首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
1alpha,25-Dihydroxyvitamin D(3) (1alpha,25(OH)(2)D(3)) is known to inhibit the proliferation and invasiveness of prostate cancer cells. However, 1alpha,25(OH)(2)D(3) can cause hypercalcemia and is not suitable as a therapeutic agent. 19-Nor-vitamin D derivatives are known to be less calcemic when administered systemically. In order to develop more potent anti-cancer agents with less calcemic side effect, we therefore utilized (3)H-thymidine incorporation as an index for cell proliferation and examined the antiproliferative activities of nine C-2-substituted 19-nor-1alpha,25(OH)(2)D(3) analogs in the immortalized PZ-HPV-7 normal prostate cell line. Among the nine analogs we observed that the substitution with 2alpha- or 2beta-hydroxypropyl group produced two analogs having antiproliferative potency that is approximately 500- to 1000-fold higher than 1alpha,25(OH)(2)D(3). The (3)H-thymidine incorporation data were supported by the cell counting data after cells were treated with 1alpha,25(OH)(2)D(3), 19-nor-2alpha-(3-hydroxypropyl)-1alpha,25(OH)(2)D(3) or 19-nor-2beta-(3-hydroxypropyl)-1alpha,25(OH)(2)D(3) for 7 days. 19-Nor-2alpha-(3-hydroxypropyl)-1alpha,25(OH)(2)D(3) and 19-nor-2beta-(3-hydroxypropyl)-1alpha,25(OH)(2)D(3) were also shown to be about 10-fold more active than 1alpha,25(OH)(2)D(3) in cell invasion studies using prostate cancer cells. In conclusion, a substitution at the C-2 position of 19-nor-1alpha,25(OH)(2)D(3) molecule with a hydroxypropyl group greatly increased the antiproliferative and anti-invasion potencies. Thus, these two analogs could be developed to be effective therapeutic agents for treating early and late stages of prostate cancer.  相似文献   

2.
Accumulating data suggest that local production of 1alpha,25-dihydroxyvitamin D (1alpha,25(OH)(2)D) could provide an important cell growth regulatory mechanism in an autocrine fashion in prostate cells. Previously, we demonstrated a differential expression of 1alpha-OHase enzymatic activity among noncancerous (PZHPV-7) and cancer cells (PC-3, DU145, LNCaP), which appears to correlate with 1alpha-OHase m-RNA synthesis and its promoter activities. Since it is well-established that EGF regulates the proliferation of prostate cells via autocrine and paracrine loops and 1alpha,25(OH)(2)D inhibites prostate cell proliferation, we investigated if EGF also regulated 1alpha-OHase expression in prostate cells. We found that EGF upregulated 1alpha-OHase promoter activity and enzyme activity in PZ-HPV-7 and that 1alpha,25(OH)(2)D(3) inhibited EGF-dependent up-regulation of 1alpha-OHase enzymatic activity. Moreover, the EGF-stimulated promoter activity was inhibited 70% by the MAPKK inhibitor, PD98059, suggesting that the MAPK pathway may be one pathway involved in the regulation of prostatic 1alpha-OHase by EGF to increase1alpha,25(OH)(2)D synthesis as a feedback regulator of cell growth. Because EGF has no effect on 1alpha-OHase promoter activity in LNCaP cells, we propose that the ability of EGF to stimulate 1alpha,25(OH)(2)D synthesis may be abolished or diminished in cancer cells.  相似文献   

3.
The hormone 1alpha,25-dihydroxyvitamin D (1alpha,25(OH)(2)D) inhibits growth and induces differentiation of prostate cells. The enzyme responsible for 1alpha,25(OH)(2)D synthesis, 25-hydroxyvitamin D (25(OH)D)-1alpha-hydroxylase (1alpha-OHase), has been demonstrated in human prostate cells. We compared the levels of 1alpha-OHase activity in prostate cancer cell lines, LNCaP, DU145 and PC-3 and in primary cultures of normal, cancerous and benign prostatic hyperplasia (BPH) prostate cells. We observed a marked decrease in 1alpha-OHase activity in prostate cancer cells, including an undetectable level of activity in LNCaP cells. Transient or stable transfection of 1alpha-OHase cDNA into LNCaP cells increased 1alpha-OHase activity from undetectable to 4.95pmole/mg+/-0.69pmole/mg and 5.8pmole/mg+/-0.7pmole/mg protein per hour, respectively. In response to 25(OH)D, the prohormone of 1alpha,25(OH)(2)D, the transfected LNCaP cells showed a significant inhibition of 3H-thymidine incorporation (37%+/-6% and 56%+/-4% at 10(-8)M for transiently and stably transfected cells, respectively). These findings support an important autocrine role for 1alpha,25(OH)(2)D in the prostate and suggest that the re-introduction of the 1alpha-OHase gene to prostate cancer cells, in conjunction with the systemic administration of 25(OH)D, constitutes an endocrine form of gene therapy that may be less toxic than the systemic administration of 1alpha,25(OH)(2)D.  相似文献   

4.
The active form of vitamin D(3), 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)], modulates proliferation and induces differentiation of many cancer cells. A new class of analogs of vitamin D(3) has been synthesized, having two side-chains attached to carbon-20 (Gemini) and deuterium substituted on one side-chain. We have examined six of these analogs for their ability to inhibit growth of myeloid leukemia (HL-60), prostate (LNCaP, PC-3, DU145), lung (H520), colon (HT-29), and breast (MCF-7) cancer cell lines. Dose-response clonogenic studies showed that all six analogs had greater antiproliferative activities against cancer cells than 1,25(OH)(2)D(3). Although they had similar potency, the most active of these analogs was BXL-01-0120. BXL-01-0120 was 529-fold more potent than 1,25(OH)(2)D(3) in causing 50% clonal growth inhibition (ED(50)) of HL-60 cells. Pulse-exposure studies demonstrated that exposure to BXL-01-120 (10(-9)M, 48h) resulted in 85% clonal inhibition of HL-60 growth. BXL-01-0120 (10(-11)M, 4 days) induced the differentiation marker, CD11b. Also, morphologically differentiation was more prominent compared to 1,25(OH)(2)D(3). Annexin V assay showed that BXL-01-0120 (10(-10)M, 4 days) induced significantly (p<0.05) more apoptosis than 1,25(OH)(2)D(3). In summary, these analogs have a unique structure resulting in extremely potent inhibition of clonal proliferation of various types of cancer cells, especially HL-60 cells.  相似文献   

5.
Evidence suggests that vitamin D may have a protective role for prostate cancer. 1alpha,25-Dihydroxyvitamin D [1alpha,25(OH)(2)D] inhibits growth and induces differentiation of prostate cells. 25-Hydroxyvitamin D-1alpha-hydroxylase [1alpha-OHase], the enzyme that is responsible for the synthesis of 1alpha,25(OH)(2)D, is expressed in cultured prostate cells. We observed a marked decrease in 1alpha-OHase activity in prostate cancer cells, suggesting some defect of the 1alpha-OHase in these cells. To investigate whether the defect was due to dysregulation of the enzyme at the promoter level, a series of deletion constructs of the promoter was synthesized and incorporated upstream into the luciferase reporter gene. Two regions were identified with high basal activity in transfected normal prostate cell line (PZHPV-7), -1100 bp (AN2), and -394 bp (AN5) upstream of ATG start site of the 1alpha-OHase gene. When the reporter gene with either AN2 or AN5 was transfected into prostate cancer cell lines, we observed a lower basal promoter activity in PC-3 cells and DU145 cells than that found in PZHPV-7 cells for both constructs, and a loss of promoter activity in LNCaP cells. Thus, the results suggest that the defect in enzyme activity may result from the decreased promoter activity in prostate cancer cells.  相似文献   

6.
We found previously that long-chain fatty-acid-CoA ligase 3 (FACL3), a critical enzyme for activation of long-chain fatty acids, was upregulated by 1α, 25(OH)(2)D(3) at an mRNA and enzyme activity levels in prostate cancer cells. Our further study indicated that the FACL3 mediated 1α,25(OH)(2)D(3) inhibition of fatty acid synthase (FAS), which is associated with many cancers, including prostate cancer. In the current study, we investigated an FACL3 protein expression and its regulation by 1α, 25(OH)(2)D(3) and its synthetic analogs EB1089 and CB1093 in prostate cancer cells. The results showed that the expression of an FACL3 protein was upregulated by 1α, 25(OH)(2)D(3), EB1089 and CB1093 in LNCaP cells, consistent with their upregulation of an FACL3 mRNA expression. In addition, the FACL3 expression was found to be markedly low at both mRNA and protein levels in more transformed prostate cancer PC-3 and DU145 cells compared with less transformed LNCaP cells. The data suggest that decreased FACL3 expression might be associated with a more malignant phenotype of prostate cancer.  相似文献   

7.
8.
1alpha,25-Dihydroxyvitamin D(3) (1alpha,25(OH)(2)D(3)) is known to inhibit prostate cancer cells in vitro. Its effects on proliferation in the presence of living bone have not been reported, but are especially relevant since much of the morbidity and mortality associated with prostate cancer is due to metastatic bone disease. We investigated the effect of 1alpha,25(OH)(2)D(3) on MatLyLu-beta(2) cells (MatLyLu cells), a rat prostate cancer line, co-cultured in transwells with living rat calvaria. Cultures of MatLyLu cells with living calvaria treated with 1alpha,25(OH)(2)D(3) exhibited a statistically significant increase in proliferation (range 1.4 to 1.7-fold; p<0.05). Cultures of MatLylu cells alone, with spleen cells, muscle tissue, or with living or inactivated calvarial bone showed no differences in proliferation. To investigate the mechanism for enhanced proliferation, Galardin, a matrix metalloproteinase (MMP) inhibitor, or pamidronate, an antiresorptive agent, was added. Enhanced proliferation was prevented by either agent, but not to an equal extent. The presence of 1alpha,25(OH)(2)D(3) may lead to proteolytic release or activation of growth factors from bone. These results may explain the variability in reports on the in vivo effects of Vitamin D and suggest a potential concern in using Vitamin D or its analogs alone in patients with metastatic prostate cancer.  相似文献   

9.
The antiproliferative effect of 1alpha,25(OH)(2)D(3) on human prostate cancer cells is well known, but the mechanism is still not fully understood, especially its androgen-dependent action. Based on cDNA microarray results, we found that long-chain fatty-acid-CoA ligase 3 (FACL3/ACS3) might play an important role in vitamin D(3) and androgen regulation of LNCaP cell growth. The expression of FACL3/ACS3 was found to be significantly upregulated by 1alpha,25(OH)(2)D(3) and the regulation was shown to be time-dependent, with the maximal regulation over 3.5-fold at 96h. FACL3/ACS3 was a dominant isoform of FACL/ACS expressed in LNCaP cells as indicated by measuring the relative expression of each isoform. 1alpha,25(OH)(2)D(3) had no significant effect on the expression of FACL1(FACL2), FACL4 and FACL6 except for its downregulation of FACL5 at 24 and 48h by around twofold. The upregulation of FACL3/ACS3 expression by 1alpha,25(OH)(2)D(3) was accompanied with increased activity of FACL/ACS as demonstrated by enzyme activity assay using a (14)C-labeled substrate preferential for FACL3/ACS3. The growth inhibitory effect of 1alpha,25(OH)(2)D(3) on LNCaP cells was significantly attenuated by FACL3/ACS3 activity inhibitor. Androgen withdrawal (DCC-serum), in the presence of antiandrogen Casodex or in AR-negative prostate cancer cells (PC3 and DU145), vitamin D(3) failed to regulate FACL3/ACS3 expression. The upregulation of FACL3/ACS3 expression by vitamin D(3) was recovered by the addition of DHT in DCC-serum medium. Western blot analysis showed that the expression of androgen receptor (AR) protein was consistent with vitamin D(3) regulation of FACL3/ACS3 expression. Taken together, the data suggest that the upregulation of FACL3/ACS3 expression by vitamin D(3) is through an androgen/AR-mediated pathway and might be one of the contributions of the vitamin D(3) antiproliferative effect in prostate cancer LNCaP cells.  相似文献   

10.
11.
Induction of growth arrest and differentiation of some cancer cells by 1alpha,25-dihydroxyvitamin D(3) [1alpha,25(OH)(2)D(3)], and its potent analogs, is well characterized. However, aggressive cancer cell lines are often either insensitive to the antiproliferative effects of 1alpha,25(OH)(2)D(3) or require toxic concentrations to recapitulate them which has, to-date, precluded its use in anticancer therapy. Therefore we are interested in mechanisms by which 1alpha,25(OH)(2)D(3) signaling has become deregulated in malignant cells in order to identify novel therapeutic targets. We observed previously that 1alpha,25(OH)(2)D(3) and its metabolites, generated via the C-24 oxidation pathway, drive simultaneous differentiation and hyper-proliferation within the same cell population. Thus we have proposed that metabolism of 1alpha,25(OH)(2)D(3) via the C-24 oxidation pathway represents a novel-signaling pathway, which integrates proliferation with differentiation. In the current study we examined further the role of this pathway and demonstrated that these effects are not restricted to leukemic cells but are observed also in both normal myeloid progenitors and breast cancer cell lines. Intriguingly, stable transfection of MCF-7 breast cancer cells with antisense vitamin D(3) receptor (VDR) reduced antiproliferative sensitivity to 1alpha,25(OH)(2)D(3) but significantly enhanced growth stimulation, which, in turn, was blocked by inhibiting metabolism of 1alpha,25(OH)(2)D(3) via C-24 oxidation pathway with ketoconazole. Taken together, these studies indicate that metabolism of 1alpha,25(OH)(2)D(3) via C-24 oxidation pathway gives rise to ligands with different biologic effects. We propose that this mechanism may allow the co-ordination of population expansion and cell maturation during differentiation. Cancer cells appear to corrupt this process during malignant transformation, by only responding to the pro-proliferative signals, thereby deriving a clonal advantage.  相似文献   

12.
Normal prostate epithelial cells are acutely sensitive to the antiproliferative action of 1alpha,25-dihydroxyvitamin D(3) (1alpha,25(OH)(2)D(3)), whilst prostate cancer cell lines and primary cultures display a range of sensitivities. We hypothesised that key antiproliferative target genes of the Vitamin D receptor (VDR) were repressed by an epigenetic mechanism in 1alpha,25(OH)(2)D(3)-insensitive cells. Supportively, we found elevated nuclear receptor co-repressor and reduced VDR expression correlated with reduced sensitivity to the antiproliferative action of 1alpha,25(OH)(2)D(3). Furthermore, the growth suppressive actions of 1alpha,25(OH)(2)D(3) can be restored by co-treatment with low doses of histone deacetylation inhibitors, such as trichostatin A (TSA) to induce apoptosis. Examination of the regulation of VDR target genes revealed that co-treatment of 1alpha,25(OH)(2)D(3) plus TSA co-operatively upregulated GADD45alpha. Similarly in a primary cancer cell culture, the regulation of appeared GADD45alpha repressed. These data demonstrate that prostate cancer cells utilise a mechanism involving deacetylation to suppress the responsiveness of VDR target genes and thus ablate the antiproliferative action of 1alpha,25(OH)(2)D(3).  相似文献   

13.
Laboratory and epidemiological studies have indicated that 1alpha,25-dihydroxyvitamin D(3) [1alpha,25(OH)(2)D(3)] and dietary omega3-polyunsaturated fatty acids (PUFAs) are capable of inhibiting prostate cancer at the initiation and progression stages. The objective of this study is to investigate the influence of 1alpha,25(OH)(2)D(3) and PUFAs in the form of fish oil applied alone or in combination on cell cycle kinetics in the exponentially growing androgen-dependent and -independent prostate cancer cells. Our data indicate that the high passage androgen-independent cell line, LNCaP-c115 had a much greater inhibitory response at the level of the G(1)/S-phase transition in response to fish oil treatment than androgen-dependent low passage LNCaP-c38 cells. When LNCaP-c38 and LNCaP-c115 cells were treated with fish oil (50mug/ml), 1alpha,25(OH)(2)D(3) (10(-8)M) or fish oil (50mug/ml)+1alpha,25(OH)(2)D(3) (10(-8)M), a synergistic growth inhibitory effect was observed with 1alpha,25(OH)(2)D(3)+fish oil group in LNCaP-c115 cell line at the levels of the G(1)/S-phase transition and cell division. This interaction appears to be specific for androgen-independent prostate cancer cell lines. Based on these results, we hypothesize that dietary components, such as omega3PUFAs and Vitamin D, have the potential to delay the progression of prostate cancer cells to an aggressive and un-treatable state.  相似文献   

14.
We examined the effects of two novel 1alpha,25-dihydroxyvitamin D(3)-26,23-lactone (1alpha,25-(OH)(2)D(3)-26,23-lactone) analogs on 1alpha,25(OH)(2)D(3)-induced differentiation of human leukemia HL-60 cells thought to be mediated by the genomic action of 1alpha, 25-dihydroxyvitamin D(3) (1alpha,25-(OH)(2)D(3)) and of acute promyelocytic leukemia NB4 cells thought to be mediated by non-genomic actions of 1alpha,25-(OH)(2)D(3). We found that the 1alpha,25-(OH)(2)D(3)-26,23-lactone analogs, (23S)-25-dehydro-1alpha-hydroxyvitamin D(3)-26,23-lactone (TEI-9647) and (23R)-25-dehydro-1alpha-hydroxyvitamin D(3)-26,23-lactone (TEI-9648), inhibited differentiation of HL-60 cells induced by 1alpha,25-(OH)(2)D(3). However, 1beta-hydroxyl diastereomers of these analogs, i.e. (23S)-25-dehydro-1beta-hydroxyvitamin D(3)-26, 23-lactone (1beta-TEI-9647) and (23R)-25-dehydro-1beta-hydroxyvitamin D(3)-26,23-lactone (1beta-TEI-9648), did not inhibit differentiation of HL-60 cells caused by 1alpha,25-(OH)(2)D(3). A separate study showed that the nuclear vitamin D receptor (VDR) binding affinities of the 1-hydroxyl diastereomers were about 200 and 90 times weaker than that of 1alpha-hydroxyl diastereomers, respectively. Moreover, none of these lactone analogs inhibited NB4 cell differentiation induced by 1alpha,25-(OH)(2)D(3). In contrast, 1beta,25-dihydroxyvitamin D(3) (1beta,25-(OH)(2)D(3)) and 1beta,24R-dihydroxyvitamin D(3) (1beta,24R-(OH)(2)D(3)) inhibited NB4 cell differentiation but not HL-60 cell differentiation. Collectively, the results suggested that 1-hydroxyl lactone analogs, i.e. TEI-9647 and TEI-9648, are antagonists of 1alpha,25-(OH)(2)D(3), specifically for the nuclear VDR-mediated genomic actions, but not for non-genomic actions.  相似文献   

15.
Estrogens and androgens are proposed to play a role in the pathogenesis of prostate cancer. The effective metabolites, estradiol and 5alpha-dihydrotestosterone are produced from testosterone by aromatase and 5alpha-reductase, respectively. Metabolites of vitamin D have shown to inhibit the growth of prostate cancer cells. The aim of the present study was to verify whether 25-hydroxyvitamin D(3) (25OHD(3)), 1alpha,25-dihydroxyvitamin D(3) [1alpha,25-(OH)(2)D(3)], dexamethasone, and progesterone regulate the expression of aromatase and 5alpha-reductase in human prostate cancer cells. LNCaP and PC3 cells were treated with 25OHD(3), 1alpha,25-(OH)(2)D(3), dexamethasone, or progesterone. Aromatase and 5alpha-reductase mRNA was quantified by real-time RT-PCR and aromatase enzyme activity was measured by the [(3)H] water assay. Aromatase enzyme activity in LNCaP and PC3 cells was increased by both 10nM dexamethasone, 1-100 nM 1alpha,25-(OH)(2)D(3) and 100 nM-10 microM progesterone. The induction was enhanced when hormones were used synergistically. Real-time RT-PCR analysis showed no regulation of the expression of aromatase mRNA by any steroids tested in either LNCaP or PC3 cells. The expression of 5alpha-reductase type I mRNA was not regulated by 1alpha,25-(OH)(2)D(3) and no expression of 5alpha-reductase type II was detected in LNCaP.  相似文献   

16.
17.
Shany S  Levy Y  Lahav-Cohen M 《Steroids》2001,66(3-5):319-325
It is well established that 1alpha,25-dihydroxyvitamin D(3) (1alpha,25(OH)(2)D(3)), the active metabolite of vitamin D, plays a role in regulating proliferation and differentiation of cells, in addition to its classic function in mineral homeostasis. Recent studies have also provided evidence for the involvement of 1alpha,25(OH)(2)D(3) in regulating the immune system. However, therapeutic application of 1alpha,25(OH)(2)D(3) to hyperproliferative diseases such as cancer, or for immunologic purposes, is thwarted by its hypercalcemic activity. In order to overcome this obstacle, analogs of 1alpha,25(OH)(2)D(3) have been produced that exhibit decreased hypercalcemic activity while retaining the growth and immunologic regulating properties. In the present study, the efficacy of 1alpha,24(S)-dihydroxyvitamin D(2) (1alpha,24(S)(OH)(2)D(2)), a vitamin D(2) analog, in restraining cell proliferation was compared to that of 1alpha,25(OH)(2)D(3). In parallel studies, cancer cell lines were grown in increased concentrations (10(-10)-10(-7) M) of each compound for various incubation periods (1-4 days). Growth was assessed by measuring [(3)H]thymidine incorporation. The results revealed that 1alpha,24(S)(OH)(2)D(2) significantly inhibits proliferation to an extent similar to that observed for 1alpha,25(OH)(2)D(3). Moreover, incubating the human leukemia cell line, HL-60, with 1alpha,24(S)(OH)(2)D(2) resulted in an induction of differentiation of these promyelomonocyte cells into monocyte-macrophage-like cells, in a manner similar to that observed with 1alpha,25(OH)(2)D(3). Using a Western procedure, it was also shown that 1alpha,24(S)(OH)(2)D(2) like 1alpha,25(OH)(2)D(3) enhances the expression of vitamin D receptors (VDR) in the rat osteosarcoma cell line, ROS 17/2.8. The expression of tumor necrosis factor (TNF) alpha (TNF-alpha) in human peritoneal macrophages (HPM) obtained from uremic patients treated with continuous ambulatory peritoneal dialysis (CAPD) was found to be regulated by 1alpha,25(OH)(2)D(3) as well as by 1alpha,24(S)(OH)(2)D(2). Incubations of HPM with 1alpha,25(OH)(2)D(3) or 1alpha,24(S)(OH)(2)D(2), have inhibited the expression of TNF-alpha on both mRNA and protein levels. These results suggest that 1alpha,25(OH)(2)D(3) has a role in controlling the rate of inflammation in the peritoneal cavity of CAPD treated patients. Since 1alpha,24(S)(OH)(2)D(2) does not cause hypercalcemia, the present results encourage the possible use of this vitamin D(2) analog in the treatment of cancer and hyper-inflammatory diseases.  相似文献   

18.
The antiproliferative effect of 1alpha,25-dihydroxyvitamin D(3) (1alpha,25(OH)(2)D(3)) has been studied for a decade in diverse model systems, but the signalling pathways linking 1alpha,25(OH)(2)D(3) to cell cycle arrest remains unclear. In our attempt to establish a model system which would allow further identification of important players in the process of the 1alpha,25(OH)(2)D(3) imposed cell cycle arrest, we have isolated derivatives of the human breast cancer cell line MCF-7 and chosen two nearly 1alpha,25(OH)(2)D(3) resistant and two hypersensitive sub-clones. Investigation of cell cycle proteins regulated by 1alpha,25(OH)(2)D(3) in these clones indicates that activation of one component/pathway is responsible for the linkage between 1alpha,25(OH)(2)D(3) and growth arrest. Protein levels of the Vitamin D receptor (VDR) were elevated in sensitive cells upon 1alpha,25(OH)(2)D(3) treatment, whereas resistant clones were unable to induce VDR upon 1alpha,25(OH)(2)D(3) treatment. Our data show that VDR protein levels and the ability of a cell to induce VDR upon 1alpha,25(OH)(2)D(3) treatment correlate with the antiproliferative effects of 1alpha,25(OH)(2)D(3), and suggest that the level of VDR in cancer cells might serve as a prognostic marker for treatment of cancer with 1alpha,25(OH)(2)D(3) analogues.  相似文献   

19.
Analogs of 1alpha,25-dihydroxyvitamin D(3) [1alpha,25(OH)(2)D(3)] activate both genomic mechanisms via the nuclear vitamin D(3) receptor (nVDR) and nongenomic pathways via the plasma membrane vitamin D(3) receptor (pmVDR). Both of these pathways are normally activated by 1alpha,25(OH)(2)D(3), but as a result of synthesis of numerous analogs of 1alpha,25(OH)(2)D(3) these pathways can be distinguished. We used increasing doses of vitamin D(3) analogs to determine their potencies of action on these two distinct pathways, measuring calcium channel potentiation as an indicator of the nongenomic action and measuring increases in osteocalcin mRNA and protein release and bone resorption as indicators of genomic action. We found that both 25(OH)-16,23E-diene-D(3) (R) and 1alpha,25(OH)(2)-16,23E-diene-D(3) (A) are 10-fold more potent than 1alpha,25(OH)(2)D(3) for activation of the nongenomic pathway because double bonds in the side chain and the D ring increase the affinity for calcium channel potentiation. While the C-1alpha-hydroxyl group is not necessary for potentiation of calcium channels, methyl groups at this position can alter the affinity for calcium channel potentiation. On the other hand, 1000 fold higher concentrations of nongenomic analogs were needed compared to 1alpha,25(OH)(2)D(3) to increase osteocalcin mRNA or protein release. 1alpha,25-Dihydroxy-16-ene-23-yne-26,27-hexafluorovitamin D(3), (E) is an agent that is 10 fold more potent than 1alpha,25(OH)(2)D(3) at increasing osteocalcin mRNA and protein release, whereas 1alpha,25(OH)(2)-3-epi-D(3) increases osteocalcin mRNA and protein with a potency over 10 fold lower than 1alpha,25(OH)(2)D(3). These results suggest that double bonds in the side chain and the D ring stabilize action on the nongenomic pathway whereas F(6) on the terminal portion of the side chain increases potency for nVDR. On the other hand, while the C-1alpha-hydroxyl group is necessary for activation of genomic events via nVDR, the activation of nongenomic events occurs in the absence of this group.  相似文献   

20.
We have demonstrated that 1alpha,25-dihydroxyvitamin D(3)-26, 23-lactone analogs, (23S)- and (23R)-25-dehydro-1alpha-hydroxyvitamin D(3)-26,23-lactone (TEI-9647, TEI-9648, respectively), inhibit HL-60 cell differentiation induced by 1alpha,25-dihydroxyvitamin D(3) [1alpha,25(OH)(2)D(3)], but not differentiation caused by all-trans retinoic acid (D. Miura et al., 1999, J. Biol. Chem. 274, 16392). To assess whether the antagonistic actions of TEI-9647 and TEI-9648 in HL-60 cells are related to 1alpha,25(OH)(2)D(3) breakdown, we investigated their effects on catabolism of 1alpha,25(OH)(2)D(3). In HL-60 cells, the C-24 but not the C-23 side-chain oxidation pathway of 1alpha,25(OH)(2)D(3) has been reported. Here we demonstrate that 1alpha,25(OH)(2)D(3) was metabolized both to 24,25,26,27-tetranor-1alpha,23-(OH)(2)D(3) and 1alpha,25(OH)(2)D(3)-26,23-lactone; thus HL-60 cells constitutively possess both the 24- and the 23-hydroxylases. Metabolism of 1alpha, 25(OH)(2)D(3) was strongly suppressed by 10(-7) M TEI-9647 or 10(-6) M TEI-9648. 1alpha,25(OH)(2)D(3) alone slightly induced 24-hydroxylase gene expression by 8 h with full enhancement by 24-48 h; this induction was inhibited by 10(-6) M TEI-9647 and 10(-6) M TEI-9648 (86.2 and 31.9%, respectively) 24 h after treatment. However, analogs of TEI-9647 and TEI-9648 without the 25-dehydro functionality induced 24-hydroxylase gene expression. These results indicate that TEI-9647 and TEI-9648 clearly mediate their stereoselective antagonistic actions independent of their actions to block the catabolism of 1alpha,25(OH)(2)D(3). Therefore, TEI-9647 and TEI-9648 appear to be the first antagonists specific for the nuclear 1alpha,25(OH)(2)D(3) receptor-mediated genomic actions of 1alpha,25(OH)(2)D(3) in HL-60 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号