更强。以上结果表明 ,磷饥饿时高亲和性Pi传递系统的诱导很可能包含质膜H ATP酶的参与。 相似文献
5.
拟南芥紫色酸性磷酸酶基因(AtPAPs)对磷饥饿的响应 总被引:2,自引:0,他引:2
根据拟南芥基因组测序所获得的信息,对拟南芥2号染色 7个可能的紫色酸性磷酸酶基因进行了cDNA克隆、测序及生物信息学分析,并对其在磷饥饿状态下转录水平的表达模式进行了研究,发现大部分的AtPAPs都是组成性表达的,只有AtPAP9,AtPAP10是诱导表达的,其中AtPAP9的转录产物是磷饥饿重新诱导的,而AtPAP10是磷饥饿诱导增加的。 相似文献
6.
磷酸饥饿对番茄幼苗生长状况及其磷吸收的影响 总被引:8,自引:2,他引:8
本文就磷酸饥饿对番茄幼苗生长状况及共磷吸收的影响进行了研究。结果表明,磷酸饥饿时,番茄幼苗的平均高度下降,而主根的长度却明显长于对照。磷酸饥饿初期对番茄幼苗鲜重累积影响不大,但随着饥饿的继续,受胁迫苗的鲜重累积与对照间的差异加大并且变得明显低于对照。 相似文献
7.
磷饥饿条件下番茄幼苗的H^+分泌速率明显提高,质膜质子泵专一性抑制剂钒酸盐能显著抑制番茄幼苗的H^+分泌,也能显著抑制其Pi吸收。此结果表明,磷饥饿时番茄幼苗Pi吸收速率的变化与H^+分泌速率的变化之间可能具有一定的相关性,并进一步暗示质膜H^+-ATPase可能参与其中,本文结果还表明,Pi/H^+的准量关系约为1:1。 相似文献
8.
9.
不同水平磷对磷饥饿墨兰某些生化特性的影响 总被引:6,自引:2,他引:6
本文研究不同水平磷对磷饥饿墨兰[Cymbidiumsinense(Andr.)Willd]植株某些生化特性的影响.随着NaH2PO4浓度的增高,植株中的无机磷酸、磷脂酸、肌醇六磷酸、磷酸已糖、高能磷酸化合物和核酸等的含量都有不同程度的提高,其中以肌醇六磷酸提高最显著.酸性磷酸酯酶活性与磷浓度呈负相关.0.20mmol/LNaH2PO4可能基本满足墨兰植株生长的要求.缺磷时叶片的蛋白质、无机磷酸和可溶性糖的含量较低,而游离氨基酸和淀粉的含量较高.因此,缺磷条件下生长的植株矮小的原因,可能主要是缺乏蛋白质。 相似文献
10.
海洋暖化导致海水上部混合层变浅,使营养盐限制情况加剧,也导致硅藻接收到的阳光辐射量增加。高光及营养盐限制的双重胁迫会影响硅藻的光合产量。该研究主要探索硅藻应对磷饥饿及高光胁迫的光合生理调控,以进一步了解海洋环境变化对硅藻光合作用的影响。将体积不同的假微型海链藻(Thalassiosira pseudonana)和威氏海链藻(T.weissflogii)在磷饥饿条件下培养,监测其光系统Ⅱ (PSII)功能变化,并将其置于高光强下,研究其光合生理响应。结果表明:磷饥饿条件下,体积较小的假微型海链藻PSII活性逐渐下降,从与D2蛋白结合的质体醌QA–到与D1蛋白结合的质体醌QB的电子传递效率降低,单位反应中心捕获的用于电子传递的能量下降,并诱导产生非光化学淬灭,而体积较大的威氏海链藻则能够维持较长时间的PSII活性;假微型海链藻在磷充足条件下相比威氏海链藻具有较高的PSII光失活功能截面(σi)值,易发生光抑制,但同时也具有高的PSII修复速率,磷饥饿对其光抑制敏感度无显著影响,而威氏海链藻在磷饥饿条件下... 相似文献
11.
高等植物病原相关蛋白 总被引:4,自引:0,他引:4
在过去的三十年中,人们对诱导系统性抗性——这一普遍存在于高等植物抗病过程中的现象——进行了深入研究。被真菌、细菌或病毒侵染后,植物表现出广泛的、长时间的系统性抗性。在这一过程中,植物细胞壁组成成分发生改变,表达各种病原相关蛋白(PR蛋白),并合成多种植物抗毒素。本文就主要的PR蛋白家族的结构和功能特性,PR蛋白的发现和分类,及PR蛋白的应用作一综述。 相似文献
12.
13.
阿拉伯半乳糖蛋白(AGPs)是广泛分布于植物体内的一类富含羟脯氨酸糖蛋白的总称,前人研究结果表明,该类蛋白参与了高等植物生长发育的诸多生物学过程.本文对高等植物AGPs基因家族的分类、AGPs糖基化的氨基酸密码和AGPs鉴定的方法进行了系统的阐述,并对在生殖发育、营养器官发生、植物与环境间的互作等方面AGPs基因的功能研究现状进行了概述,对AGPs研究的前景进行了探讨,希望为今后的相关研究带来启迪. 相似文献
14.
高等植物叶绿素生物合成的研究进展 总被引:22,自引:1,他引:22
叶绿素是植物叶绿体内参与光合作用的重要色素,其功能是捕获光能并驱动电子转移到反应中心.整个叶绿素生物合成过程(L-谷氨酰-tRNA→叶绿素a→叶绿素b)需要15步反应,涉及15种酶,迄今在模式植物拟南芥中已分离到27个编码这些酶的基因,完成了以拟南芥为代表的被子植物叶绿素生物合成全部基因的克隆.本文主要对近年来国内外有关植物叶绿素的生物合成过程及相关酶基因的克隆、生物合成途径中2个关键步骤(σ-氨基酮戊酸(ALA)合成和Mg离子插入原卟啉Ⅸ的调节)、影响叶绿素生物合成的主要因素(光、温度、营养元素等),以及叶绿素生物合成相关酶的其他生物学功能等的研究进展进行综述. 相似文献
15.
《Critical reviews in biotechnology》2013,33(1):16-30
AbstractIn both prokaryotes and eukaryotes, including plants, phosphorus (P) is an essential nutrient that is involved in various biochemical processes, such as lipid metabolism and the biosynthesis of nucleic acids and cell membranes. P also contributes to cellular signaling cascades by function as mediators of signal transduction and it also serves as a vital energy source for a wide range of biological functions. Due to its intensive use in agriculture, P resources have become limited. Therefore, it is critically important in the future to develop scientific strategies that aim to increase P use efficiency and P recycling. In addition, the biologically available soluble form of P for uptake (phosphate; Pi) is readily washed out of topsoil layers, resulting in serious environmental pollution. In addition to this environmental concern, the wash out of Pi from topsoil necessitates a continuous Pi supply to maintain adequate levels of fertilization, making the situation worse. As a coping mechanism to P stress, plants are known to undergo drastic cellular changes in metabolism, physiology, hormonal balance and gene expression. Understanding these molecular, physiological and biochemical responses developed by plants will play a vital role in improving agronomic practices, resource conservation and environmental protection as well as serving as a foundation for the development of biotechnological strategies, which aim to improve P use efficiency in crops. In this review, we will discuss a variety of plant responses to low P conditions and various molecular mechanisms that regulate these responses. In addition, we also discuss the implication of this knowledge for the development of plant biotechnological applications. 相似文献
17.
氢化酶作为一种可催化氢气氧化与质子还原的金属酶,在生物体的氢代谢过程中发挥着关键作用。已有研究表明,氢气干预可对植物的生长发育和抗逆性产生积极影响,同时一些高等植物的内源性产氢现象也已得到证实,然而关于催化内源性产氢的氢化酶目前了解较少。虽然已有多项研究表明,叶绿体可能是高等植物产氢的关键部位,但是鉴于多种植物在种子萌发时仍然可以产氢,而种子萌发过程中叶绿体还没有生成,加上氢化酶在进化上与线粒体复合物Ⅰ具有同源性,在对氢化酶研究现状进行概述的基础上,提出了高等植物线粒体具有氢化酶活性的猜想,并总结了线粒体存在氢化酶活性的初步实验证据,以期为后续线粒体与氢化酶的关系研究提供参考依据。 相似文献
18.
When sorghum seedlings were rapidly shifted from the cultural temperature of 30℃ to 40℃ and 45℃, a set of abnormal proteins, generally referred to as heat shock proteins were induced. They are a group of high molecular weight proteins (about 66–117 kD), a few intermediate molecular weight proteins (33–66kD) and a low molecular weight protein of 18 kD. At the same time, the synthesis of normal proteins was relatively depressed. The res ponse of the shoot tissues of sorghum seedings to heat shock is similar to that of the root tissues, but there are some differences in more detail between the two tissues. The synthesis of heat shock proteins in sorghum seedlings was rapid. After one-hour exposure at 45℃ their synthesis in the roots was detectable. Maximum induction took place in the second hour of exposure, thereafter their synthesis began to decline markedly. Finally, there appear to be some proteins whose synthesis was not supressed during heat shock, It is not yet known why the synthesis of these proteins is so stable. 相似文献