首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Field experiments were performed in Austria, Brazil, Chile, Colombia, Guatemala, Mexico and Peru as part of an FAO/IAEA Co-ordinated Research Programme to investigate the nitrogen fixing potential of cultivars and breeding lines of common bean (Phaseolus vulgaris L.). Each experiment included approximately 20 bean genotypes which were compared using the 15N isotope dilution method. Great differences in nitrogen fixation were observed between and within experiments, with average values of 35% N derived from atmosphere (% Ndfa) and highest values of 70% Ndfa being observed. These values which were larger than had been reported previously for common bean, were observed only when environmental factors were favorable. Therefore, common bean lines are available, which can support high biological nitrogen fixation. These can be used either directly as cultivars for production or in breeding programmes to enhance nitrogen fixation in other cultivars.  相似文献   

2.
Although common bean (Phaseolus vulgaris L.) has good potential for N2 fixation, some additional N provided through fertilizer usually is required for a maximum yield. In this study the suppressive effect of N on nodulation and N2 fixation was evaluated in an unfertile soil under greenhouse conditions with different levels of soil fertility (low=no P, K and S additions; medium = 50, 63 and 10 mg kg–1 soil and high = 200, 256 and 40 mg kg–1 soil, respectively) and combined with 5, 15, 60 and 120 mg N kg–1 soil of 15N-labelled urea. The overall average nodule number and weight increased under high fertility levels. At low N applications, nitrogen had a synergistic effect on N2 fixation, by stimulating nodule formation, nitrogenase activity and plant growth. At high fertility and at the highest N rate (120 mg kg–1 soil), the stimulatory effect of N fertilizer on N2 fixation was still observed, increasing the amounts of N2 fixed from 88 up to 375 mg N plant–1. These results indicate that a suitable balance of soil nutrients is essential to obtain high N2 fixation rates and yield in common beans.  相似文献   

3.
Two field experiments were performed to evaluate the nitrogen fixation potential of twenty common bean cultivars and breeding lines during summer and winter seasons of 1986 and 1988, respectively. The 15N isotope dilution method was used to quantify N2 fixation. The cultivars and breeding lines were variable in terms of their N2 fixation. The cv. Caballero was very efficient, with more than 50% N derived from the atmosphere and 60–80 kg N ha–1 fixed in both seasons. Other cultivars were less efficient, since the poorest ones derived less than 30% of their nitrogen from the atmosphere and fixed less than 20 kg N ha–1. After additional testing the best cultivars may be used directly by the farmers for cultivation. The experiments have provided information about which genotypes may be used to breed for enhanced fixation in common bean.  相似文献   

4.
The response of two rice cultivars to external Na/Ca ratio   总被引:1,自引:1,他引:0  
The response of the rice cultivars ‘M9’ and ‘M-201’ to nutrient cultures salinated at −0.4 MPa with varying ratios of Na and Ca was studied. Although the dry matter production of both cultivars was sensitive to the Na/Ca ratio, this correlation was significant only for M-201. Calcium nutrition was severely affected by the composition of the external solution, and the laminae exhibited Ca-deficiency symptoms at Na/Ca molar ratios of 78 and 198. Sodium concentration in the shoot decreased as the Na/Ca ratio in the external solution decreased. Patterns of Na and Cl distribution in the shoot tissues were similar; both ions were accumulated preferentially in the tillers and older leaves. The Na-induced inhibition of Ca uptake and transport appears to be more limiting to shoot growth of M9 and M-201 than Na toxicity per se.  相似文献   

5.
A field experiment was conducted for five consecutive years to determine upland rice (Oryza sativa L.) and common bean (Phaseolus vulgaris L.) response to eight P sources at three P rates in an Oxisol of Central Brazil. The P sources tested were triple superphosphate (TSP), Arafertil phosphate partially acidulated (APPA), phosphate of Patos partially acidulated (PPPA), phosphate of Araxa concentrated (PAC), phosphate of Catalao (PC), phosphate of Jacupiranga (PJ), phosphate of Patos de Minas (PPM), and phosphate of Abaete (PA). All phosphate rock sources were of Brazilian origin. The P rates used were 87, 174 and 262 kg P ha-1. Yield response to P sources and rates varied from crop to crop. Rice and bean yields were significantly correlated with Bray 1 P, but not Mehlich 1 P. In the first year, TSP and the two partially acidulated phosphate rocks (APPA, PPPA) produced higher grain yields. In the second year and all remaining years of the experiment, the efficiency of phosphate rock sources as measured by grain yield was equivalent to TSP or partially acidulated P sources. The results suggest that these phosphate rock sources could be used in rice-bean rotations on Brazilian Oxisols. Yield losses in the first year could be partially offset by the addition of a small amount of soluble P.  相似文献   

6.
The effects of NaCl on putrescine (Put) content and diamine oxidase (DAO) activity in roots of rice seedlings were examined. NaCl treatment lowered the content of Put and increased the activity of DAO in roots. Our current results indicate that Cl is not required for NaCl-induced decline in Put content and increase in DAO activity in roots. Put content in roots of rice seedlings exposed to NaCl is possibly regulated by DAO activity.  相似文献   

7.
Growth and nutrient utilization of alfalfa (Medicago sativa L. cv. Arc) and common bean (Phaseolus vulgaris L. cv. Carioca) were studied in an acid soil adjusted to eight levels of soil acidity by lime addition. Application of lime significantly (P<0.05) increased shoot and root growth for both species. However, common bean was far less sensitive to soil acidity than alfalfa. Maximum alfalfa growth was obtained at a soil pH of 5.8 and maximum bean growth was achieved at pH 5.0. Root and shoot growth of both legumes was positively correlated (P<0.01) with soil pH, exchangeable Ca and exchangeable Mg and negatively correlated (P<0.01) with soil exchangeable Al. Common bean had a lower internal P requirement for maximum growth and was more efficient than alfalfa in taking up Ca and Mg. These characteristics would contribute to the favorable growth of common bean in acid-infertile soils.  相似文献   

8.
The effect of elevated CO2 concentration (CE) on leaf chlorophyll (Chl) and nitrogen (N) contents and photosynthetic rate (PN) was evaluated during the post-flowering stages of rice grown at CE (570 ± 50 μmol mol−1) in open top chamber (OTC), at ambient CO2 concentration (∼ 365 μmol mol−1) in OTC and at open field. Thirty-five day old seedlings were transplanted in OTCs or in field and allowed to grow till maturity. Chl and N contents were highest at the time of flowering and thereafter it started to decline. The rate of decline in Chl and N contents was faster in plants grown under CE mostly in later part of growth. Irrespective of treatment difference, flag leaf contained the highest amount of Chl and N than penultimate and third leaf. The higher PN was observed in leaves under CE than in the leaves in other two growing conditions. Considering growth stage, PN was the highest at flowering which reduced at the later part of growth due to degradation of Chl and N content of the leaf. Under CE it was 40.02 μmol m−2 s−1 at flowering and it reduced to only 14.77 μmol m−2 s−1 at maturity stage. The beneficial effect of CE in increasing leaf PN may be maintained by applying extra dose of nitrogen at the later stages of plant growth.  相似文献   

9.
干热河谷车桑子光合生理特性对氮磷添加的响应   总被引:1,自引:0,他引:1  
王雪梅  刘泉  闫帮国  赵广  刘刚才 《生态学报》2019,39(22):8615-8629
氮磷养分是限制干热河谷植物生长的重要元素,不同土壤上植物受到的养分限制类型不同。光合作用作为植物生长发育的基础,不同土壤上氮磷养分添加对干热河谷植物光合生理特征的影响还没有报道。因此,以干热河谷优势植物——车桑子为研究对象,在元谋县不同海拔处采集土壤,设置加氮(+N)、加磷(+P)、氮磷同时添加(+NP)和不添加(CK)四个处理,研究车桑子光合响应曲线、叶绿素含量和叶绿素荧光特性对氮、磷添加的响应规律,并探讨光合响应特征与车桑子生长的关系:研究结果显示:1)不同海拔土壤上,车桑子光合生理特性对氮磷添加具有不同的响应。在低海拔燥红土上,氮添加处理(+N和+NP)提高了车桑子净光合速率、叶绿素含量和PSII活性;中海拔紫色土上,+NP促进了车桑子光合速率和叶绿素含量的提高;高海拔黄棕壤上,+N处理降低了车桑子净光合速率和PSII活性,而磷添加处理(+P和+NP)提高了车桑子净光合速率。2)车桑子光合特性对养分添加的响应取决于土壤的养分限制类型,限制性养分添加可以提高车桑子的净光合速率。3)燥红土上+P以及黄棕壤上+N对PSⅡ最大光化学效率(Fv/Fm)的降低更大程度上归于可变荧光Fv的减少而不是最小荧光F0的增加,可减少养分限制对光系统II造成的伤害。4)三种土壤类型上车桑子的叶绿素含量和组成差异极显著,相比于燥红土和紫色土,黄棕壤上车桑子的叶绿素含量显著更高,而叶绿素a/b显著更低。综上,本研究结果表明,车桑子光合能力受到氮和磷的共同调节,不同土壤上光合生理特性的响应可增强植物对限制性养分的适应性,影响植物生长发育。  相似文献   

10.
Summary Isotopic as well as non-isotopic methods were used to assess symbiotic nitrogen fixation within eight soybean [Glycine max (L.) Merr.] cultivars grown at 20 and 100 kg N/ha levels of nitrogen fertilizer under field conditions.The15N methodology revealed large differences between soybean cultivars in their abilities to support nitrogen fixation. In almost all cases, the application of 100 kg N/ha resulted in lower N2 fixed in soybean than at 20 kg N/ha in the first year of the study. However, N2 fixed in one cultivar, Dunadja, was not significantly affected by the higher rate of N fertilizer application. These results were confirmed by measurements of acetylene reduction activity, nodule dry weight and N2 fixed as measured by the difference method. Further proof of differences in N2 fixed within soybean cultivars and the ability of Dunadja to fix similar amounts of N2 at 20 and 100 kg N/ha was obtained during a second year experiment. Dunadja yield was affected by N fertilizer and produced larger yield at 100 kg N/ha than at 20 kg N/ha. This type of cultivar could be particularly useful in situations where soil N levels are high or where there is need to apply high amounts of N fertilizer.The present study reveals the great variability between legume germplasms in the ability to fix N2 at different inorganic N levels, and also the potential that exists in breeding for nitrogen fixation associative traits. The15N methodology offers a unique tool to evaluate germplasms directly in the field for their N2 fixation abilities at different N fertilizer levels.  相似文献   

11.
Plants develop strategies to recycle phosphorus so that all organs receive adequate amounts of phosphorus, especially new growing organs. To evaluate the metabolic adaptation of rice plants under phosphorus deficient conditions, we selected several genes related to phosphorus utilization efficiency in the cell. Phosphoenolpyruvate carboxylase, triose phosphate translocator, phosphoenolpyruvate/phosphate translocator (PPT), pyruvate kinase, NAD dependent glyceraldehyde-3-phosphate dehydrogenase, and NADP dependent glyceraldehyde-3-phosphate dehydrogenase were selected because of their important roles in phosphorus utilization by the cell, and because they are part of the proposed bypass pathways by which the cells save phosphate. The most dramatic change was observed in the expression level of PPT (which transports phosphoenolpyruvate (PEP) from the cytosol into the chloroplast); thus we believe that PEP may play an important role in maintaining carbon metabolism under phosphate deficient conditions.  相似文献   

12.
Effects of N source and media-N and P levels were examined on growth, N uptake, and N2 fixation ofAzolla pinnata withAnabaena azollae association (azolla) at two inoculum-P concentrations. Each expeiment was conducted for 7 days in a growth chamber using azolla at a predetermined inoculum-P concentration and the growth media containing a combination of four levels of P (0, 15, 75, and 200 M) and three levels (0, 1, and 5 mM) of either15N-enriched NH 4 + as ammonium sulfate or15N-enriched NO 3 as potassium nitrate. Nitrogen uptake and N2 fixation were measured by15N isotopic dilution method. Tissue P and N, N uptake, and N2-fixation increased with increasing P concentration in the media regardless of the inoculum-P level of azolla. Increasing P concentration in the media increased growth of azolla at low inoculum P, but the effect on high inoculum-P azolla was either small or absen. High inoculum-P concentration resulted in increased growth, tissue-N and P concentrations, N uptake, and N2 fixation by azolla. Ammonium in the growth media caused larger increase in tissue-N and greater repression of N2 fixation than equimolar concentration of NO 3 . In the presence of NH 4 + or NO 3 , in the growth media, N uptake by azolla exceeded the corresponding decrease in N2 fixation, resulting in an overall increase in tissue-N concentration. Phosphorus in the media tended to negate the inhibitory effect of NH 4 + or NO 3 on N2 fixation. A multiple regression model showed that the effect of tissue-N on N2 fixation was negative while that of tissue-P was positive. Therefore, a relative change in tissue-N and P appeared to regulate N2 fixation. Tissue-N and P had similar effects on relative growth rate of azolla also. Inoculum-P level of azolla was important in determining the response to media-P.This research was supported by a grant from USAID under Indo-US Science and Technology Initiative.  相似文献   

13.
Summary A solution culture experiment was conducted using 2 rice cultivars (EEA 304, and CICA 4) to determine the effects of Al concentrations on chemical composition. The treatments consisted of five Al concentrations: 0, 10, 30, 40 and 60 ppm.Aluminum content in plant tissues way increased with increasing levels of Al in two cultivars. Increased Al concentrations in the nutrient solution exerted an inhibiting effect on the uptake of N, P, K, Ca, Mg, S, Fe, B, Cu, Zn, and Mn. Rice cultivars responded differently to Al treatments with respect to nutrients uptake. Tolerant cultivar, EEA 304, absorbed more phosphorus compared to susceptible cultivar CICA 4. Macro and micronutrients inhibiting effect was much lower in this Al tolerant cultivar. These results suggested that one of the Al tolerance mechanism in rice cultivars is associated with more efficient nutrients uptake.  相似文献   

14.
Summary Under semi-arid conditions, three field experiments were conducted at Gezira Research Station to determine response of irrigated dry-seeded rice (Oryza sativa L. var IR 2053-206-1-3-6) to addition of nitrogen and phosphorus fertilizers. The experimental treatments included the factorial combinations of seven levels of nitrogen applied as urea and four levels of phosphorus applied as super phosphate. Plant growth and grain yield were significantly and progressively increased with the rise in the levels of added nitrogen and phosphorus. However, response to added phosphorus was restricted by the applied level of nitrogen. The responses of grain yield to nitrogen and phosphorus levels are given by quadratic regression equations. Without addition of nitrogen or phosphorus grain yield averaged 1.52 t/ha compared to 6.07 t/ha with addition of the optimal levels (160 kg N plus 35 kg P/ha). The high potential for rice production in semi-arid environment is evidently restricted by addition of relatively high rates of nitrogen and phosphorus.  相似文献   

15.
Common bean (Phaseolus vulgaris L.) is able to fix 20–60 kg N ha–1 under tropical environments in Brazil, but these amounts are inadequate to meet the N requirement for economically attractive seed yields. When the plant is supplemented with N fertilizer, N2 fixation by Rhizobium can be suppressed even at low rates of N. Using the 15N enriched method, two field experiments were conducted to compare the effect of foliar and soil applications of N-urea on N2 fixation traits and seed yield. All treatments received a similar fertilization including 10 kg N ha–1 at sowing. Increasing rates of N (10, 30 and 50 kg N ha–1) were applied for both methods. Foliar application significantly enhanced nodulation, N2 fixation (acetylene reduction activity) and yield at low N level (10 kg N ha–1). Foliar nitrogen was less suppressive to nodulation, even at higher N levels, than soil N treatments. In the site where established Rhizobium was in low numbers, inoculation contributed substantially to increased N2 fixation traits and yield. Both foliar and soil methods inhibited nodulation at high N rates and did not significantly increase bean yield, when comparing low (10 kg N ha–1) and high (50 kg N ha–1) rates applied after emergence. In both experiments, up to 30 kg N ha–1 of biologically fixed N2 were obtained when low rates of N were applied onto the leaves.  相似文献   

16.
Summary The relation of nitrogenase activity (ethylene evolution) to soil temperature or incubation temperature of roots was determined on two genera of swamp plants, namely rice (Oryza sativa) cultivated in tropical climate and reed (Phragmites communis) grown in temperate regions. For both intact rice plants and excised rice roots the optimum temperature was 35°C. On excised roots nitrogenase activity responded more sensitivity to changes in temperature. In contrast to intact rice plants no ethylene evolution occurred on excised roots at 17 and 44°C. On reed roots temperature optimum was between 26 and 30°C which is clearly lower than on rice (35°C). The temperature range in which nitrogen fixation occurred was, however, similar to that of rice, although on a lower level. The results suggest a higher potential of the tropics for associative N2 fixation, while in cooler climates the lower temperatures appear to be a major limiting factor.  相似文献   

17.
Breeding for yield in common bean (Phaseolus vulgaris L.) should consider the efficiency of biomass and nutrient partitioning to grains. In field experiments, 9 and 18 bean cultivars were cultivated in 1998 and 1999, respectively, to identify the genotypic variability of harvest index (HI) and N and P harvest indices (NHI and PHI), and to evaluate the relationships between these indices and grain yield. Cultivars differed for grain yield, HI, NHI and PHI in both years, but these indices varied less than grain yield. Growth habit markedly influenced HI, with prostrate cultivars possessing higher HI, NHI and PHI than erect cultivars; hence selection for HI should be performed within each phenological group. Grain yield was strongly associated with grain N and P contents, and positively but weakly correlated to HI, NHI and PHI; the indices were highly correlated among themselves. Multiple-regression analysis showed that most genotypic variation of grain yield was associated with the amount of N and P accumulated by the crop at maturity, and some yield variation was associated with seed nutrient concentration, particularly P concentration, whereas NHI and PHI had a minor role. Combined analysis of both experiments showed that grain yield diminished by 57% from 1998 to 1999, whereas HI remained almost stable and NHI and PHI decreased slightly, but the significant year × cultivar interaction revealed different degrees of phenotypic plasticity of biomass partitioning among cultivars. Selection solely for increased HI would scarcely result in improved grain yield, raising concomitantly NHI and PHI and probably reducing grain P concentration.  相似文献   

18.
A greenhouse experiment was performed to evaluate the effects of plant growth-promoting rhizobacteria (PGPR) on nodulation, biological nitrogen fixation (BNF) and growth of the common bean (Phaseolus vulgaris L. cv. Tenderlake). Single and dual inoculation treatments of bean with Rhizobium and/or PGPR were administered to detect possible changes in the levels of and interactions between the phytohormones IAA and cytokinin. Bean plants cv. Tenderlake were grown in pots containing Fluvic Neosol eutrophic (pH 6.5). Fourteen kilogram aliquots of soil contained in 15-l pots were autoclaved. Bean seeds were surface sterilized and inoculated with Rhizobium tropici (CIAT 899-standard strain) alone and in combination with one of the PGPR strains: Bacillus endophyticus (DSM 13796), B. pumilus (DSM 27), B. subtilis (DSM 704), Paenibacillus lautus (DSM 13411), P. macerans (DSM 24), P. polymyxa (DSM 36), P. polymyxa (Loutit L.) or Bacillus sp.(65E180). The experimental design was randomized block design with three replications. Beans co-inoculated with Rhizobium tropici (CIAT899) and Paenibacillus polymyxa (DSM 36) had higher leghemoglobin concentrations, nitrogenase activity and N2 fixation efficiency and thereby formed associations of greater symbiotic efficiency. Inoculation with Rhizobium and P. polymyxa strain Loutit (L) stimulated nodulation as well as nitrogen fixation. PGPR also stimulated specific-nodulation (number of nodules per gram of root dry weight) increases that translated into higher levels of accumulated nitrogen. The activities of phytohormones depended on their content and interactions with Rhizobium tropici and Paenibacillus and/or Bacillus (PGPR) strains which affect the cytokinin in content in the common bean.  相似文献   

19.
Frankia, the actinomycete partner in the nitrogenfixing symbiosis of certain woody non-legumes, has been shown to fix nitrogen in pure culture under aerobic conditions. The sensitivity of in vivo nitrogen-fixation (acetylene reduction) to oxygen tension in the gas phase was measured in short-term assays with two Frankia isolates designated ARI3 and CcI3. The carbon source utilized had an effect on the optimum O2 concentration for acetylene reduction. Cells utilizing an organic acid, e.g., propionate or pyruvate had maximum nitrogenase activity at an oxygen concentration of 15 to 20%. In contrast, cells respiring a sugar, e.g., trehalose or glucose, or endogenous reserves (glycogen or trehalose) had maximum acetylene reduction activity at 5 to 10% in the gas phase. Oxygen uptake kinetics showed that respiration in vesicle-containing cells utilizing trehalose had a biphasic response to oxygen concentration with a diffusion limited component at oxygen concentrations of 20 M to more than 300 M. These results suggested that trehalose was oxidized in the vesicles as well as in the vegetative hyphae. Oxygen concentration also had an effect on the trehalose-supported growth of cells (non nitrogenfixing, [+NH4Cl]). Cells grown with 5–10% O2 in the gas phase had a doubling time approximately half those grown with 20% O2 (atmospheric). Propionate-grown cells showed similar growth rates at the two oxygen tensions, and grew faster (almost 2x) than the trehalose cells at 5–10% O2. Trehalose also supported approximately 40% lower rates of oxygen uptake than propionate in vesicle-containing cells.  相似文献   

20.
Thirty one selected bean lines were evaluated in the field for ability to support N2 fixation when intercropped with maize which received 0, 30 and 60 kg N ha–1 as ammonium sulphate. The amount of fixed N2 was estimated using the natural variation of 15N and wheat as the standard non-fixing crop. Nitrogen as low as 15 kg N ha–1 at sowing suppressed nodule weight and activity (acetylene reduction activity) but not nodule number, suggesting that the main effect of mineral N was on nodule development and function. 15N data revealed a high potential of the bean genotypes to fix N2, with the most promising ones averaging between 50–60% of seed N coming from fixation. Bean lines CNF-480, Puebla-152, Mexico-309, Negro Argel, CNF-178, Venezuela-350 and WBR22-3, WBR22-50 and WBR22-55 were ranked as good fixers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号