首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Aristolochic acid (AA), a naturally occurring nephrotoxin and carcinogen, has been found to be implicated in an unique type of renal fibrosis, designated Chinese herbs nephropathy (CHN), and associated with the development of urothelial cancer in CHN patients. Understanding, which enzymes are involved in AA activation and/or detoxication is important in the assessment of individual susceptibility of humans to this natural carcinogen. Using the nuclease P1 version of the 32P-postlabeling assay we examined the ability of microsomal NADPH: CYP reductase to activate AA to metabolites forming DNA adducts. Renal and hepatic microsomes, containing NADPH:CYP reductase, generated AA-DNA adduct patterns reproducing those found in renal tissues in patients suffering from a renal fibrosis CHN and urothelial cancer. 7-(Deoxyadenosin-N6-yl)aristolactam I, 7-(deoxyguanosin-N2-yl)aristolactam I and 7-(deoxyadenosin-N6-yl)aristolactam II were identified as AA-DNA adducts formed by AAI. Two AA-DNA adducts, 7-(deoxyguanosin-N2-yl) aristolactam II and 7- (deoxyadenosin-N6-yl) aristolactam II, were generated from AAII. According to the structures of the DNA adducts identified, nitroreduction is the crucial pathway in the metabolic activation of AA. The identity of NADPH: CYP reductase as activating enzyme in microsomes has been proved with different cofactors and an enzyme inhibitor. Alpha-lipoic acid, a selective inhibitor of NADPH: CYP reductase, significantly decreased the amount of the adducts formed by microsomes. Likewise, only a cofactor of the enzyme, NADPH, supported the DNA adduct formation of AAI and AAII, while NADH was ineffective. These results demonstrate an involvement of NADPH: CYP reductase in the activation pathway of AAI and AAII in the microsomal system. Moreover, using the purified enzyme, the participation of this enzyme in the formation of AA-DNA adducts was confirmed. The results presented here are the first report demonstrating a reductive activation of natural nitroaromatic compounds, AA, by NADPH: CYP reductase.  相似文献   

2.
Aristolochic acid (AA), a naturally occurring nephrotoxin and carcinogen, is associated with tumor development in patients suffering from Chinese herbs nephropathy (now termed aristolochic acid nephropathy, AAN) and may also be a cause for the development of a similar type of nephropathy, the Balkan endemic nephropathy (BEN). Major DNA adducts [7-(deoxyadenosin-N6-yl)-aristolactam and 7-(deoxyguanosin-N2-yl)aristolactam] formed from AA after reductive metabolic activation were found in renal tissues of patients with both diseases. Understanding which human enzymes are involved in AA activation and/or detoxication is important in the assessment of an individual's susceptibility to this plant carcinogen. This paper reviews major hepatic and renal enzymes responsible for AA-DNA adduct formation in humans. Phase I biotransformation enzymes play a crucial role in the metabolic activation of AA to species forming DNA adducts, while a role of phase II enzymes in this process is questionable. Most of the activation of AA in human hepatic microsomes is mediated by cytochrome P450 (CYP) 1A2 and, to a lower extent, by CYP1A1; NADPH:CYP reductase plays a minor role. In human renal microsomes NADPH:CYP reductase is more effective in AA activation. Prostaglandin H synthase (cyclooxygenase, COX) is another enzyme activating AA in human renal microsomes. Among the cytosolic reductases, NAD(P)H:quinone oxidoreductase (NQO1) is the most efficient in the activation of AA in human liver and kidney. Studies with purified enzymes confirmed the importance of CYPs, NADPH:CYP reductase, COX and NQO1 in the AA activation. The orientation of AA in the active sites of human CYP1A1, -1A2 and NQO1 was predicted from molecular modeling and explains the strong reductive potential of these enzymes for AA detected experimentally. We hypothesized that inter-individual variations in expressions and activities of enzymes activating AA may be one of the causes responsible for the different susceptibilities to this carcinogen reflected in the development of AA-induced nephropathies and associated urothelial cancer.  相似文献   

3.
Aristolochic acid nephropathy (AAN) is associated with the prolonged exposure to nephrotoxic and carcinogenic aristolochic acids (AAs). DNA adducts induced by AAs have been proven to be critical biomarkers for AAN. Therefore, accurate and specific quantification of AA-DNA adducts is important. In this study, a specific method using ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was developed and applied for the determination of 7-(deoxyadenosin-N(6)-yl)aristolactam I (dA-AAI) in exfoliated urothelial cells of AA-dosed rats. After the isolation from urine samples, DNA in urothelial cells were subjected to enzymatic digestion and solid-phase extraction on a C(18) Sep-Pak cartridge for the enrichment of DNA adducts. The sample extracts were analyzed by reverse-phase UPLC-MS/MS with electrospray ionization in positive ion mode. The quantification of the AA-DNA adduct was performed by using multiple reaction monitoring with reserpine as internal standard. The method provided good accuracy and precision with a detection limit of 1 ng/ml, which allowed the detection of trace of dA-AAI in exfoliated urothelial cells. After one-month oral dose of AAI at 10 mg/kg/day, 2.1±0.3 dA-AAI per 10(9) normal dA was detected in exfoliated urothelial cells of rats. Compared to the traditional methods such as (32)P-postlabelling and HPLC with fluorescence detection, the developed UPLC-MS/MS method is more specific and rapid with a retention time of 4 min. The outcome of this study may have clinical significance for diagnosing and monitoring AA-associated disease because detection of DNA adducts in exfoliated urothelial cells is non-invasive and convenient.  相似文献   

4.
Chinese herbs nephropathy (CHN), a unique type of nephropathy has been associated with the intake of weight-reducing pills containing the Chinese herb Aristolochia fangchi. Moreover, an association between the use of A. fangchi and urothelial cancer in CHN patients has been reported indicating that aristolochic acid (AA) the major alkaloid of A. fangchi might be the causal agent. Similarities of CHN to the Balkan endemic nephropathy (BEN) have led to the hypothesis of a common etiological agent for both diseases. Evidence has accumulated that BEN is an environmentally-induced disease strongly associated with the fungal mycotoxin ochratoxin A (OTA). Both, AA and OTA are nephrotoxic and carcinogenic and induce the formation of DNA adducts. As OTA has been suspected as fungal contaminant in the herbal batches used for the preparation of the weight-reducing pills we analysed tissues from CHN patients by the 32P-postlabeling procedure for the presence of DNA adducts related to both OTA and AA exposure. Whereas, AA-specific DNA adducts were detected in all five urinary tract tissues from five patients (total RAL: 32-251 adducts per 10(9) nucleotides), OTA-related DNA adducts were detectable in two kidneys and one ureter only (total RAL: 1.5-3.7 adducts per 10(9) nucleotides). Thus, OTA-related DNA adduct levels were about 50 times lower than AA-DNA adduct levels. In female and male rats that were treated with the slimming regimen in the same way like the CHN patients except that the amount of Chinese herbs was 10 times higher, AA-DNA adducts were found in kidney tissues (total RAL ranging from 51 to 83 adducts per 10(9) nucleotides) but adducts derived from OTA were not observed. These results demonstrate that OTA-related DNA adducts do not play a key role in CHN or CHN-associated urothelial cancer.  相似文献   

5.
Aristolochic acid (AA), derived from the herbal genus Aristolochia and Asarum, has recently been shown to be associated with the development of nephropathy. Upon enzyme activation, AA is metabolized to the aristolactam-nitrenium ion intermediate, which reacts with the exocyclic amino group of the DNA bases via an electrophilic attack at its C7 position, leading to the formation of the corresponding DNA adducts. The AA-DNA adducts are believed to be associated with the nephrotoxic and carcinogenic effects of AA. In this study, liquid chromatography coupled with electrospray ionization mass spectrometry (LC-MS) was used to identify and quantify the AA-DNA adducts isolated from the kidney and liver tissues of the AA-dosed rats. The deoxycytidine adduct of AA (dC-AA) and the deoxyadenosine-AA adduct (dA-AA) were detected and quantified in the tissues of rats with one single oral dose (5mg or 30mg AA/kg body weight). The deoxyguanosine adduct (dG-AA), however, was detected only in the kidney of rats that were dosed at 30mg AA/kg body weight for three consecutive days. The amount of AA-DNA adducts found in the rats correlated well with the dosage.  相似文献   

6.
Aristolochic acids (AAs), major components of plant extracts from Aristolochia species, form (after metabolic activation) pro-mutagenic DNA adducts in renal tissue. The DNA adducts can be used as biomarkers for studies of AA toxicity. Identification of these adducts is a complicated and time-consuming procedure. We present here a fast, nonisotopic, fluorescence-based assay for the detection of AA-DNA adducts in multiple samples. This approach allows analysis of AA adducts in synthetic DNA with known nucleotide composition and analysis of DNA adducts formed from chemically diverse AAs in vitro. The method can be applied to compare AA-DNA adduct formation in cells and tissues.  相似文献   

7.
8.
3-Methylindole (3MI) causes a highly tissue- and species-selective lesion of the lung. Metabolic activation of 3MI by the NADPH-dependent mixed function oxidase (MFO) system is the initial event in the lung-specific toxicity. One-electron co-oxidation of 3MI by prostaglandin H synthase (PHS) has been implicated as an alternative mechanism for toxicity in the lung that contains high PHS activity. The objective of this study was to determine if 3MI can be co-oxidized by the arachidonic acid dependent PHS complex. Ram seminal vesicle (RSV) microsomes, which lack MFO activity, were used as a source of PHS. Incubations of RSV microsomes with 3MI, at a concentration as low as 0.01 mM, showed an increase in PHS activity, as indicated by an enhanced rate of oxygen consumption. This effect was arachidonic acid dependent and was inhibited (98%) by indomethacin. Addition of 3MI resulted in a concentration-dependent increase in PHS-catalyzed prostaglandin biosynthesis from [14C]arachidonic acid. PHS-dependent oxidative metabolism of [14C]3MI resulted in a twofold increase in ethyl acetate extracted radiolabelled metabolites. ESR spin-trapping studies demonstrated the presence of a 3MI free radical generated from the metabolism of 3MI by horseradish peroxidase, a model system of PHS hydroperoxidase. The results indicate that 3MI can be co-oxidized by the arachidonic acid-dependent PHS complex. Co-oxidation of 3MI by PHS may play a role in the tissue specificity of 3MI-induced pneumotoxicity.  相似文献   

9.
Abstract: Differences in prostaglandin H synthetase (PHS) activity in the substantia nigra of age- and post-mortem interval-matched parkinsonian, Alzheimer's, and normal control brain tissue were assessed. Prostaglandin E2 (PGE2, an index of PHS activity) was higher in substantia nigra of parkinsonian brain tissue than Alzheimer's or control tissue. Incubation of substantia nigra slices with arachidonic acid (AA) increased PGE2 synthesis. Dopamine stimulated PHS synthesis of PGE2. [3H]Dopamine was activated by PHS to electrophilic intermediate(s) that covalently bound to DNA, microtubulin protein, bovine serum albumin, and sulfhydryl reagents. When AA was replaced by hydrogen peroxide, PHS/H2O2-supported binding proceeded at rates similar to those observed with PHS/AA. Indomethacin and aspirin inhibited AA-mediated cooxidation of dopamine but not H2O2-mediated metabolism. PHS-mediated metabolism of dopamine was not affected by monoamine oxidase inhibitors. Substrate requirements and effects of specific inhibitors suggest cooxidation of dopamine is mediated by the hydroperoxidase activity of PHS. 32P-postlabeling was used to detect dopamine-DNA adducts. PHS/AA activation of dopamine in the presence of DNA resulted in the formation of five dopamine-DNA adducts, i.e., 23, 43, 114, 70, and 270 amol/µg DNA. DNA adduct formation was PHS, AA, and dopamine dependent. PHS catalyzed cooxidation of dopamine in dopaminergic neuronal degeneration is discussed.  相似文献   

10.
The hydrolysis of ceramides in yeast is catalysed by the alkaline ceramidases Ypc1p and Ydc1p, two highly homologous membrane proteins localized to the ER (endoplasmic reticulum). As observed with many enzymes, Ypc1p can also catalyse the reverse reaction, i.e. condense a non-esterified fatty acid with PHS (phytosphingosine) or DHS (dihydrosphingosine) and thus synthesize ceramides. When incubating microsomes with [3H]palmitate and PHS, we not only obtained the ceramide PHS-[3H]C16:0, but also a more hydrophobic compound, which was transformed into PHS-[3H]C16:0 upon mild base treatment. The biosynthesis of a lipid with similar characteristics could also be observed in living cells labelled with [14C]serine. Its biosynthesis was dependent on the diacylglycerol acyltransfereases Lro1p and Dga1p, suggesting that it consists of an acylceramide. The synthesis of acylceramide could also be monitored using fluorescent NBD (7-nitrobenz-2-oxa-1,3-diazole)-ceramides as an acceptor substrate for microsomal assays. The Lro1p-dependent transfer of oleic acid on to NBD-ceramide was confirmed by high-resolution Fourier transform and tandem MS. Immunopurified Lro1p was equally able to acylate NBD-ceramide. Lro1p acylates NBD-ceramide by attaching a fatty acid to the hydroxy group on the first carbon atom of the long-chain base. Acylceramides are mobilized when cells are diluted into fresh medium in the presence of cerulenin, an inhibitor of fatty acid biosynthesis.  相似文献   

11.
The DNA adducts were analyzed by 32P-postlabeling method following exposure of human uroepithelial cells (HUC) to N-hydroxy-4-aminobiphenyl (N-OH-ABP), the proximate metabolite of the human bladder carcinogen 4-aminobiphenyl (ABP). TLC of the postlabeled products on the first dimension revealed several products, the majority of which stayed close to the origin and were earlier identified as the 3',5' -bisphospho derivatives of N-(deoxyguanosin-8-yl)-4-aminobiphenyl and N-(deoxyadenosin-8-yl)-4-aminobiphenyl (Carcinogenesis 13 (1993) 955; Carcinogenesis 16 (1995) 295). Here we report characterization of two additional adducts that amounted to less than 5% of the total adducts. Autoradiography of D1 chromatogram of the postlabeled products of calf thymus DNA chemically interacted with N-OH-ABP under acidic conditions revealed two adducts, #1 and #2, with R(f) values of about 0.2 and 0.3, respectively. Two adducts with D1 thin layer chromatographic properties similar to those of adducts #1 and #2 were obtained on postlabeling analyses of products generated by chemical interaction of N-acetoxy-4-aminobiphenyl (N-OAc-ABP) with deoxyguanosine-3' -monophosphate (dGp). Based on proton NMR and mass spectroscopic analyses of the synthetic products derived from N-OAc-ABP, the chemical structures of adducts #1 and #2 have been identified as 3-(deoxyguanosin-N(2)-yl)-4-aminobiphenyl, and N-(deoxyguanosin-N(2)-yl)-4-aminobiphenyl, respectively. Both of these adducts were insensitive to digestion with nuclease P1. 32P-Postlabeling analysis of the nuclease P1 enriched DNA hydrolysate of HUC cells treated with N-OH-ABP showed the presence of adduct #2 but not adduct #1. Adduct #2 was also detected in calf thymus DNA incubated with HUC cytosol and N-OH-ABP in the presence of acetyl CoA. These results suggest that in the target cells for ABP carcinogenesis in vivo, N-OH-ABP is bioactivated by acetyl CoA-dependent acyltransferases to reactive arylnitrenium ions that covalently interact at N(2)-position of deoxyguanosine in DNA.  相似文献   

12.
We have investigated the activation of p-cresol to form DNA adducts using horseradish peroxidase, rat liver microsomes and MnO(2). In vitro activation of p-cresol with horseradish peroxidase produced six DNA adducts with a relative adduct level of 8.03+/-0.43 x 10(-7). The formation of DNA adducts by oxidation of p-cresol with horseradish peroxidase was inhibited 65 and 95% by the addition of either 250 or 500 microM ascorbic acid to the incubation. Activation of p-cresol with phenobarbital-induced rat liver microsomes with NADPH as the cofactor; resulted in the formation of a single DNA adduct with a relative adduct level of 0.28+/-0.08 x 10(-7). Similar incubations of p-cresol with microsomes and cumene hydroperoxide yielded three DNA adducts with a relative adduct level of 0.35+/-0.03 x 10(-7). p-Cresol was oxidized with MnO(2) to a quinone methide. Reaction of p-cresol (QM) with DNA produced five major adducts and a relative adduct level of 20.38+/-1.16 x 10(-7). DNA adducts 1,2 and 3 formed by activation of p-cresol with either horseradish peroxidase or microsomes, are the same as that produced by p-cresol (QM). This observation suggests that p-cresol is activated to a quinone methide intermediate by these activation systems. Incubation of deoxyguanosine-3'-phosphate with p-cresol (QM) resulted in a adduct pattern similar to that observed with DNA; suggesting that guanine is the principal site for modification. Taken together these results demonstrate that oxidation of p-cresol to the quinone methide intermediate results in the formation of DNA adducts. We propose that the DNA adducts formed by p-cresol may be used as molecular biomarkers of occupational exposure to toluene.  相似文献   

13.
The present study was performed to generate monoclonal antibodies capable of detecting N-acetoxy-2-acetylaminofluorene (NA-AAF)-derived DNA adducts in human cells in situ. As an immunogen, we employed NA-AAF-modified single-stranded DNA coupled electrostatically to methylated protein and we produced five different monoclonal antibodies. All of them showed strong binding to NA-AAF-modified DNA, but had undetectable or minimal binding to undamaged DNA. Competitive inhibition experiments revealed that the epitope recognized by these antibodies is N-(deoxyguanosin-8-yl)-2-acetylaminofluorene (dG-C8-AAF) in DNA, although deacetylated N-(deoxyguanosin-8-yl)-2-aminofluorene in DNA is also recognized with slightly less efficiency. In contrast, these antibodies did not bind to 3-(deoxyguanosin-N(2)-yl)-2-acetylaminofluorene in DNA or to UV-induced lesions in DNA. Interestingly, they showed only minimal binding to small AAF-nucleoside adducts (dG-C8-AAF), indicating that DNA regions flanking a DNA-bound adduct, in addition to the adduct itself, are essential for the stable binding of the antibodies. Using an enzyme-linked immunosorbent assay with the most promising antibody (AAF-1), we detected the concentration-dependent induction of NA-AAF-modified adducts in DNA from repair deficient xeroderma pigmentosum (XP) cells treated with physiological concentrations of NA-AAF. Moreover, the assay enabled to confirm that normal human cells efficiently repaired NA-AAF-induced DNA adducts but not XP-A cells. Most importantly, the formation of NA-AAF-induced DNA adducts in individual nuclei of XP cells could be clearly visualized using indirect immunofluorescence. Thus, we succeeded in establishing novel monoclonal antibodies capable of the in situ detection of NA-AAF-induced DNA adducts in human cells.  相似文献   

14.
Prostaglandin H synthase (PHS)-2 (COX-2) is implicated in the neurodegeneration of Alzheimer and Parkinson diseases. Multiple mechanisms may be involved, including PHS-catalyzed bioactivation of neurotransmitters, precursors, and metabolites to neurotoxic free radical intermediates. Herein, in vitro studies with the purified PHS-1 (COX-1) isoform and in vivo studies of aging PHS-1 knockout mice were used to evaluate the potential neurodegenerative role of PHS-1-catalyzed bioactivation of endogenous neurotransmitters to free radical intermediates that enhance reactive oxygen species formation and oxidative DNA damage. The brains of 2-year-old wild-type (+/+) PHS-1 normal and heterozygous (+/-) and homozygous (-/-) PHS-1 knockout mice were analyzed for 8-oxo-2'-deoxyguanosine formation, characterized by high-performance liquid chromatography with electrochemical detection and by immunohistochemistry. Compared to aging PHS-1(+/+) normal mice, aging PHS-1(-/-) knockout mice had less oxidative DNA damage in the cortex, hippocampus, cerebellum, and brain stem. This PHS-1-dependent oxidative damage was not observed in young mice. In vitro incubation of purified PHS-1 and 2'-deoxyguanosine with dopamine, L-DOPA, and epinephrine, but not glutamate or norepinephrine, enhanced oxidative DNA damage. These results suggest that PHS-1-dependent accumulation of oxidatively damaged macromolecules including DNA may contribute to the mechanisms and risk factors of aging-related neurodegeneration.  相似文献   

15.
Aristolochia as human carcinogen Aristolochic acid (AA), the active principle of the old drug Aristolochia ssp. has recently been classified as human carcinogen. The elucidation of the molecular mechanism of carcinogenesis of AA in animals led to the establishment of two specific biomarkers which were used to prove a causative role of AA in human cancers. These are AA‐DNA adducts, biomarkers of exposure to AA and AT→TA transversion mutations induced by these DNA adducts, biomarkers of effect. By detecting both biomarkers in individuals who ingested Aristolochia herbs during a weight‐reduction regimen in Belgium and in farmers in the Balkans where Aristolochia ssp are growing as weeds in cereal fields AA was identified as the cause for urothelial cancer and a disease of the kidney (AAN).  相似文献   

16.
Preharvest sprouting (PHS) and high alpha-amylase activity (AA) negatively affect quality of rye grain. The objective of this study was to reveal genetic relationship between PHS and AA by developing a consensus map of QTLs controlling each trait. A method of composite interval mapping (CIM) was used to search for QTLs within the 541 × Ot1-3 and DS2 × RXL10 F2 mapping populations representing wide variation range of both traits. Sixteen QTLs for AA were detected on chromosomes 1R (3), 2R (2), 3R (2), 4R (3), 5R (3), 6R (2) and 7R (1). Their distribution was not random showing a tendency of QTL location in distal regions of chromosomes. Nine QTLs for AA located on chromosome arms 1RS, 2RL, 3RS, 4RL, 5RS, 5RL, 6RS, 6RL and 7RS coincided with QTLs for PHS. Seven QTLs for AA independent from PHS were detected on chromosome arms 1RL (2), 2RS, 3RL, 4RS, 4RL and 5RL. Four QTLs for PHS not associated with those for AA were identified on chromosomes 1RL, 2RL, 5RL and 7RL. Partial overlapping of the genetic systems controlling AA and PHS suggests that alpha-amylase found in sound grain of rye could be produced through at least three independent mechanisms i.e. PHS at its initial stage, late maturity alpha-amylase (LMA) and/or retained pericarp alpha-amylase (RPAA). Six QTLs co-located on both maps were found on chromosome arms 1RS, 2RS, 5RS, 5RL, 6RS and 6RL. Valuable features of line Ot1-3 i.e. resistance to preharvest sprouting and low alpha-amylase production in ripening grain can be attributed to seven major QTLs from chromosomes 1RL, 2RL, 5RL (2), 6RL and 7R (2). This set of QTLs, identified in line Ot1-3, might be useful in breeding sprouting resistant cultivars of rye.  相似文献   

17.
The dopamine (DA) precursor l-dihydroxyphenylalanine (L-DOPA) and metabolites dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 3-methoxytyramine may serve as substrates for prostaglandin H synthase (PHS)-catalyzed bioactivation to free radical intermediates. We used CHO-K1 cells expressing human (h) PHS-1 or hPHS-2 to investigate hPHS isozyme-dependent oxidative damage and cytotoxicity. hPHS-1- and hPHS-2-expressing cells incubated with DA, L-DOPA, DOPAC, or HVA exhibited increased cytotoxicity compared to untransfected cells, and cytotoxicity was increased further by exogenous arachidonic acid (AA), which increased hPHS activity. Preincubation with catalase, which detoxifies reactive oxygen species, or acetylsalicylic acid, an inhibitor of hPHS-1 and -2, reduced the cytotoxicity caused by DA, L-DOPA, DOPAC, and HVA in hPHS-1 and -2 cells both with and without AA. Protein oxidation was increased in hPHS-1 and -2 cells exposed to DA or L-DOPA and further increased by AA addition. DNA oxidation was enhanced earlier and at lower substrate concentrations than protein oxidation in both hPHS-1 and -2 cells by DA, L-DOPA, DOPAC, and HVA and further enhanced by AA addition. hPHS-2 cells seemed more susceptible than hPHS-1 cells, whereas untransfected CHO-K1 cells were less susceptible. Thus, isozyme-specific, hPHS-dependent oxidative damage and cytotoxicity caused by neurotransmitters, their precursors, and their metabolites may contribute to neurodegeneration associated with aging.  相似文献   

18.
A series of benzimidazole-based inhibitors of respiratory syncytial virus (RSV) fusion were optimized for antiviral potency, membrane permeability and metabolic stability in human liver microsomes. 1-Cyclopropyl-1,3-dihydro-3-[[1-(4-hydroxybutyl)-1H-benzimidazol-2-yl]methyl]-2H-imidazo[4,5-c]pyridin-2-one (6m, BMS-433771) was identified as a potent RSV inhibitor demonstrating good bioavailability in the mouse, rat, dog and cynomolgus monkey that demonstrated antiviral activity in the BALB/c and cotton rat models of infection following oral administration.  相似文献   

19.
To investigate whether cytochrome P-450 catalyzes the covalent binding of substrates to DNA by one-electron oxidation, the ability of both uninduced and 3-methylcholanthrene (MC) induced rat liver microsomes and nuclei to catalyze covalent binding of benzo[a]pyrene (BP) to DNA and formation of the labile adduct 7-(benzo[a]pyren-6-yl)guanine (BP-N7Gua) was investigated. This adduct arises from the reaction of the BP radical cation at C-6 with the nucleophilic N-7 of the guanine moiety. In the various systems studied, 1-9 times more BP-N7Gua adduct was isolated than the total amount of stable BP adducts in the DNA. The specific cytochrome P-450 inhibitor 2-[(4,6-dichloro-o-biphenyl)oxy]ethylamine hydrobromide (DPEA) reduced or eliminated BP metabolism, binding of BP to DNA, and formation of BP-N7Gua by cytochrome P-450 in both microsomes and nuclei. The effects of the antioxidants cysteine, glutathione, and p-methoxythiophenol were also investigated. Although cysteine had no effect on the microsome-catalyzed processes, glutathione and p-methoxythiophenol inhibited BP metabolism, binding of BP to DNA, and formation of BP-N7Gua by cytochrome P-450 in both microsomes and nuclei. The decreased levels of binding of BP to DNA in the presence of glutathione or p-methoxythiophenol are matched by decreased amounts of BP-N7Gua adduct and of stable BP-DNA adducts detected by the 32P-postlabeling technique. This study represents the first demonstration of cytochrome P-450 mediating covalent binding of substrates to DNA via one-electron oxidation and suggests that this enzyme can catalyze peroxidase-type electron-transfer reactions.  相似文献   

20.
The involvement of cytochrome P-450 isozymes in the activation of benzo[a]pyrene (BP) by human placental and liver microsomes was studied in vitro using monoclonal antibodies (Mab) toward the major 3-methylcholanthrene (MC)-inducible and phenobarbital-inductible rat liver P-450 isozymes (Mab 1-7-1 and Mab 2-66-3, respectively). Microsomes from human placenta and liver and rat liver were incubated with BP and DNA, and BP-diolepoxide-DNA (BPDE-DNA) adducts were measured by synchronous fluorescence spectrophotometry (SFS). The only BP metabolite giving the same fluorescence peak as chemically modified BPDE-DNA was BP-7,8-dihydrodiol. Five (smokers) out of 29 human placentas (smokers and nonsmokers), and five out of nine human livers were able to metabolically activate BP to BPDE-DNA adducts in this system. The Mab 1-7-1 totally inhibited the formation of BPDE-DNA adducts in placental microsomal incubations. Inhibition using rat or human liver microsomes was 50-60% and about 90%, respectively. The Mab 2-66-3 had no effect in any of the microsome types. Adduct formation was inhibited more strongly and at lower concentrations of Mab 1-7-1 compared with the inhibition of AHH activity. This study is a clear indication of the major role of P-450IA1 (P-450c) in human placenta and probably P-450IA2 (P-450d) in human liver in BP activation, while other isozymes also take part in the activation in rat liver. Furthermore, this clearly indicates that AHH activity and BP activation are not necessarily associated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号