首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 854 毫秒
1.
Teleost pigment cells (erythrophores and melanophores) are useful models for studying the regulation of rapid, microtubule-dependent organelle transport. Previous studies suggest that melanophores regulate the direction of pigment movements via changes in intracellular cAMP (Rozdzial and Haimo, 1986a; Sammak et al., 1992), whereas erythrophores may use calcium- (Ca(2+)-) based regulation (Luby- Phelps and Porter, 1982; McNiven and Ward, 1988). Despite these observations, there have been no direct measurements in intact erythrophores or any cell type correlating changes of intracellular free Ca2+ ([Ca2+]i) with organelle movements. Here we demonstrate that extracellular Ca2+ is necessary and that a Ca2+ influx via microinjection is sufficient to induce pigment aggregation in erythrophores, but not melanophores of squirrel fish. Using the Ca(2+)- sensitive indicator, Fura-2, we demonstrate that [Ca2+]i rises dramatically concomitant with aggregation of pigment granules in erythrophores, but not melanophores. In addition, we find that an erythrophore stimulated to aggregate pigment will immediately transmit a rise in [Ca2+]i to neighboring cells, suggesting that these cells are electrically coupled. Surprisingly, we find that a fall in [Ca2+]i is not sufficient to induce pigment dispersion in erythrophores, contrary to the findings obtained with the ionophore and lysed-cell models (Luby- Phelps and Porter, 1982; McNiven and Ward, 1988). We find that a rise in intracellular cAMP ([cAMP]i) induces pigment dispersion, and that this dispersive stimulus can be overridden by an aggregation stimulus, suggesting that both high [cAMP]i and low [Ca2+]i are necessary to produce pigment dispersion in erythrophores.  相似文献   

2.
Pigment aggregation in melanophores of Labrus ossifagus is controlled by an alpha2-adrenoceptor and is somehow modulated by melatonin. The signal transduction mechanisms seem to involve both an attenuation of cAMP and an increase in intracellular Ca2+, inhibiting protein kinase A or activating a phosphatase, respectively. These effects result in dephosphorylation, which in turn induces aggregation. Various alpha2-adrenoceptor agonists attenuate cAMP levels or increase the concentration of intracellular Ca2+. Noradrenaline, for example, lowers cAMP but does not affect the calcium signal whereas B-HT 920, an alpha2-adrenoceptor specific agonist, does not induce a cAMP decrease but does appear to induce an increase in intracellular Ca2+. This later inference is drawn from experiments with BAPTA/AM, an intracellular calcium chelator, which counteracts the aggregation induced by B-HT 920. Interestingly, the very potent alpha2-adrenoceptor agonist medetomidine apparently activates both signal transduction pathways, which could explain its high efficacy in producing aggregation. Melatonin itself does not cause pigment aggregation, but it potentiates noradrenaline-induced aggregation. It has been suggested that melatonin receptors and alpha2-adrenoceptors follow the same signal transduction pathway, i.e. an attenuation of cAMP. In our experiments, melatonin did not reduce cAMP levels; instead it appears to increase Ca2+ concentration, since melatonin-potentiated aggregation was inhibited by BAPTA/AM. Thus, aggregation amplified by melatonin is probably not mediated by a further decrease in cAMP, but by the same signal transduction mechanism as B-HT 920, i.e. an increase in Ca2+. This further strengthens the suggestion that melatonin and B-HT 920 bind to the same site, but it is unclear if that particular site is on the melatonin receptor or the alpha2-adrenoceptor.  相似文献   

3.
Intracellular movement of vesiculated pigment granules in angelfish melanophores is regulated by a signalling pathway that triggers kinesin and dyneinlike microtubule motor proteins. We have tested the relative importance of intracellular Ca2+ ([Ca2+]i) vs cAMP ([cAMP]i) in the control of such motility by adrenergic agonists, using fluorescence ratio imaging and many ways to artificially stimulate or suppress signals in these pathways. Fura-2 imaging reported a [Ca2+]i elevation accompanying pigment aggregation, but this increase was not essential since movement was not induced with the calcium ionophore, ionomycin, nor was movement blocked when the increases were suppressed by withdrawal of extracellular Ca2+ or loading of intracellular BAPTA. The phosphatase inhibitor, okadaic acid, blocked aggregation and induced dispersion at concentrations that suggested that the protein phosphatase PP-1 or PP-2A was continuously turning phosphate over during intracellular motility. cAMP was monitored dynamically in single living cells by microinjecting cAMP-dependent kinase in which the catalytic and regulatory subunits were labeled with fluorescein and rhodamine respectively (Adams et al., 1991. Nature (Lond.). 349:694-697). Ratio imaging of F1CRhR showed that the alpha 2-adrenergic receptor-mediated aggregation was accompanied by a dose-dependent decrease in [cAMP]i. The decrease in [cAMP]i was both necessary and sufficient for aggregation, since cAMP analogs or microinjected free catalytic subunit of A kinase-blocked aggregation or caused dispersal, whereas the cAMP antagonist RpcAMPs or the microinjection of the specific kinase inhibitor PKI5-24 amide induced aggregation. Our conclusion that cAMP, not calcium, controls bidirectional microtubule dependent motility in melanophores might be relevant to other instances of non-muscle cell motility.  相似文献   

4.
An increase in the concentration of Ca(2+) ions in the external medium ([Ca(2+)](o)) induced pigment aggregation in melanophores of three species of freshwater teleosts examined. Denervated melanophores were refractory to elevations of [Ca(2+)](o). The pigment-aggregating action was inhibited by the sympathetic blocking agents, phentolamine, prazosin and yohimbine. Bretylium, an agent known to block the release of the neurotransmitter, interfered with the response effectively. Ca(2+) blockers, such as Mn(2+), verapamil and gallopamil, also inhibited the response, possibly by inhibiting Ca(2+) entry into the presynaptic elements of melanosome-aggregating fibers. The conclusion is that the increase in [Ca(2+)](o) may induce membrane depolarization of presynaptic nervous elements around the melanophores, which open the voltage-dependent Ca(2+) channels there. The liberation of adrenergic neurotransmitter follows, which induces the aggregation of pigment in melanophores.  相似文献   

5.
The sweeteners saccharin, D-tryptophan, and neohesperidin dihydrochalcone (NHD) and the bitter tastant cyclo(Leu-Trp) stimulated concentration-dependent pigment aggregation in a Xenopus laevis melanophore cell line similar to melatonin. Like melatonin, these tastants inhibited (by 45-92%) cAMP formation in melanophores; pertussis toxin pretreatment almost completely abolished the tastant-induced cAMP inhibition, suggesting the involvement of the inhibitory pathway (Gi) of adenylyl cyclase. The presence of luzindole (melatonin receptor antagonist) almost completely abolished the inhibition of cAMP formation induced by saccharin, D-tryptophan, and cyclo(Leu-Trp) but only slightly affected the inhibitory effect of NHD. In contrast, the presence of an alpha2-adrenergic receptor antagonist, yohimbine, almost completely abolished the inhibition of cAMP formation induced by NHD but had only a minor effect on that induced by the other tastants. Thus saccharin, D-tryptophan, and cyclo(Leu-Trp) are melatonin receptor agonists whereas NHD is an alpha2-adrenergic receptor agonist, but both pathways lead to the same transduction output and cellular response. Formation of D-myo-inositol 1,4,5-trisphosphate (IP3) in melanophores was reduced (15-58%, no concentration dependence) by saccharin, D-tryptophan, and cyclo(Leu-Trp) stimulation but increased by NHD stimulation. Tastant stimulation did not affect cGMP. Although some of the above tastants were found to be membrane permeant, their direct activation of downstream transduction components in this experimental system is questionable. MT1 and MT2 melatonin receptor mRNAs were identified in rat circumvallate papilla taste buds and nonsensory epithelium, suggesting the occurrence of MT1 and MT2 receptors in these tissues. Melatonin stimulation reduced the cellular content of cAMP in taste cells, which may or may not be related to taste sensation.  相似文献   

6.
Hepatocytes from juvenile male rats (80-110 g) showed a 12-fold elevation of cAMP in response to epinephrine, which was mediated by beta 2-adrenergic receptors. In these cells, either alpha 1- or beta 2-adrenergic stimulation alone activated phosphorylase and glucose release although the alpha 1-phosphorylase response was 10-fold more sensitive to epinephrine and resulted in more rapid (by 10-20 s) activation of the enzyme. This suggests that the beta 2-adrenergic response is functionally unimportant for glycogenolysis, even in juvenile rats. beta 2-Adrenergic stimulation did, however, produce an increase in the rate of gluconeogenesis from [U-14C] lactate in these cells. Aging in the male rat was associated with attenuation of the beta 2-adrenergic cAMP response coupled with the emergence of an alpha 1-receptor-mediated accumulation of cAMP. The order of potency displayed by the alpha 1-adrenergic/cAMP system to adrenergic agonists and antagonists was identical with that of the alpha 1-adrenergic/Ca2+ system. These data suggest that, in maturity, hepatic alpha 1-receptors become linked to 2 separate transduction mechanisms, namely Ca2+ mobilization and cAMP generation. Calcium depletion of hepatocytes from adult, but not juvenile, male rats increased the alpha 1-component of the cAMP response to epinephrine, but under these conditions, alpha 1-activation of phosphorylase occurred more slowly than in calcium-replete cells. Blockade of alpha 2-adrenergic receptors did not significantly modify catecholamine effects on hepatocyte cAMP or phosphorylase a levels in male rats at any age studied, suggesting a lack of functional significance for these receptors in the regulation of glycogenolysis.  相似文献   

7.
The role of Ca2+ in the adrenergic stimulation of pinealocyte cAMP and cGMP was investigated. In this tissue alpha 1-adrenoceptor activation, which by itself is without effect, potentiates beta 1-adrenergic stimulation of cAMP and cGMP 30- to 100-fold. The present results indicate that chelation of extracellular Ca2+ with EGTA or inhibition of Ca2+ influx with inorganic Ca2+ channel blockers (La3+, Co2+, Mn2+) markedly reduces the cyclic nucleotide response to norepinephrine, a mixed alpha 1- and beta-adrenergic agonist, but not to isoproterenol, a beta-adrenergic agonist. In addition, the potentiating effects of alpha 1-adrenergic agonists were mimicked by agents which elevate cytosolic Ca2+, including K+ (EC50 = 2 X 10(-2) M), ouabain (EC50 = 2 X 10(-6) M), ionomycin (EC50 = 3 X 10(-6) M), and A23187 (EC50 = 2 X 10(-6) M); each potentiated the effects of beta-adrenergic stimulation but had no effect alone. Together these results indicate that an alpha 1-adrenoceptor-stimulated Ca2+ influx is essential for norepinephrine to increase pinealocyte cAMP and cGMP.  相似文献   

8.
A new method for rapidly evaluating the effects of drugs on receptors that regulate intracellular cAMP in a cell line derived from Xenopus laevis melanophores has been developed. Melanophores were plated into sterile 96 well microtiter plates, and 3 days later the cells were treated with melatonin for 30 min to induce melanosome aggregation. Subsequent exposure to MSH or adrenergic agonists caused dose dependent pigment dispersion that peaked within 30 min. The cumulative pigment displacement from cells could be quantitated by using a microplate reader to measure changes in transmittance of light through the wells. The acquired data enabled detailed and reproducible dose response curves and time course analyses to be generated. In addition, the assay followed for the rapid characterization of the effects of antagonists upon the (β adrenergic receptor (β AR). The assay has the potential to test the effects of ligands upon any receptor capable of mediating pigment translocation in the melanophore cell line.  相似文献   

9.
A new method for rapidly evaluating the effects of drugs on receptors that regulate intracellular cAMP in a cell line derived from Xenopus laevis melanophores has been developed. Melanophores were plated into sterile 96 well microtiter plates, and 3 days later the cells were treated with melatonin for 30 min to induce melanosome aggregation. Subsequent exposure to MSH or adrenergic agonists caused dose dependent pigment dispersion that peaked within 30 min. The cumulative pigment displacement from cells could be quantitated by using a microplate reader to measure changes in transmittance of light through the wells. The acquired data enabled detailed and reproducible dose response curves and time course analyses to be generated. In addition, the assay followed for the rapid characterization of the effects of antagonists upon the beta adrenergic receptor (beta AR). The assay has the potential to test the effects of ligands upon any receptor capable of mediating pigment translocation in the melanophore cell line.  相似文献   

10.
In melanophores of the peppered catfish and the Nile tilapia, melanin-concentrating hormone (MCH) at low doses (<1 μM) induced pigment aggregation, and the aggregated state was maintained in the presence of MCH. However, at higher MCH concentrations (such as 1 and 10 μM), pigment aggregation was immediately followed by some re-dispersion, even in the continued presence of MCH, which led to an apparent decrease in aggregation. This pigment-dispersing activity at higher concentrations of MCH required extracellular Ca2+ ions. By contrast, medaka melanophores responded to MCH only by pigment aggregation, even at the highest concentration employed (10 μM). Since it is known that medaka melanophores possess specific receptors for α-melanophore-stimulating hormone (α-MSH), the possibility that interaction between MSH receptors and MCH at high doses in the presence of Ca2+ might cause pigment dispersion is ruled out. Cyclic MCH analogs, MCH (1–14) and MCH (5–17), failed to induce pigment dispersion, whereas they induced aggregation of melanin granules. These results suggest that another type of MCH receptor that mediates pigment dispersion is present in catfish and tilapia melanophores, and that intact MCH may be the only molecule that can bind to these receptors. Determinations of cAMP content in melanophores, which were isolated from the skin of three fish species and treated with 10 nM or 10 μM MCH, indicate that MCH receptors mediating aggregation may be coupled with Gi protein, whereas MCH receptors that mediate dispersion may be linked to Gs. The response of erythrophores, xanthophores and leucophores to MCH at various concentrations was also examined, and the results suggest that the distribution patterns of the two types of MCH receptors may differ among fish species and among types of chromatophore in the same fish.  相似文献   

11.
alpha(2A)-Adrenergic receptor-mediated Ca(2+) signaling and integrin alpha(IIb)beta(3) exposure were investigated in human platelets under conditions where indirect, thromboxane- or ADP-mediated effects were absent. The alpha(2)-adrenergic receptor agonists, UK14304 and epinephrine (EPI), were unable to raise cytosolic levels of inositol 1,4,5-trisphosphate (InsP(3)) or Ca(2+) but potentiated the [Ca(2+)](i) rises evoked by other agonists that act through stimulation of phospholipase C (thrombin or platelet-activating factor) or stimulation of Ca(2+)-induced Ca(2+) release (CICR) in the absence of InsP(3) generation (thimerosal or thapsigargin). In addition, alpha(2)-adrenergic stimulation resulted in a 20% lowering in the cytosolic cAMP level. In platelets treated with G(salpha)-stimulating prostaglandin E(1), EPI increased the Ca(2+) signal evoked by either phospholipase C- or CICR-stimulating agonists mainly through modulation of the cAMP level. The stimulating effects of UK14304 and EPI on platelet Ca(2+) responses, and also on integrin alpha(IIb)beta(3) exposure and platelet aggregation, were abolished by pharmacological stimulation of cAMP-dependent protein kinase, and these effects were mimicked by inhibition of this activity. In permeabilized platelets, UK14304 and EPI potentiated InsP(3)-induced, CICR-mediated mobilization of Ca(2+) from internal stores in a similar way as did inhibition of cAMP-dependent protein kinase. In summary, a G(ialpha)-mediated decrease in cAMP level appears to play a major role in the platelet-activating effects of alpha(2A)-adrenergic receptor stimulation. Thus, in platelets, unlike other cell types, occupation of the G(ialpha)-coupled alpha(2A)-adrenergic receptors does not result in phospholipase C activation but rather in modulation of the Ca(2+) response by relieving cAMP-mediated suppression of InsP(3)-dependent CICR.  相似文献   

12.
The objective of the present study was to elucidate the events that are involved in reactive oxygen species (ROS) production and DNA damage after adrenergic receptors stimulation by cadmium, in relation to cAMP, protein kinase C (PKC) and Na+/H+ exchanger (NHE). Cadmium (50 microM) caused increased levels of ROS with a concomitant increase in DNA damage in digestive gland of Mytilus galloprovincialis. Either the use of EIPA, a NHE blocker, or calphostin C, the inhibitor of PKC, reduced cadmium effects. Cells treated with alpha1-, alpha2-, beta- and beta1- adrenergic antagonists together with cadmium reversed cadmium alone effects, while the respective adrenergic agonists, phenylephrine and isoprenaline, mimic cadmium effects. Moreover, cadmium caused an increase in the levels of cAMP in digestive gland cells that were reversed after NHE and PKC inhibition as well as in the presence of each type of adrenergic antagonist. The different sensitivity of alpha1-, alpha2-, beta-, beta1- adrenergic receptors on ROS, cAMP production and DNA damage possibly leads to the induction of two signaling pathways that may be interacting or to the presence of a compensatory pathway that acts in concert with the alpha- and beta- adrenergic receptors. In these signaling pathways PKC and NHE play significant role.  相似文献   

13.
The aggregation of melanin-granules within fish pigment cells (melanophores) can be elicited either by electrical stimulation of intrinsic nerves or by the addition of adrenergic agonists. The pigment aggregation seems to be mediated by alpha-2-adrenoceptors. In this investigation we have used various agonists and antagonists (noradrenaline, (+)- and (-)-adrenaline, isoprenaline, yohimbine and prazosin) to further characterize the pigment-aggregating receptor of Labrus ossifagus. All the results obtained support the notion of alpha-2-adrenoceptor-mediated pigment aggregation. The pertussis toxin, islet-activating protein (IAP), is known to inhibit the alpha-2-adrenoceptor-mediated signal transduction in mammals. We have used IAP to investigated whether fish melanophore alpha-2-adrenoceptors are also inhibited by this toxin. We found that IAP inactivated the alpha-2-adrenoceptor-mediated pigment aggregation in a dose-dependent manner. The inhibitory IAP-effect had a remarkably short onset-time in the melanophores (maximal effect was obtained within 10 min of incubation). Interestingly, binding of an agonist (noradrenaline) to the receptors prevented IAP from exerting its inhibitory action, whereas binding of an antagonist (yohimbine) gave no protection against the IAP-inactivation. In conclusion, the pigment-aggregating receptors of melanophores of L. ossifagus are very similar to the mammalian alpha-2-adrenoceptors. It is possible to inactivate the melanophore receptor system with IAP and this inactivation has a remarkably short onset-time. Stimulation of the alpha-2-adrenoceptors prevents IAP from inactivating the receptor system.  相似文献   

14.
It has previously been shown that alpha 2-adrenoceptors are involved in noradrenaline-induced pigment aggregation within fish melanophores. In the present investigation, melanin concentrating hormone (MCH) elicited pigment aggregation (EC50 approximately 1 x 10(-7) M) that was associated with a significant reduction in the cAMP content; 1 x 10(-7) M MCH reduced the cAMP content from a basal level of 50.4 +/- 2.8 pmol/mg protein to 36.9 +/- 3.8 pmol/mg protein. Like the alpha 2-adrenoceptor-induced pigment aggregation, the MCH response was effectively blocked by the adenylate cyclase stimulator forskolin. These findings suggest that attenuation of cAMP may serve as an intracellular signal transduction mechanism for both MCH and noradrenaline.  相似文献   

15.
alpha-Adrenergic stimulation of hepatocytes prevented, in a dose-dependent manner, the stimulation of [U-14C]lactate conversion to [14C]glucose by glucagon and exogenously added cAMP and Bt2cAMP. The inhibition was referable to an interaction with adrenergic receptors which resulted in a small decrease in hepatic cAMP levels. Low concentrations of epinephrine (10 nM) were able to inhibit phosphorylase activation and glucose output elicited by low doses of glucagon (5 X 10(-11) M to 2 X 10(-10) M). The ability of epinephrine (acting via alpha 1-adrenergic receptors), vasopressin, and angiotensin II to elicit calcium efflux was inhibited by glucagon, suggesting that intracellular redistributions of Ca2+ are importantly involved in the gluconeogenic process. It is proposed that vasopressin, angiotensin II, and catecholamines, acting primarily via alpha 1-adrenergic receptors, are responsible for inhibition of glucagon mediated stimulation of gluconeogenesis by altering subcellular calcium redistribution and decreasing cAMP levels.  相似文献   

16.
Actions of the adrenergic beta-2 agonists, salbutamol and terbutaline, and the beta-1 antagonists, metoprolol and atenolol, were examined on denervated melanophores and leucophores of a teleost, Oryzias latipes. Beta-2 agonists depressed the pigment-aggregation response of melanophores to norepinephrine, while beta-1 antagonists inhibited the dispersion response of leucophores to isoproterenol but not the melanophore response. These findings suggest that adrenergic receptors mediating pigment dispersion in melanophores are beta-2 and those of leucophores are beta-1. The possible relations between receptor mechanisms and the responses of chromatophores are discussed.  相似文献   

17.
18.
The melanophores in the dermis on scales in the bitterling, Acheilognathus lanceolatus were studies to obtain information about the control mechanism of aggregation and dispersion using intact, membrane-permeabilized and cultured cells. The cultured melanophores showed supersensitivity, namely, they responded to norepinephrine with much higher sensitivity than intact cells. The cultured melanophores failed to respond to high KCl. Melatonin aggregated and adenosine dispersed melanosomes within a cell. Digitonin permeabilized cells showed aggregation with Ca ions and dispersion by cyclic adenosine 3',5'-monophosphate (cAMP) in the presence of ATP. Movement of melanosomes was observed under the high magnification of light microscope and the tracks of each pigment granule were followed. The granules moved fast and linearly during aggregation, whereas they showed to-and-fro movement during dispersion.  相似文献   

19.
Regulation of organelle transport in melanophores by calcineurin   总被引:12,自引:9,他引:3       下载免费PDF全文
《The Journal of cell biology》1990,111(5):1939-1948
Previous studies have shown that pigment granule dispersion and aggregation in melanophores of the African cichlid, Tilapia mossambica, are regulated by protein phosphorylation and dephosphorylation, respectively (Rozdzial, M. M., and L. T. Haimo. 1986. Cell. 47:1061- 1070). The present studies suggest that calcineurin, a Ca2+/calmodulin- stimulated phosphatase, is the endogenous phosphatase that mediates pigment aggregation in melanophores. Aggregation, but not dispersion, is inhibited by okadaic acid at concentrations consistent with an inhibition of calcineurin activity. Inhibition of aggregation in melanophores that have been BAPTA loaded or treated with calmodulin antagonists implicate Ca2+ and calmodulin, respectively, in this process. Moreover, addition of calcineurin rescues aggregation in lysed melanophores which are otherwise incapable of aggregating pigment. Immunoblotting with an anticalcineurin IgG reveals that calcineurin is a component of the dermis, which contains the melanophores, and indirect immunofluorescence localizes calcineurin specifically to the melanophores. Finally, this antibody, which inhibits calcineurin's phosphatase activity (Tash, J. S., M. Krinks, J. Patel, R. L. Means, C. B. Klee, and A. R. Means. 1988. J. Cell Biol. 106:1625-1633), inhibits aggregation but has no effect on pigment granule dispersion. Together these studies indicate that retrograde transport of pigment granules to the melanophore cell center depends upon the participation of calcineurin.  相似文献   

20.
It has previously been shown that α2-adrenoceptors (α2-ARs) mediate pigment granule (melanosome) aggregation in melanophores of the teleost fish Labrus ossifagus. The present investigation scrutinized the signalling mechanisms of melanosome aggregation induced by sympathetic nerve stimulation or by exogenous addition of α-AR agonists and cAMP analogues. The following was observed: i) nerve-induced melanosome aggregation was associated with a rapid decrease in the cAMP level; ii) noradrenaline or medetomidine (an α2-AR agonist) caused melanosome aggregation and reduced the cAMP content; iii) RP-S-CI-cAMP, a membrane-permeating inhibitor of protein kinase A induced melanosome aggregation; and iv) B-HT 920 (an α2-AR agonist) and methoxamine (an α1-AR agonist) induced melanosome aggregation, although they did not reduce cAMP. It has been suggested that in some teleost species α1-ARs mediate melanosome aggregation by increasing the level of intracellular calcium. However, we found that the effect of methoxamine in melanophores from Labrus ossifagus could be blocked by yohimbine (an α2-AR antagonist) but not by equimolar concentration of prazosin (an α1-AR antagonist). Furthermore, 1 μM ionomycin (a calcium ionophore) did not induce melanosome aggregation. Our findings therefore do not indicate that α1-ARs and/or an increase in intracellular calcium mediate melanosome aggregation in Labrus ossifagus. Our results suggest that α2-AR-mediated melanosome aggregation is induced by multiple signalling pathways. One of these involves a reduction in cAMP, but none involves an increase in intracellular calcium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号