首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Thermal-assisted partial acid hydrolysis of the carbohydrate moieties of N-glycosylated peptides of horseradish peroxidase (HRP) is used to generate oligosaccharide cleavage ladders. These ladders allow direct reading of components of the oligosaccharides by mass spectrometry. Acid hydrolysis performed with 1.4, 3.1, 4.5, or 6.7M trifluoroacetic acid at 37, 65, or 95 degrees C for 30min to 24h hydrolyzed mainly the oligosaccharide units of glycopeptides with least peptide bond or amino acid side chain hydrolysis. Tryptic N-glycosylated peptides from HRP with molecular weights of 2533, 2612, 3355, 3673, and 5647Da were used as test systems in these experiments. Data showed that the most labile group of oligosaccharides is the fucose (Fuc) and the majority of the end cleavage products are peptides with one or no N-acetylglucosamine (GlcNAc) residue linked to Asparagine (Asn). Additionally, the data agree with previous reports that glycopeptides 3355 and 3673Da carry an oligosaccharide (Xyl)Man3(Fuc)GlcNAc2, glycopeptide 5647Da carries two oligosaccharides (Xyl)Man3(Fuc)GlcNAc2, and glycopeptides 2612 and 2533Da carry (Xyl)Man3GlcNAc2 and (Fuc)GlcNAc, respectively. However, the glycosylation site of the 2612Da peptide at Asn286 is partially occupied. This method is particularly useful in identifying glycopeptides and obtaining monosaccharide compositions of glycopeptides.  相似文献   

2.
The catalytic module of Hypocrea jecorina (previously Trichoderma reesei) Cel7B was homologously expressed by transformation of strain QM9414. Post-translational modifications in purified Cel7B preparations were analysed by enzymatic digestions, high performance chromatography, mass spectrometry and site-directed mutagenesis. Of the five potential sites found in the wild-type enzyme, only Asn56 and Asn182 were found to be N-glycosylated. GlcNAc(2)Man(5) was identified as the predominant N-glycan, although lesser amounts of GlcNAc(2)Man(7) and glycans carrying a mannophosphodiester bond were also detected. Repartition of neutral and charged glycan structures over the two glycosylation sites mainly accounts for the observed microheterogeneity of the protein. However, partial deamidation of Asn259 and a partially occupied O-glycosylation site give rise to further complexity in enzyme preparations.  相似文献   

3.
A peroxidase is present in the chorion of Aedes aegypti eggs and catalyzes chorion protein cross-linking during chorion hardening, which is critical for egg survival in the environment. The unique chorion peroxidase (CPO) is a glycoprotein. This study deals with the N-glycosylation site, structures, and profile of CPO-associated oligosaccharides using mass spectrometric techniques and enzymatic digestion. CPO was isolated from chorion by solubilization and several chromatographic methods. Mono-saccharide composition was analyzed by HPLC with fluorescent detection. Our data revealed that carbohydrate (D-mannose, N-acetyl D-glucosamine, D-arabinose, N-acetyl D-galactosamine, and L-fucose) accounted for 2.24% of the CPO molecular weight. A single N-glycosylation site (Asn328-Cys- Thr) was identified by tryptic peptide mapping and de novo sequencing of native and PNGase A-deglycosylated CPO using matrix-assisted laser/desorption/ionization time-of-flight mass spectrometry (MALDI/TOF/MS) and liquid chromatography/tandem mass spectrometry (LC/MS/MS). The Asn328 was proven to be a major fully glycosylated site. Potential tryptic glycopeptides and profile were first assessed by MALDI/TOF/MS and then by precursor ion scanning during LC/MS/MS. The structures of N-linked oligosaccharides were elucidated from the MS/MS spectra of glycopeptides and exoglycosidase sequencing of PNGase A-released oligosaccharides. These CPO-associated oligosaccharides had dominant Man3GlcNAc2 and Man3 (Fuc) GlcNAc2 and high mannose-type structures (Man(4-8)GlcNAc2). The truncated structures, Man2GlcNAc2 and Man2 (Fuc) GlcNAc2, were also identified. Comparison of CPO activity and Stokes radius between native and deglycosylated CPO suggests that the N-linked oligosaccharides influence the enzyme activity by stabilizing its folded state.  相似文献   

4.
Arylphorin is an insect hexameric storage protein. The structures of the oligosaccharides attached to this protein have recently been determined. However, their precise functions remain to be established. Proteolysis and MALDI MS studies disclose that the amino acid residues Asn196 and Asn344 are N-glycosylated with Glc(1)Man(9)GlcNAc(2) and Man(5-6)GlcNAc(2) oligosaccharides, respectively. Interestingly, significant variations in the amounts of glycans involving Glc(1)Man(9)GlcNAc(2) are evident in arylphorins purified from larvae reared at different seasons. The data suggest that the metabolism of larvae and local protein structure contribute to glycan development. Three-dimensional model of the protein speculated that N-glycosidic linkage to Asn196 in the Glc(1)Man(9)GlcNAc(2) structure was buried inside the twofold axis of the hexamer, whereas oligosaccharide linkages to Asn344 were completely exposed to solvent. This finding is in agreement with previous biochemical data showing that limited Glc(1)Man(9)GlcNAc(2) was released by protein-N-glycosidase F under non-denaturing conditions, in contrast to Man(5-6)GlcNAc(2) oligosaccharides.  相似文献   

5.
Hyalomma anatolicum anatolicum tick is widely distributed in many parts of Iran and while the commercial vaccines based on the application of midgut-derived recombinant Bm86 antigen are used for its control, limited information about the efficiency of this vaccination in Iran is available. Herein, with the final aim of evaluation of Bm86-based heterologous vaccination, as the primary step the Bm86 homologue of the H. a. anatolicum (Hao3) from an Iranian isolate was characterized and compared with the commercialized Bm86 and other Bm86 homologoue sequences available in GenBank.  相似文献   

6.
Differences in glycosylation between the natural alpha-1,6 glucan-6-glucanohydrolase from Penicillium minioluteum and the heterologous protein expressed in the yeast Pichia pastoris were analyzed. Glycosylation profiling was carried out using fluorophore-assisted carbohydrate electrophoresis and amine absorption high-performance liquid chromatography (NH(2)-HPLC) in combination with matrix-assisted laser desorption-time of flight-mass spectrometry. Both microorganisms produce only oligomannosidic type structures, but the oligosaccharide population differs in both enzymes. The native enzyme has mainly short oligosaccharide chains ranging from Man(5)GlcNAc(2) to Man(9)GlcNAc(2), of which Man(8)GlcNAc(2) was the most represented oligosaccharide. The oligosaccharides linked to the protein produced in P. pastoris range from Man(7)GlcNAc(2) up to Man(14)GlcNAc(2), with Man(8)GlcNAc(2) and Man(9)GlcNAc(2) being the most abundant structures. In both enzymes the first glycosylation site (Asn(5)) is always glycosylated. However, Asn(537) and Asn(540) are only partially glycosylated in an alternate manner.  相似文献   

7.
Twenty-eight enzymes, encoded by different genes and secreted by different mutant strains of Chrysosporium lucknowense, were subjected to MALDI-TOF MS peptide fingerprinting followed by analysis of the MS data using the GlycoMod tool from the ExPASy proteomic site. Various N-linked glycan structures were discriminated in the C. lucknowense proteins as a result of the analysis. N-Glycosylated peptides with modifications matching the oligosaccharide compositions contained in the GlycoSuiteDB were found in 12 proteins. The most frequently encountered N-linked glycan, found in 9 peptides from 7 proteins, was (Man)(3)(GlcNAc)(2), that is, the core pentasaccharide structure forming mammalian-type high-mannose and hybrid/complex glycans in glycoproteins from different organisms. Nine out of 12 enzymes represented variably N-glycosylated proteins carrying common (Hex)(0-4)(HexNAc)(0-6)+(Man)(3)(GlcNAc)(2) structures, most of them being hybrid/complex glycans. Various glycan structures were likely formed as a result of the enzymatic trimming of a 'parent' oligosaccharide with different glycosidases. The N-glycosylation patterns found in C. lucknowense proteins differ from those reported for the extensively studied enzymes from Aspergilli and Trichoderma species, where high-mannose glycans of variable structure have been detected.  相似文献   

8.
The TIME-EA4, from silkworm diapause eggs of pure strain C108, Bombyx mori, has glycosylated chain as tetrasaccharide (Man(2)GlcNAc(2)) attaching to the Asn(22) of T3 peptide from tryptic digests. On the other hand, from Showa silkworm strain we additionally observed a pentasaccharide (Man(3)GlcNAc(2)) on T3 at the same linkage site. The linkage pattern of the 5-sugar chain was studied through Smith degradation combined with LC-MS and MS/MS analyses. These advanced methods led us to conclude that the pentasaccharide was branching as Man 1-->3(Man 1-->6)Man 1-->4GlcNAc 1-->4GlcNAc.  相似文献   

9.
Glycoprotein 71 from Friend murine leukemia virus was digested with proteases and the glycopeptides obtained were isolated and assigned, by amino acid sequencing, to the eight N-glycosylated asparagines in the molecule; only Asn334 and Asn341 could not be separated. The oligosaccharides liberated from each glycopeptide by endo-beta-N-acetylglucosaminidase H, or by peptide-N4-(N-acetyl-beta-glucosaminyl)asparagine amidase F, were fractionated and subjected to structural analysis by one- and two-dimensional 1H NMR, as well as by methylation/gas-liquid-chromatography/mass-fragmentography. At each glycosylation site, the substituents were found to be heterogeneous including, at Asn334/341 and Asn410, substitution by different classes of N-glycans: oligomannosidic oligosaccharides, mainly Man alpha 1----6(Man alpha 1----3)Man alpha 1----6(Man alpha 1----3)Man beta 1----4GlcNAc beta 1----4GlcNAc beta 1----, were detected at Asn168, Asn334/341 and Asn410. Hybrid species, partially sialylated, intersected and (proximally) funcosylated Man alpha 1----6(Man alpha 1----3)Man alpha 1----6 and Man alpha 1----3Man alpha 1----6 and Man alpha 1----3Man alpha 1----6(Gal beta 1----4GlcNAc beta 1----2Man alpha 1----3)Man beta 1----4GlcNAc beta 1----4GlcNAc beta 1----, were found at Asn12, as previously published [Schlüter, M., Linder, D., Geyer, R., Hunsmann, H., Schneider, J. & Stirm, S. (1984) FEBS Lett. 169, 194-198] and at Asn334/341. N-Acetyllactosaminic glycans, mainly partially intersected and fucosylated NeuAc alpha 2----3 or Gal alpha 1----3Gal beta 1----4GlcNAc beta 1----2Man alpha 1----6(NeuAc alpha 2----6 or NeuAc alpha 2----3Gal-beta 1----4GlcNAc beta 1----2Man alpha 1----3)Man beta 1----4GlcNac beta 1----4GlcNAc beta 1---- with some bifurcation at ----6Man alpha 1----6, were obtained from Asn266, Asn302, Asn334/341, Asn374 and Asn410. In addition, Thr268, Thr277, Thr279, Thr304/309, as well as Ser273 and Ser275, were found to be O-glycosidically substituted by Gal beta 1----3GalNAc alpha 1----, monosialylated or desialylated at position 3 of Gal or/and position 6 of GalNAc.  相似文献   

10.
Phaseolin, the major storage protein of the common bean (Phaseolus vulgaris), is a glycoprotein which is synthesized during seed development and accumulates in protein storage vacuoles or protein bodies. The protein has three different N-linked oligosaccharide side chains: Man9(GlcNAc)2, Man7(GlcNAc)2, and Xyl-Man3(GlcNAc)2 (where Xyl represents xylose). The structures of these glycans were determined by 1H NMR spectroscopy. The Man9(GlcNAc)2 glycan has the typical structure found in plant and animal glycoproteins. The structures of the two other glycans are shown below. (Formula; see text) Phaseolin was separated by electrophoresis on denaturing gels into four size classes of polypeptides. The two abundant ones have two oligosaccharides each, whereas the less abundant ones have only one oligosaccharide each. Polypeptides with two glycans have Man7(GlcNAc)2 attached to Asn252 and Man9(GlcNAc)2 attached to Asn341. Polypeptides with only one glycan have Xyl-Man3(GlcNAc)2 attached to Asn252. Both these asparagine residues are in canonical glycosylation sites; the numbering starts with the N-terminal methionine of the signal peptide of phaseolin. The presence of the Man7(GlcNAc)2 and of Xyl-Man3(GlcNAc)2 at the same asparagine residue (position 252) of different polypeptides seems to be controlled by the glycosylation status of Asn341. When Asp341 is unoccupied, the glycan at Asn252 is complex. When Asn341 is occupied, the glycan at Asn252 is only modified to the extent that 2 mannosyl residues are removed. The processing of the glycans, after the removal of the glucose residues, involves enzymes in the Golgi apparatus as well as in the protein bodies. Formation of the Xyl-Man3(GlcNAc)2 glycan is a multistep process that involves the Golgi apparatus-mediated removal of 6 mannose residues and the addition of 2 N-acetylglucosamine residues and 1 xylose. The terminal N-acetylglucosamine residues are later removed in the protein bodies. The conversion of Man9(GlcNAc)2 to Man7(GlcNAc)2 is a late processing event which occurs in the protein bodies. Experiments in which [3H]glucosamine-labeled phaseolin obtained from the endoplasmic reticulum (i.e. precursor phaseolin) is incubated with jack bean alpha-mannosidase show that the high mannose glycan on Asn252, but not the one on Asn341, is susceptible to enzyme degradation. Incubation of [3H] glucosamine-labeled phaseolin obtained from the Golgi apparatus with jack bean beta-N-acetylglucosaminidase results in the removal of the terminal N-acetylglucosamine residues from the complex chain.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Immune cell surface receptors are directly involved in human diseases, and thus represent major drug targets. However, it is generally difficult to obtain sufficient amounts of these receptors for biochemical and structural studies because they often require posttranslational modifications, especially sugar modification. Recently, we have established a bacmid expression system for the baculovirus BmNPV, which directly infects silkworms, an attractive host for the large-scale production of recombinant sugar-modified proteins. Here we produced the human immune cell surface receptor, killer cell Ig-like receptor 2DL1 (KIR2DL1), by using the BmNPV bacmid expression system, in silkworms. By the direct injection of the bacmid DNA, the recombinant KIR2DL1 protein was efficiently expressed, secreted into body fluids, and purified by Ni2+ affinity column chromatography. We further optimized the expression conditions, and the final yield was 0.2 mg/larva. The sugar profiling revealed that the N-linked sugars of the purified protein comprised very few components, two paucimannose-type oligosaccharides, Manα1-6Manβ1-4GlcNAcβ1-4GlcNAc and Manα1-6Manβ1-4GlcNAcβ1-4(Fucα1-6)GlcNAc. This revealed that the protein product was much more homogeneous than the complex-sugar type product obtained by mammalian cell expression. The surface plasmon resonance analysis demonstrated that the purified KIR2DL1 protein exhibited specific binding to the HLA-Cw4 ligand. Moreover, the CD spectrum showed the proper secondary structure. These results clearly suggested that the silkworm expression system is quite useful for the expression of cell surface receptors that require posttranslational modifications, as well as for their structural and binding studies, due to the relatively homogeneous N-linked sugar modifications.  相似文献   

12.
Aspartic protease, widely used as a milk-coagulating agent in industrial cheese production, contains three potential N-glycosylation sites. In this study, we report the characterization of N-linked oligosaccharides on recombinant aspartic protease secreted from the methylotrophic yeast Pichia pastoris using a combination of mass spectrometric, 2D chromatographic, chemical and enzymatic methods. The carbohydrates from site I (Asn79) were found to range from Man6-17GlcNAc2 with 50% bearing a phospho-diester-motif, site II (Asn113) was not occupied and site III (Asn188) contained mostly uncharged species ranging from Man-13GlcNAc2. These charged groups are not affecting the transport through the secretion pathway of the recombinant glycoprotein. Changes from a molasses-based medium to a minimal salts-based medium led to a clear reduction of the degree of phosphorylation of the N-glycan population.  相似文献   

13.
The new antigen Bm95 from the cattle tick Boophilus microplus was recently isolated, cloned and expressed in the methylotrophic yeast Pichia pastoris. The recombinant protein has shown to induce protection in cattle against infestations of B. microplus under controlled and production conditions. In this paper we report the production and large-scale purification of the Bm95 protein, following a simple and cost-effective process. The antigen was obtained highly aggregated, forming particles ranging from 26 to 30 nm and with purity higher than 80%. The process yield was 0.55 g of pure Bm95 protein per liter of culture. The 98% of the primary structure of the recombinant protein was verified by mass spectrometry. Three amino acid changes in comparison with the sequence deduced from cDNA were detected by LC-MS/MS. The antigen was also obtained N-glycosylated, as previously reported for heterologous protein expression in P. pastoris.  相似文献   

14.
A rhamnose-binding glycoprotein (lectin), named SML, was isolated from the eggs of Spanish mackerel (Scomberomorous niphonius) by affinity and ion-exchange chromatographies. SML was composed of a non-covalently linked homodimer. The SML subunit was composed of 201 amino acid residues with two tandemly repeated domains, and contained 8 half-Cys residues in each domain, which is highly homologous to the N-terminal lectin domain of calcium-independent α-latrotoxin receptor in mammalian brains. Each domain has the same disulfide bonding pattern; Cys10–Cys40, Cys20–Cys99, Cys54–Cys86 and Cys67–Cys73 were located in the N-terminal domain, and Cys108–Cys138, Cys117–Cys195, Cys152–Cys182 and Cys163–Cys169 were in the C-terminal domain. SML was N-glycosylated at Asn168 in the C-terminal domain. The structure of the sugar chain was determined to be NeuAc-Galβ1-4GlcNAcβ1-2Manα1-6-(NeuAc-Galβ1-4GlcNAcβ1-2Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAc-Asn.  相似文献   

15.
N-Glycosylation of eukaryotic membrane proteins is a co-translational event that occurs in the lumen of the endoplasmic reticulum (ER). This process is catalyzed by a membrane-associated oligosaccharyl transferase (OST) complex that transfers a preformed oligosaccharide (Glc(3)Man(9)GlcNAc(2)-) to an asparagine (Asn) side-chain acceptor located within the sequon (-Asn-X-Ser/Thr-). Scanning N-glycosylation mutagenesis experiments, where novel acceptor sites are introduced at unique sites within membrane proteins, have shown that the acceptor sites must be located a minimum distance (12-14 amino acids) away from the luminal membrane surface of the ER in order to be efficiently N-glycosylated. Scanning N-glycosylation mutagenesis can therefore be used to determine membrane protein topology and it can also serve as a molecular ruler to define the ends of transmembrane (TM) segments. Furthermore, since N-glycosylation is a co-translational event, N-glycosylation mutagenesis can be used to identify folding intermediates in membrane proteins that may expose segments to the ER lumen transiently during biosynthesis.  相似文献   

16.
The properties of recombinant staphylokinase (SakSTAR) expressed in Pichia pastoris cells have been determined. The single consensus N-linked oligosaccharide linkage site in SakSTAR (at Asn28 of the mature protein) was occupied in approximately 50% of the expressed protein with high-mannose-type oligosaccharides. The majority of these glycans ranged in polymerization state from Man8GlcNAc2 to Man14GlcNAc2, with the predominant species being Man10GlcNAc2 and Man11GlcNAc2. Glycosylated SakSTAR (SakSTARg) did not differ from its aglycosyl form in its aggregation state in solution, its thermal denaturation properties, its ability to form a complex with human plasmin (hPm), the amidolytic properties of the respective SakSTAR-hPm complexes, or its ability to liberate the amino-terminal decapeptide required for formation of a functional SakSTAR-hPm plasminogen activator complex. However, this latter complex with SakSTARg showed a greatly reduced ability to activate human plasminogen (hPg) as compared with the same complex with the aglycosyl form of SakSTAR. We conclude that glycosylation at Asn28 does not affect the structural properties of SakSTAR or its ability to participate in the formation of an active enzymatic complex with hPm, but it is detrimental to the ability of the SakSTAR-hPm complex to serve as a hPg activator. This is likely due to restricted access of hPg to the active site of the SakSTARg-hPm complex.  相似文献   

17.
Glycopeptides representing individual N-glycosylation sites of the heterodimeric glycoprotein hormone human chorionic gonadotrophin (hCG) were obtained from subunits hCG alpha (N-glycosylated at Asn-52 and Asn-78) and hCG beta (N-glycosylated at Asn-13 and Asn-30) by digestion with trypsin and chymotrypsin, respectively. Following purification by reverse-phase HPLC and identification by amino acid sequencing, the glycopeptides were analysed by one- and two-dimensional 1H NMR spectroscopy. The results are summarized as follows: (i) oligosaccharides attached to Asn-52 of hCG alpha comprised monosialylated 'monoantenary' NeuAc alpha 2-3Gal beta 1-4GlcNAc beta 1-2Man alpha 1-3[Man alpha 1-6]Man beta 1-4GlcNAc beta 1-4GlcNAc (N1-4'), disialylated diantennary NeuAc alpha 2-3Gal beta 1-4GlcNAc beta 1-2Man alpha 1-3[NeuAc alpha 2-3-Gal beta 1-4GlcNAc beta 1-2Man alpha 1-6]Man beta 1-4GlcNAc beta 1-4GlcNAc (N2), and the monosialylated hybrid-type structures NeuAc alpha 2-3Gal beta 1-4GlcNAc beta 1-2Man alpha 1-3[Man alpha 1-3Man alpha 1-6]Man beta 1-4GlcNAc beta 1-4GlcNAc (N1-A) and NeuAc alpha 2-3Gal-beta 1-4GlcNAc beta 1-2Man alpha 1-3[Man alpha 1-3(Man alpha 1-6)Man alpha 1-6]Man beta 1-4GlcNAc beta 1-4GlcNAc (N1-AB) in a ratio approaching 5:2:2:1; (ii) Asn-78 of hCG alpha carried N2 and N1-4' almost exclusively (ratio approximately 3:2); (iii) both N-glycosylation sites of hCG beta contained predominantly component N2, partially (approximately 25%) and completely alpha 1-6-fucosylated at the N-acetylglucosamine linked to Asn-13 and Asn-30, respectively. The distinct site-specific distribution of the oligosaccharide structures among individual N-glycosylation sites of hCG appears to reflect primarily the influence of the surrounding protein structure on the substrate accessibility of the Golgi processing enzymes alpha-mannosidase II, GlcNAc transferase II and alpha 1,6-fucosyltransferase.  相似文献   

18.
The N-glycosylation sites of human Tamm-Horsfall glycoprotein from one healthy male donor have been characterized, based on an approach using endoproteinase Glu-C (V-8 protease, Staphylococcus aureus ) digestion and a combination of chromatographic techniques, automated Edman sequencing, and fast atom bombardment mass spectrometry. Seven out of the eight potential N-glycosylation sites, namely, Asn52, Asn56, Asn208, Asn251, Asn298, Asn372, and Asn489, turned out to be glycosylated, and the potential glycosylation site at Asn14, being close to the N-terminus, is not used. The carbohydrate microheterogeneity on three of the glycosylation sites was studied in more detail by high-pH anion-exchange chromatographic profiling and 500 MHz1H-NMR spectroscopy. Glycosylation site Asn489 contains mainly di- and tri-charged oligosaccharides which comprise, among others, the GalNAc4 S (beta1-4)GlcNAc terminal sequence. Only glycosylation site Asn251 bears oligomannose-type carbohydrate chains ranging from Man5GlcNAc2to Man8GlcNAc2, in addition to a small amount of complex- type structures. Profiling of the carbohydrate moieties of Asn208 indicates a large heterogeneity, similar to that established for native human Tamm-Horsfall glycoprotein, namely, multiply charged complex-type carbohydrate structures, terminated by sulfate groups, sialic acid residues, and/or the Sda-determinant.   相似文献   

19.
Incubation of a Spodoptera frugiperda (IPLB-SF-21AE) cell extract with the oligosaccharide Man9GlcNAc2, the aglucosyl derivative of the glycan that is normally transferred from the dolichol carrier to the relevant Asn residue in the nascent protein, results in its trimming to Man6GlcNAc2, an intermediate that is relatively stable to further alpha-D-mannosidase action in these cells. On the other hand, incubation of a similar extract from cells that had been infected for various times with a wild-type baculovirus (Autographa californica nuclear polyhedrosis virus) or a recombinant baculovirus (r-BAC)/human plasminogen (HPg) construct employed for expression of HPg led to rapid trimming of Man6GlcNAc2 to Man5GlcNAc2 and Man3GlcNAc2. These latter reactions displayed temporal effects, in that an enhancement of this latter trimming process occurred as a function of the time of infection of the cells with the wild-type and recombinant viral constructs. We have previously demonstrated that the nature of the oligosaccharide assembled on Asn289 of HPg expressed in several lepidopteran insect cell lines was dependent on the time of infection of the cells with r-BAC/HPg and that the amount of complex glycan found on this recombinant protein increased with an increase in infection times [Davidson, D. J., & Castellino, F. J. (1991) Biochemistry 30, 6167-6174].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Campylobacter jejuni is unusual among bacteria in possessing a eukaryotic-like system for N-linked protein glycosylation at Asn residues in sequons of the type Asp/Glu-Xaa-Asn-Xaa-Ser/Thr. However, little is known about the structural context of the glycosylated sequons, limiting the design of novel recombinant glycoproteins. To obtain more information on sequon structure, we have determined the crystal structure of the PEB3 (Cj0289c) dimer. PEB3 has the class II periplasmic-binding protein fold, with each monomer having two domains with a ligand-binding site containing citrate located between them, and overall resembles molybdate- and sulfate-binding proteins. The sequon around Asn90 is located within a surface-exposed loop joining two structural elements. The three key residues are well exposed on the surface; hence, they may be accessible to the PglB oligosaccharyltransferase in the folded state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号