首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Leflunomide is an immunomodulatory agent used for the treatment of rheumatoid arthritis. In this study, we investigated the effect of A77 1726 – the active metabolite of leflunomide – on the production of IL-1 receptor antagonist (IL-1Ra) by human synovial fibroblasts and articular chondrocytes. Cells were incubated with A77 1726 alone or in combination with proinflammatory cytokines. IL-1Ra production was determined by ELISA. A77 1726 alone had no effect, but in the presence of IL-1β or tumour necrosis factor-α it markedly enhanced the secretion of IL-1Ra in synovial fibroblasts and chondrocytes. The effect of A77 1726 was greatest at 100 μmol/l. In synovial fibroblasts and de-differentiated chondrocytes, A77 1726 also increased IL-1β-induced IL-1Ra production in cell lysates. Freshly isolated chondrocytes contained no significant amounts of intracellular IL-1Ra. A77 1726 is a known inhibitor of pyrimidine synthesis and cyclo-oxygenase (COX)-2 activity. Addition of exogenous uridine did not significantly modify the effect of A77 1726 on IL-1Ra production, suggesting that it was not mediated by inhibition of pyrimidine synthesis. Indomethacin increased IL-1β-induced IL-1Ra secretion in synovial fibroblasts and de-differentiated chondrocytes, suggesting that inhibition of COX-2 may indeed enhance IL-1β-induced IL-1Ra production. However, the stimulatory effect of indomethacin was consistently less effective than that of A77 1726. A77 1726 increases IL-1Ra production by synovial fibroblasts and chondrocytes in the presence of proinflammatory cytokines, and thus it may possess chondroprotective effects. The effect of A77 1726 may be partially mediated by inhibition of COX-2, but other mechanisms likely concur to stimulate IL-1Ra production.  相似文献   

2.
Mast cell is one of the central effectors in inflammatory responses. Recent studies suggest that a promising therapeutic approach for various inflammatory immune diseases, including rheumatoid arthritis, multiple sclerosis, and type I allergies, is to inhibit mast cell growth and/or survival. Studies also indicate that a balanced lipid metabolism is crucial for regulating the life span of cells. Oxysterol is a well-known regulator of lipid metabolism and has diverse functions, such as inhibition of the mevalonate isoprenoid pathway, efflux of free cholesterols, and synthesis of cholesterol esters. Here, we show that 24(S),25-epoxycholesterol, a representative endogenous oxysterol, induces apoptosis in bone marrow-derived murine mast cells. Furthermore, we have revealed, for the first time, that the accumulation of neutral lipids catalyzed by acyl-CoA:cholesterol acyltransferase in the cells was involved in induction of mast cell apoptosis. Our present findings confer new insights into the roles of lipid metabolism during oxysterol-mediated mast cell apoptosis.  相似文献   

3.

Introduction  

Mast cells have been implicated to play a functional role in arthritis, especially in autoantibody-positive disease. Among the cytokines involved in rheumatoid arthritis (RA), IL-17 is an important inflammatory mediator. Recent data suggest that the synovial mast cell is a main producer of IL-17, although T cells have also been implicated as prominent IL-17 producers as well. We aimed to identify IL-17 expression by mast cells and T cells in synovium of arthritis patients.  相似文献   

4.
Inflammatory cytokines or soluble factors are essential in the pathogenesis of rheumatoid arthritis (RA). Leflunomide is an effective disease modifying antirheumatic drug (DMARD) in RA. The objective of the present study was to evaluate for the first time the effects of A77 1726 on cytokine (interleukin (IL)-8, IL-10, IL-11 secretion and tumor necrosis factor-alpha soluble receptor I (sTNFRI)) shedding in human RA fibroblast-like synoviocytes (FLS). At 100 microM, we observed an increase in IL-10 secretion, a decrease in IL-11 release and no effect on sTNFRI shedding and IL-8 secretion in IL-1beta-stimulated human RA FLS. Furthermore, at this dose, our results also confirmed that A77 1726 decreased IL-6 and prostaglandin E2 (PGE2) synthesis while it increased IL-1 receptor antagonist secretion (IL-1Ra). The mitogen-activated protein kinases (MAPKs) represent an attractive target for RA because they can regulate cytokine expression. At 100 microM, the effect of A77 1726 on IL-10 and IL-11 secretion seemed to be associated with the status of p38 MAPK activation. Our results confirmed the immunoregulatory action of leflunomide in the cytokine network involved in RA pathogenesis. It could shift the balance from cytokine mediated inflammation to cytokine directed inhibition of the inflammatory process.  相似文献   

5.
Regulation of rheumatoid synovial cell growth by ceramide   总被引:3,自引:0,他引:3  
Overgrowth of rheumatoid synoviocytes, which results in joint destruction, is due to impaired balance between cell proliferation and cell death (apoptosis). Ceramide is an important lipid messenger involved in mediating a variety of cell functions including apoptosis. We investigated the effects of ceramide on growth-promoting anti-apoptotic signals in rheumatoid synovial cells. Human synovial cells isolated from patients with rheumatoid arthritis (RA) were stimulated with platelet-derived growth factor (PDGF) in the presence or absence of C2-ceramide. The kinase activity of Akt, MEK, and ERK1/2 was analyzed in PDGF-stimulated synovial cells by Western blot analysis. Pretreatment with C2-ceramide completely inhibited PDGF-induced cell cycle progression of rheumatoid synovial cells. PDGF stimulation induced phosphorylation and activation of Akt, MEK, and ERK1/2 in rheumatoid synovial cells. C2-ceramide inhibited the activation of Akt, MEK and ERK1/2 in PDGF-stimulated synovial cells. Our data demonstrated that inhibition of anti-apoptotic kinases, such as Akt and ERK1/2, may play an important role in ceramide-mediated apoptosis of rheumatoid synovial cells.  相似文献   

6.
Mast cells are present in limited numbers in normal human synovium, but in rheumatoid arthritis and other inflammatory joint diseases this population can expand to constitute 5% or more of all synovial cells. Recent investigations in a murine model have demonstrated that mast cells can have a critical role in the generation of inflammation within the joint. This finding highlights the results of more than 20 years of research indicating that mast cells are frequent participants in non-allergic immune responses as well as in allergy. Equipped with a diversity of surface receptors and effector capabilities, mast cells are sentinels of the immune system, detecting and delivering a first response to invading bacteria and other insults. Accumulating within inflamed tissues, mast cells produce cytokines and other mediators that may contribute vitally to ongoing inflammation. Here we review some of the non-allergic functions of mast cells and focus on the potential role of these cells in murine and human inflammatory arthritis.  相似文献   

7.
Mast cells are key effectors in the pathogenesis of inflammatory and tissue destructive diseases such as rheumatoid arthritis (RA). These cells contain specialized secretory granules loaded with bioactive molecules including cytokines, growth factors, and proteases that are released upon activation. This study investigated the regulation of matrix metalloproteinase MMP-9 (gelatinase B) in human mast cells by cytokines that are known to be involved in the pathogenesis of RA. Immunohistochemical staining of synovial tissue showed abundant expression of MMP-9 by synovial tissue mast cells in patients with RA but not in normal controls. The expression, activity, and production of MMP-9 in mast cells was confirmed by RT-PCR, zymography, and Western blotting using cord blood-derived human mast cells (CB-HMC). Treatment of CB-HMC with TNF-alpha significantly increased the expression of MMP-9 mRNA and up-regulated the activity of MMP-9 in a time- and dose-dependent manner. By contrast, IFN-gamma inhibited MMP-9 mRNA and protein expression. The cytokine-mediated regulation of MMP-9 was also apparent in the human mast cell line (HMC-1) and in mouse bone marrow-derived mast cells. Furthermore, TNF-alpha significantly increased the invasiveness of CB-HMC across Matrigel-coated membranes while the addition of IFN-gamma, rTIMP-1, or pharmacological MMP inhibitors significantly reduced this process. These observations suggest that MMP-9 is not a stored product in mast cells but these cells are capable of producing this enzyme under inflammatory conditions that may facilitate the migration of mast cell progenitors to sites of inflammation and may also contribute to local tissue damage.  相似文献   

8.
Interleukin 4 (IL-4) is an important regulatory cytokine produced by activated T lymphocytes and mast cells, and regulates the growth and differentiation of cells such as B and T lymphocytes. The rapid amplification of cDNA ends (RACE) was used to clone the canine IL-4 gene. It was expressed in mammalian cells and Escherichia coli. Monoclonal antibodies were raised to rcIL-4 for use in an enzyme-linked immunosorbent assay (ELISA). This will facilitate studies on the role of cIL-4 in inflammatory diseases, particularly rheumatoid arthritis.  相似文献   

9.
10.
Mast cells are present in limited numbers in normal human synovium, but in rheumatoid arthritis and other inflammatory joint diseases this population can expand to constitute 5% or more of all synovial cells. Recent investigations in a murine model have demonstrated that mast cells can have a critical role in the generation of inflammation within the joint. This finding highlights the results of more than 20 years of research indicating that mast cells are frequent participants in non-allergic immune responses as well as in allergy. Equipped with a diversity of surface receptors and effector capabilities, mast cells are sentinels of the immune system, detecting and delivering a first response to invading bacteria and other insults. Accumulating within inflamed tissues, mast cells produce cytokines and other mediators that may contribute vitally to ongoing inflammation. Here we review some of the non-allergic functions of mast cells and focus on the potential role of these cells in murine and human inflammatory arthritis.  相似文献   

11.
Mycophenolic acid (MPA) and A77 1726, the active components of the immunosuppressants mycophenolate mophetil and leflunomide, respectively, in a dose-dependent manner inhibited interferon (IFN)-gamma/LPS-induced interleukin (IL)-6 release in confluent cultures of mouse L929 fibrosarcoma cells. In addition, both drugs markedly reduced the production of the free radical gas nitric oxide (NO), without affecting the viability of L929 cells. The inhibitors of NO synthase, aminoguanidine and L-NMMA, but not L-NMMA inactive counterpart D-NMMA, mimicked the effects of A77 1726 and MPA on IL-6 generation in L929 fibroblasts. Furthermore, NO-releasing substance SNP completely reverted IL-6 accumulation in L929 cultures treated with A77 1726, while only partial recovery of IL-6 production was observed in the presence of MPA. MPA, but not A77 1726, significantly suppressed NO-independent IL-6 release triggered by cAMP-elevating agent rolipram. Thus, while A77 1726 effect on IL-6 production was mediated through concomitant reduction of NO synthesis, MPA action was mainly independent of the interference with NO generation. Finally, both agents inhibited IFN-gamma/LPS-triggered IL-6 production in mouse primary fibroblasts, but not in mouse peritoneal macrophages, indicating cell-specificity of this novel anti-inflammatory action of A77 1726 and MPA.  相似文献   

12.
In inflammatory processes, the p38 mitogen-activated protein kinase (MAPK) signal transduction route regulates production and expression of cytokines and other inflammatory mediators. Tumor necrosis factor alpha (TNF-alpha) is a pivotal cytokine in rheumatoid arthritis and its production in macrophages is under control of the p38 MAPK route. Inhibition of the p38 MAPK route may inhibit production not only of TNF-alpha, but also of other inflammatory mediators produced by macrophages, and indirectly of inflammatory mediators by other cells induced by TNF-alpha stimulation. Here we investigate the effects of RWJ 67657, a p38 MAPK inhibitor, on mRNA expression and protein production of TNF-alpha and other inflammatory mediators, in monocyte-derived macrophages. A strong inhibition of TNF-alpha was seen at pharmacologically relevant concentrations of RWJ 67657, but also inhibition of mRNA expression of IL-1beta, IL-8, and cyclooxygenase-2 was shown. Furthermore, it was shown that monocyte-derived macrophages have a high constitutive production of matrix metalloproteinase 9, which is not affected by p38 MAPK inhibition. The results presented here may have important implications for the treatment of rheumatoid arthritis.  相似文献   

13.
Mast cells are implicated in the pathogenesis of inflammatory and autoimmune diseases. However, this notion based on studies in mast cell-deficient mice is controversial. We therefore established an in vivo model for hyperactive mast cells by specifically ablating the NF-κB negative feedback regulator A20. While A20 deficiency did not affect mast cell degranulation, it resulted in amplified pro-inflammatory responses downstream of IgE/FcεRI, TLRs, IL-1R, and IL-33R. As a consequence house dust mite- and IL-33-driven lung inflammation, late phase cutaneous anaphylaxis, and collagen-induced arthritis were aggravated, in contrast to experimental autoimmune encephalomyelitis and immediate anaphylaxis. Our results provide in vivo evidence that hyperactive mast cells can exacerbate inflammatory disorders and define diseases that might benefit from therapeutic intervention with mast cell function.  相似文献   

14.
In inflammatory processes, the p38 mitogen-activated protein kinase (MAPK) signal transduction route regulates production and expression of cytokines and other inflammatory mediators. Tumor necrosis factor α (TNF-α) is a pivotal cytokine in rheumatoid arthritis and its production in macrophages is under control of the p38 MAPK route. Inhibition of the p38 MAPK route may inhibit production not only of TNF-α, but also of other inflammatory mediators produced by macrophages, and indirectly of inflammatory mediators by other cells induced by TNF-α stimulation. Here we investigate the effects of RWJ 67657, a p38 MAPK inhibitor, on mRNA expression and protein production of TNF-α and other inflammatory mediators, in monocyte-derived macrophages. A strong inhibition of TNF-α was seen at pharmacologically relevant concentrations of RWJ 67657, but also inhibition of mRNA expression of IL-1β, IL-8, and cyclooxygenase-2 was shown. Furthermore, it was shown that monocyte-derived macrophages have a high constitutive production of matrix metalloproteinase 9, which is not affected by p38 MAPK inhibition. The results presented here may have important implications for the treatment of rheumatoid arthritis.  相似文献   

15.
The mistletoe Viscum coloratum is used in traditional Chinese medicine to treat inflammatory diseases. In this study, a cellular model in isolated human neutrophils, which are important in the pathogenesis of rheumatoid arthritis, chronic obstructive pulmonary disease, and other inflammatory diseases, was established to elucidate the anti-inflammatory functions of V. coloratum. The partially purified extract of V. coloratum (PPE-SVC) potently inhibited formyl-L-methionyl-L-leucyl-L-phenylalanine (FMLP)-induced superoxide anion generation and elastase release in a concentration-dependent manner with IC(50) values of 0.58+/-0.03 and 4.93+/-0.54 microg/ml, respectively. Furthermore, a new chalcone derivative, viscolin (4',4'-dihydroxy-2',3',6',3'-tetramethoxy-1,3-diphenylpropane), was isolated from PPE-SVC. Viscolin was demonstrated to inhibit superoxide anion generation and elastase release, as well as to accelerate resequestration of cytosolic calcium in FMLP-activated human neutrophils. Furthermore, the inhibitory effects of viscolin were reversed by protein kinase A (PKA) inhibitor, suggesting that PKA mediates the viscolin-caused inhibitions. Viscolin induced a substantial increase in cAMP levels, and that occurred through the inhibition of phosphodiesterase (PDE) activity but not an increase in adenylate cyclase function. Consistent with this, viscolin potentiated the PGE(1)-caused inhibition of superoxide anion release and calcium mobilization, as well as elevation of cAMP formation. These results demonstrate that inhibition of inflammatory responses in human neutrophils by viscolin is associated with an elevation of cellular cAMP through inhibition of PDE. Comparable results were also observed by PPE-SVC, indicating that the effect of PPE-SVC is at least partly mediated by viscolin. In summary, viscolin is a novel inhibitor of PDE and might be useful for treatment of neutrophilic inflammation.  相似文献   

16.
The influence of a novel immunomodulating drug, leflunomide, on iNOS-dependent nitric oxide (NO) production in rodent macrophages and fibroblasts was investigated. Leflunomide's active metabolite A77 1726 caused a dose-dependent decrease of NO production in IFN-gamma-treated L929 fibroblasts. The observed effect was cell-specific, as well as stimulus-specific, since A77 1726 did not affect NO production in IFN-gamma-stimulated murine peritoneal macrophages or db-cAMP-treated L929 cells. A77 1726 reduced expression of IFN-gamma-induced iNOS and IRF-1 mRNA in L929 cells, while iNOS enzymatic activity remained unchanged. Specific inhibitor of MAP kinase kinase (MEK), PD98059, but not unselective protein kinase inhibitor genistein, completely mimicked cell-type-specific and stimulus-specific NO-inhibitory action of leflunomide. Therefore, the recently described inhibition of MEK/MAP pathway by leflunomide could present a possible mechanism for its suppression of iNOS activation in L929 fibroblasts. Finally, a similar inhibitory effect of A77 1726 on both NO production and iNOS mRNA expression was observed also in IFN-gamma + LPS-activated murine and rat primary fibroblasts.  相似文献   

17.
Tumor necrosis factor alpha (TNFalpha) is a pro-inflammatory cytokine that controls the initiation and progression of inflammatory diseases such as rheumatoid arthritis. Tpl2 is a MAPKKK in the MAPK (i.e. ERK) pathway, and the Tpl2-MEK-ERK signaling pathway is activated by the pro-inflammatory mediators TNFalpha, interleukin (IL)-1beta, and bacterial endotoxin (lipopolysaccharide (LPS)). Moreover, Tpl2 is required for TNFalpha expression. Thus, pharmacologic inhibition of Tpl2 should be a valid approach to therapeutic intervention in the pathogenesis of rheumatoid arthritis and other inflammatory diseases in humans. We have developed a series of highly selective and potent Tpl2 inhibitors, and in the present study we have used these inhibitors to demonstrate that the catalytic activity of Tpl2 is required for the LPS-induced activation of MEK and ERK in primary human monocytes. These inhibitors selectively target Tpl2 in these cells, and they block LPS- and IL-1beta-induced TNFalpha production in both primary human monocytes and human blood. In rheumatoid arthritis fibroblast-like synoviocytes these inhibitors block ERK activation, cyclooxygenase-2 expression, and the production of IL-6, IL-8, and prostaglandin E(2), and the matrix metalloproteinases MMP-1 and MMP-3. Taken together, our results show that inhibition of Tpl2 in primary human cell types can decrease the production of TNFalpha and other pro-inflammatory mediators during inflammatory events, and they further support the notion that Tpl2 is an appropriate therapeutic target for rheumatoid arthritis and other human inflammatory diseases.  相似文献   

18.
Chronic inflammation is a hallmark of several pathologies, such as rheumatoid arthritis, gastritis, inflammatory bowel disease, atherosclerosis and cancer. A wide range of anti-inflammatory chemicals have been used to treat such diseases while presenting high toxicity and numerous side effects. Here, we report the anti-inflammatory effect of a non-toxic, cost-effective natural agent, polyphenolic extract from the Tunisian quince Cydonia oblonga Miller. Lipopolysaccharide (LPS) treatment of human THP-1-derived macrophages induced the secretion of high levels of the pro-inflammatory cytokine TNF-α and the chemokine IL-8, which was inhibited by quince peel polyphenolic extract in a dose-dependent manner. Concomitantly, quince polyphenols enhanced the level of the anti-inflammatory cytokine IL-10 secreted by LPS-treated macrophages. We further demonstrated that the unexpected increase in IL-6 secretion that occurred when quince polyphenols were associated with LPS treatment was partially responsible for the polyphenols-mediated inhibition of TNF-α secretion. Biochemical analysis showed that quince polyphenols extract inhibited the LPS-mediated activation of three major cellular pro-inflammatory effectors, nuclear factor-kappa B (NF-κB), p38MAPK and Akt. Overall, our data indicate that quince peel polyphenolic extract induces a potent anti-inflammatory effect that may prove useful for the treatment of inflammatory diseases and that a quince-rich regimen may help to prevent and improve the treatment of such diseases.  相似文献   

19.
Ca2+ acts as an important second messenger in mast cells. However, the mechanisms involved in the secretion of inflammatory cytokines from activated mast cells are unknown. In this study, we examined the signaling pathway involved in calcium-related cytokine secretion in a mast cell line, RBL-2H3 cells. We report that treatment with 1,2-bis (2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester (BAPTA-AM), a chelator of intracellular calcium, can inhibit IgE-stimulated TNF-alpha and IL-6 secretion in a concentration-dependent manner with IC50 values of 0.41 and 0.014 microM, respectively. Maximal inhibition of TNFalpha- and IL-6 secretion was 58.5 +/- 3% and 87 +/- 8% in BAPTA-AM, respectively. BAPTA-AM also completely inhibited the IgE-induced TNF-alpha and IL-6 mRNA levels. In activated RBL-2H3 cells, the expression level of NF-kappaB/Rel A protein increased in the nucleus. However, the level of NF-kappaB/Rel A in nucleus was decreased by treatment of BAPTA-AM. In addition, BAPTA-AM completely inhibited the IgE-induced IkappaB kinase beta (IKKbeta) activation and IkappaBalpha phosphorylation. These observations demonstrate that the intracellular Ca2+ may play an important role in IgE-induced TNF-alpha and IL-6 secretion from mast cells via IKKbeta activation.  相似文献   

20.
Dopamine receptors are involved in several immunological diseases. We previously found that dopamine D3 receptor (D3R) on mast cells showed a high correlation with disease activity in patients with rheumatoid arthritis, but the mechanism remains largely elusive. In this study, a murine collagen-induced arthritis (CIA) model was employed in both DBA/1 mice and D3R knockout mice. Here, we revealed that D3R-deficient mice developed more severe arthritis than wild-type mice. D3R suppressed mast cell activation in vivo and in vitro via a Toll-like receptor 4 (TLR4)-dependent pathway. Importantly, D3R promoted LC3 conversion to accelerate ubiquitin-labeled TLR4 degradation. Mechanistically, D3R inhibited mTOR and AKT phosphorylation while enhancing AMPK phosphorylation in activated mast cells, which was followed by autophagy-dependent protein degradation of TLR4. In total, we found that D3R on mast cells alleviated inflammation in mouse rheumatoid arthritis through the mTOR/AKT/AMPK-LC3-ubiquitin-TLR4 signaling axis. These findings identify a protective function of D3R against excessive inflammation in mast cells, expanding significant insight into the pathogenesis of rheumatoid arthritis and providing a possible target for future treatment.Subject terms: Immunological disorders, Rheumatic diseases  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号