首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fossils, molecules, divergence times, and the origin of lissamphibians   总被引:6,自引:0,他引:6  
A review of the paleontological literature shows that the early dates of appearance of Lissamphibia recently inferred from molecular data do not favor an origin of extant amphibians from temnospondyls, contrary to recent claims. A supertree is assembled using new Mesquite modules that allow extinct taxa to be incorporated into a time-calibrated phylogeny with a user-defined geological time scale. The supertree incorporates 223 extinct species of lissamphibians and has a highly significant stratigraphic fit. Some divergences can even be dated with sufficient precision to serve as calibration points in molecular divergence date analyses. Fourteen combinations of minimal branch length settings and 10 random resolutions for each polytomy give much more recent minimal origination times of lissamphibian taxa than recent studies based on a phylogenetic analyses of molecular sequences. Attempts to replicate recent molecular date estimates show that these estimates depend strongly on the choice of calibration points, on the dating method, and on the chosen model of evolution; for instance, the estimate for the date of the origin of Lissamphibia can lie between 351 and 266 Mya. This range of values is generally compatible with our time-calibrated supertree and indicates that there is no unbridgeable gap between dates obtained using the fossil record and those using molecular evidence, contrary to previous suggestions.  相似文献   

2.
I review new evidence on origins and adaptive radiation of Malagasy lemurs, a remarkably diverse group containing 13% of living primate species. The number of recognized lemur species has increased significantly, partly due to research revealing specific subdivisions within known populations but mainly because of discovery of new populations through fieldwork. Some species feared to be extinct have also been rediscovered. Specific numbers have increased particularly in small-bodied, cryptic genera for which continued research will surely reveal even more species.Adaptative radiation of lemurs has been essentially confined to Madagascar. The high density of lemur species on that island, associated with very small geographical ranges, has major implications both for their evolutionary divergence and for conservation. Reconstructions of phylogenetic relationships among primates have been considerably enhanced by DNA sequence data. Sufficient data are now available from both nuclear and mitochondrial sequences to examine relationships among and within the major groups of living primates. Most studies have confirmed that lemurs constitute a monophyletic sister-group of the lorisiform clade and all exclude a specific relationship between cheirogaleids and lorisiforms repeatedly inferred from morphological evidence. However, some analyses indicate that the aye-aye may have branched away before the divergence between other lemurs and lorisiforms. DNA sequence analyses have also yielded a broad consensus for relationships between Eulemur, Hapalemur, Lemur and Varecia: Varecia branched away first, while Lemur is more closely related to Hapalemur than to Eulemur. As debate about phylogenetic relationships among lemurs and other primates seems to have been settled in favor of lemur monophyly (possibly excluding the aye-aye), only a single invasion of Madagascar is required; but it must still be explained how ancestral lemurs could have migrated there at an appropriate time. Separation between Madagascar and Africa was apparently complete by about 120 Ma, too far in the past for direct overland migration. A recent hypothesis suggested that uplifted land in the Mozambique Channel assisted colonization of Madagascar 26-45 Ma, seemingly agreeing with an estimated date of about 40 Ma for divergence of lemurs from other primates. However, mounting evidence suggests that divergence occurred significantly earlier. Because the earliest known fossil representatives of several modern orders of placental mammals (including primates) are dated no earlier than the early Tertiary, it is widely accepted that their divergence took place after the Cretaceous/Tertiary mass extinction. Yet the known fossil record can only yield minimum divergence times; if sampling is poor and/or biased there may be a considerable discrepancy between minimum and actual dates. There is, for example, virtually no known fossil record for lemurs in Madagascar and the earliest known representatives are subfossil lemurs, so in this case a direct reading of the fossil record would indicate that the lemurs first originated just a few thousand years ago! Examination of underestimation of times of origin because of poor sampling in the fossil record has confirmed previous suggestions that primates originated considerably earlier than generally believed. Several recent phylogenetic reconstructions based on DNA sequence data and using calibration dates derived from groups other than primates provide independent support for this inference. Overall, it now seems that primates originated at around 90 Ma rather than the 55 Ma indicated by direct reading of the known fossil record. Hence, colonization of Madagascar by lemurs would have taken place at about 80 Ma, double the date usually accepted, and should be interpreted in terms of contemporary continental relationships.  相似文献   

3.
Puffins, auks and their allies in the wing‐propelled diving seabird clade Pan‐Alcidae (Charadriiformes) have been proposed to be key pelagic indicators of faunal shifts in Northern Hemisphere oceans. However, most previous phylogenetic analyses of the clade have focused only on the 23 extant alcid species. Here we undertake a combined phylogenetic analysis of all previously published molecular sequence data (~ 12 kb) and morphological data (n = 353 characters) with dense species level sampling that also includes 28 extinct taxa. We present a new estimate of the patterns of diversification in the clade based on divergence time estimates that include a previously vetted set of twelve fossil calibrations. The resultant time trees are also used in the evaluation of previously hypothesized paleoclimatic drivers of pan‐alcid evolution. Our divergence dating results estimate the split of Alcidae from its sister taxon Stercorariidae during the late Eocene (~ 35 Ma), an evolutionary hypothesis for clade origination that agrees with the fossil record and that does not require the inference of extensive ghost lineages. The extant dovekie Alle alle is identified as the sole extant member of a clade including four extinct Miocene species. Furthermore, whereas an Uria + Alle clade has been previously recovered from molecular analyses, the extinct diversity of closely related Miocepphus species yields morphological support for this clade. Our results suggest that extant alcid diversity is a function of Miocene diversification and differential extinction at the Pliocene–Pleistocene boundary. The relative timing of the Middle Miocene climatic optimum and the Pliocene–Pleistocene climatic transition and major diversification and extinction events in Pan‐Alcidae, respectively, are consistent with a potential link between major paleoclimatic events and pan‐alcid cladogenesis.  相似文献   

4.
A new late Hemphillian (late Miocene) rodent assemblage is reported from Zwiebel Channel, a channel cut into underlying Ash Hollow Miocene sediments along Sand Draw, Brown County, Nebraska. This locality extends the temporal range of rodent history in the Sand Draw area. A new biostratigraphic hypothesis proposes that previously described assemblages with Ogmodontomys are older than those with Ophiomys, as is the case in the Meade Basin of southwestern Kansas. Consequently, two Pliocene temporal zones are recognised. Based on a phylogenetic analysis of Ophiomys, rodent biostratigraphy, and paleomagnetic profiles, Sand Draw assemblages with Ogmodontomys are considered to have been deposited about 3.0–2.8 Ma, while those with Ophiomys were laid down between about 2.8–2.5 Ma. The 1.6 Ma date previously suggested for Ophiomys parvus from Froman Ferry, Idaho is probably too young; it is more likely that O. parvus became extinct in Idaho prior to the North American Microtus immigration event at about 2.0 Ma, inhabiting the Snake River basin until around 2.2 Ma.  相似文献   

5.
Aim To better understand the historical biogeography of the true seals, Phocidae, by combining nuclear DNA (nDNA) and mitochondrial DNA (mtDNA) in a divergence time analysis using multiple fossil calibrations. Location Arctic, Antarctic, Pacific and Atlantic Oceans, Lake Baikal, Caspian Sea. Methods Fifteen nuclear genes totalling 8935 bp plus near‐complete mitochondrial genome sequences were used in a Bayesian divergence time analysis, incorporating eight soft‐bound fossil calibrations across the phylogeny. All species of true seals were included, plus the walrus, three otariids and seven carnivore outgroups. The majority of the nuclear sequences and four phocid mitochondrial genomes (plus three non‐phocid mitochondrial genomes) were newly generated for this study using DNA extracted from tissue samples; other sequences were obtained from GenBank. Results Using multiple nuclear genes and multiple fossil calibrations resulted in most divergence time estimations within Phocidae being much more recent than predicted by other molecular studies incorporating only mtDNA and using a single calibration point. A new phylogenetic hypothesis was recovered for the Antarctic seals. Main conclusions Incorporating multiple nuclear genes and fossil calibrations had a profound effect on the estimated divergence times. Most estimated divergences within Phocinae (Arctic seals) correspond to Arctic oceanic events and all occur within the last 12 Myr, a time when the Arctic and Atlantic oceans were freely exchanging and perennial Arctic sea ice existed, indicating that the Arctic seals may have had a longer association with ice than previously thought. The Monachinae (‘southern’ seals) split from the Phocinae c. 15 Ma on the eastern US coast. Several early trans‐Atlantic dispersals possibly occurred, leaving no living descendants, as divergence estimates suggest that the Monachus (monk seal) species divergences occurred in the western Atlantic c. 6 Ma, with the Mediterranean monk seal ancestor dispersing afterwards. The tribes Lobodontini (Antarctic seals) and Miroungini (elephant seals) are also estimated to have diverged in the eastern Atlantic c. 7 Ma and a single Lobodontini dispersal to Antarctica occurred shortly afterwards. Many of the newly estimated dates are used to infer how extinct lineages/taxa are allied with their living relatives.  相似文献   

6.
Zhang P  Zhou H  Chen YQ  Liu YF  Qu LH 《Systematic biology》2005,54(3):391-400
Establishing the relationships among modern amphibians (lissamphibians) and their ancient relatives is necessary for our understanding of early tetrapod evolution. However, the phylogeny is still intractable because of the highly specialized anatomy and poor fossil record of lissamphibians. Paleobiologists are still not sure whether lissamphibians are monophyletic or polyphyletic, and which ancient group (temnospondyls or lepospondyls) is most closely related to them. In an attempt to address these problems, eight mitochondrial genomes of living amphibians were determined and compared with previously published amphibian sequences. A comprehensive molecular phylogenetic analysis of nucleotide sequences yields a highly resolved tree congruent with the traditional hypotheses (Batrachia). By using a molecular clock-independent approach for inferring dating information from molecular phylogenies, we present here the first molecular timescale for lissamphibian evolution, which suggests that lissamphibians first emerged about 330 million years ago. By observing the fit between molecular and fossil times, we suggest that the temnospondyl-origin hypothesis for lissamphibians is more credible than other hypotheses. Moreover, under this timescale, the potential geographic origins of the main living amphibian groups are discussed: (i) advanced frogs (neobatrachians) may possess an Africa-India origin; (ii) salamanders may have originated in east Asia; (iii) the tropic forest of the Triassic Pangaea may be the place of origin for the ancient caecilians. An accurate phylogeny with divergence times can be also helpful to direct the search for "missing" fossils, and can benefit comparative studies of amphibian evolution.  相似文献   

7.
Heads, M. Evolution and biogeography of primates: a new model based on molecular phylogenetics, vicariance and plate tectonics. —Zoologica Scripta, 39, 107–127. The ages of the oldest fossils suggest an origin for primates in the Paleocene (~56 Ma). Fossil‐calibrated molecular clock dates give Cretaceous dates (~80–116 Ma). Both these estimates are minimum dates although they are often ‘transmogrified’ and treated as maximum or absolute dates. Oldest fossils can underestimate ages by tens of millions of years and instead of calibrating the time‐course of evolution with a scanty fossil record, the geographical boundaries of the main molecular clades of primates are calibrated here with radiometrically dated tectonic events. This indicates that primates originated when a globally widespread ancestor (early Archonta) differentiated into a northern group (Plesiadapiformes, extinct), a southern group (Primates), and two south‐east Asian groups (Dermoptera and Scandentia). The division occurred with the breakup of Pangea in the Early Jurassic and the opening of the central Atlantic (~185 Ma). Within primates, the strepsirrhines and haplorhines diverged with volcanism and buckling on the Lebombo Monocline, a volcanic rifted margin in south‐east Africa (Early Jurassic, ~180 Ma). Within strepsirrhines, lorises and galagos (Africa and Asia) and lemurs (Madagascar) diverged with the formation of the Mozambique Channel (Middle Jurassic, ~160 Ma). Within haplorhines, Old World monkeys and New World monkeys diverged with the opening of the Atlantic (Early Cretaceous, ~130 Ma). The main aspects of primate distribution are interpreted as the result of plate tectonics, phylogeny and vicariance, with some subsequent range expansion leading to secondary overlap. Long‐distance, trans‐oceanic dispersal events are not necessary. The primate ancestral complex was already widespread globally when sea‐floor spreading, strike‐slip rifting and orogeny fractured and deformed distributions through the Jurassic and Cretaceous, leading to the origin of the modern clades. The model suggests that the topology of the phylogenetic tree reflects a sequence of differentiation in a widespread ancestor rather than a series of dispersal events.  相似文献   

8.
Aim To infer the phylogenetic relationships and biogeography of Hydromantes, with special emphasis on the European taxa. In particular, we aimed to test: (1) the monophyly of the European species and current views on their interrelationships; and (2) previously proposed timings of the separation of European and American Hydromantes, and of biogeographically important events within Europe. Location California and the Western Mediterranean Basin, specifically south‐east France, Italy, and the island of Sardinia. Methods Partial sequences of mitochondrial genes (cytochrome b and 12S rRNA) were obtained from 45 specimens of Hydromantes, including all European extant species and subspecies, and two species from California. In addition, a fragment of the mitochondrial 16S rRNA gene was amplified for 16 specimens. Data sets were aligned using Clustal X, and well‐supported phylogenetic trees were produced using maximum‐likelihood, Bayesian and maximum‐parsimony methods. Estimates of divergence times were obtained with the program r8s , the molecular clock being calibrated using the opening of the Strait of Gibraltar, the final event in the Messinian Salinity Crisis of 5.3 Ma. Results Separation between the American and European clades occurred approximately 13.5 Ma, most probably before or after westward dispersal across the Bering Land Bridge. In Europe, divergence started in the late Miocene, when Hydromantes (A.) genei separated from other members of the genus 9 Ma and colonized south‐west Sardinia. Movement between the European mainland and Sardinia, by a member of the subgenus Speleomantes, occurred in the Messinian Salinity Crisis, after the Mediterranean Basin desiccated almost completely 5.96 Ma. Subsequent widespread aridification fragmented the geographical ranges of Hydromantes, which live in cool and humid conditions, resulting in the origin of the six species in the subgenus Speleomantes. In contrast, a second period of diversification, in continental Europe 2–1.3 Ma, was probably caused by very cold interludes during the climatic oscillations that characterized the Pleistocene. Main conclusions The molecular clock used here indicates that the separation of Californian and European Hydromantes occurred more recently than previously believed, and the same is true of some subsequent phylogenetic divergences within Europe. Estimated dates for these divergence events are consistent with known geophysical and climatic events that could have caused or facilitated them.  相似文献   

9.
The Japanese otter (Lutra nippon), once inhabited in most islands of Japan, is now considered as an extinct species. Although the Japanese otter is regarded as a distinct species from the Eurasian otter (L. lutra), its phylogeny and taxonomic status are based on limited information on morphological and genetic data, and thus further clarification is required. Here, we assessed the phylogenetic relationship among the genus Lutra and taxonomic status of L. nippon by using the complete sequences of cytochrome b gene of its holotype. The present phylogenic trees supported that the genus Lutra specimens largely formed monophyletic group, with L. sumatrana as a basal to other Lutra species. Within Lutra species, L. nippon was distantly related with L. lutra. The European otter population of L. l. lutra were clustered together with its subspecies, L. l. chinensis rather than the same subspecies, Korean otter population. The discrepancy between the genetic data and traditional taxonomy justifies the necessity of reexamination of the current subspecific classification system of Eurasian otters. Level of genetic divergence between the holotype of L. nippon and L. lutra was two to three-fold lower than those among the other sister species of the Lutrinae. Based on the level of divergence between the L. nippon and L. lutra, and insufficient evidence of morphological difference between them, it is suggested that designation of Japanese otter as a separate species from L. lutra will be reconsidered.  相似文献   

10.
Tragopogon comprises approximately 150 described species distributed throughout Eurasia from Ireland and the UK to India and China with a few species in North Africa. Most of the species diversity is found in Eastern Europe to Western Asia. Previous phylogenetic analyses identified several major clades, generally corresponding to recognized taxonomic sections, although relationships both among these clades and among species within clades remain largely unresolved. These patterns are consistent with rapid diversification following the origin of Tragopogon, and this study addresses the timing and rate of diversification in Tragopogon. Using BEAST to simultaneously estimate a phylogeny and divergence times, we estimate the age of a major split and subsequent rapid divergence within Tragopogon to be ~2.6 Ma (and 1.7–5.4 Ma using various clock estimates). Based on the age estimates obtained with BEAST (HPD 1.7–5.4 Ma) for the origin of crown group Tragopogon and 200 estimated species (to accommodate a large number of cryptic species), the diversification rate of Tragopogon is approximately 0.84–2.71 species/Myr for the crown group, assuming low levels of extinction. This estimate is comparable in rate to a rapid Eurasian radiation in Dianthus (0.66–3.89 species/Myr), which occurs in the same or similar habitats. Using available data, we show that subclades of various plant taxa that occur in the same semi‐arid habitats of Eurasia also represent rapid radiations occurring during roughly the same window of time (1.7–5.4 Ma), suggesting similar causal events. However, not all species‐rich plant genera from the same habitats diverged at the same time, or at the same tempo. Radiations of several other clades in this same habitat (e.g. Campanula, Knautia, Scabiosa) occurred at earlier dates (45–4.28 Ma). Existing phylogenetic data and diversification estimates therefore indicate that, although some elements of these semi‐arid communities radiated during the Plio‐Pleistocene period, other clades sharing the same habitat appear to have diversified earlier.  相似文献   

11.
The origin and timing of the diversification of modern birds remains controversial, primarily because phylogenetic relationships are incompletely resolved and uncertainty persists in molecular estimates of lineage ages. Here, we present a species tree for the major palaeognath lineages using 27 nuclear genes and 27 archaic retroposon insertions. We show that rheas are sister to the kiwis, emu and cassowaries, and confirm ratite paraphyly because tinamous are sister to moas. Divergence dating using 10 genes with broader taxon sampling, including emu, cassowary, ostrich, five kiwis, two rheas, three tinamous, three extinct moas and 15 neognath lineages, suggests that three vicariant events and possibly two dispersals are required to explain their historical biogeography. The age of crown group birds was estimated at 131 Ma (95% highest posterior density 122–138 Ma), similar to previous molecular estimates. Problems associated with gene tree discordance and incomplete lineage sorting in birds will require much larger gene sets to increase species tree accuracy and improve error in divergence times. The relatively rapid branching within neoaves pre-dates the extinction of dinosaurs, suggesting that the genesis of the radiation within this diverse clade of birds was not in response to the Cretaceous–Paleogene extinction event.  相似文献   

12.
The deeply diverging subfamilies of grasses: Anomochlooideae, Pharoideae, and Puelioideae, today inhabit tropical forest floors as sparsely distributed depauperate lineages. The BEP/PACMAD grasses, which make up the majority of the family, are the result of a more recent radiation. Species in the deeply diverging subfamilies were here investigated to better understand molecular evolutionary processes and ages of divergence. Complete chloroplast genomes (plastomes) of Pharus latifolius L., P. lappulaceus Aubl., and Puelia olyriformis (Franch.) Clayton were determined. Four plastome loci from seven species of the deep subfamilies were also sequenced. Phylogenetic and mutation analyses and divergence estimations were conducted on all sequences together with homologous sequences from other Poaceae. Mutation analyses surveyed insertion/deletion mutations across the plastomes, clarified a trend in the molecular evolution of the rpoC2 locus, and indicated unique pseudogenizations in the plastomes of Pharus and Puelia. Phylogenetic analyses largely confirmed earlier multi-gene phylogenies. Phylogenomic and divergence analyses produced estimated origins of the crown nodes of Anomochlooideae at 65–104 Ma, Pharoideae at 44–71 Ma, and Puelioideae at 62–96 Ma. The upper ends of our estimated ranges are in general agreement with previous estimates. However, the lower ends of our ranges are considerably older than previous estimates, reflecting the influence of the less commonly used oldest fossil calibration point. The deeply diverging subfamilies exhibited the accumulation of numerous substitution and indel mutations consistent with a long evolutionary history that predated the radiation of the BEP/PACMAD grasses. We hypothesize that relatively rapid warming and drying in Africa at 55–56.5 Ma may have acted as selective forces stimulating adaptive radiations of grasses from the African tropical forests into diverse habitats.  相似文献   

13.
SUMMARY Ossification sequences of the skull in extant Urodela and in Permo‐Carboniferous Branchiosauridae have already been used to study the origin of lissamphibians. But most of these studies did not consider some recent methods developed to analyze the developmental sequences within a phylogenetic framework. Here, we analyze the ossification sequences of 24 cranial bones of 23 extant species of salamanders using the event‐pairing method. This reveals new developmental synapomorphies for several extant salamander taxa and ancestral sequences for Urodela under four alternative reference phylogenies. An analysis with the 12 bones for which ossification sequence data are available in urodeles and in the branchiosaurid Apateon is also performed in order to compare the ancestral condition of the crown‐group of Urodela to the sequence of Apateon. This reveals far more incompatibilities than previously suggested. The similarities observed between some extant salamanders and branchiosaurids may result from extensive homoplasy, as the extreme variation observed in extant Urodela suggests, or be plesiomorphic, as the conservation of some ossification patterns observed in other remotely related vertebrates like actinopterygians suggests. We propose a new, simpler method based on squared‐change optimization to estimate the relative timing of ossification of various bones of hypothetical ancestors, and use independent‐contrasts analysis to estimate the confidence intervals around these times. Our results show that the uncertainty of the ancestral ossification sequence of Urodela is much greater than event‐pairing suggests. The developmental data do not allow to conclude that branchiosaurids are closely related to salamanders and their limited taxonomic distribution in Paleozoic taxa precludes testing hypotheses about lissamphibian origins. This is true regardless of the analytical method used (event‐pairing or our new method based on squared‐change parsimony). Simulations show that the new analytical method is generally more powerful to detect evolutionary shifts in developmental timing, and has lower Type I error rate than event‐pairing. It also makes fewer errors in ancestral character value or state assignment than event‐pairing.  相似文献   

14.
To elucidate the species composition, genetic divergence, evolutionary relationships, and divergence time of Hoplobatrachus and Euphlyctis frogs (subfamily Dicroglossinae, family Ranidae) in Bangladesh and other Asian countries, we analyzed the mitochondrial Cyt b, 12S, and 16S rRNA genes of 252 specimens. Our phylogenetic analyses showed 13 major clades corresponding to several cryptic species as well as to nominal species in the two genera. The results suggested monophyly of Asian Hoplobatrachus species, but the position of African Hoplobatrachus occipitalis was not clarified. Nucleotide divergence and phylogenetic data suggested the presence of allopatric cryptic species allied to Euphlyctis hexadactylus in Sundarban, Bangladesh and several parapatric cryptic species in the Western Ghats, India. The presence of at least two allopatric cryptic species among diverged Euphlyctis cyanophlyctis in Bangladesh, India, and Sri Lanka was also suggested. In some cases, our estimated divergence times matched the paleogeological events of South and Southeast Asian regions that may have led to the divergence of Hoplobatrachus and Euphlyctis taxa. Especially, land formation at Bangladesh (15–10 Ma) may have allowed the spread of these frog taxa to Southeast Asian areas, and the aridification of central India (5.1–1.6 Ma) might have affected the gene flow of widely distributed species. The present study revealed prior underestimation of the richness of the amphibian fauna in this region, indicating the possible occurrence of many cryptic species among these groups.  相似文献   

15.
The Great American Biotic Interchange (GABI) is zoogeographic event characterized by the exchange of taxa between North and South America, typically associated with the rise of the Isthmus of Panama in the late Pliocene. Recent geologic evidence suggests the connections between North and South America may be much older, and that the interchange of organisms between the two continents could have therefore happened much earlier than 3 Ma. Most of the research investigating the GABI has come from tropical vertebrate taxa; little work has been done on invertebrates or on non‐tropical species. To investigate how the GABI shaped the distribution of arid‐adapted species, particularly those with amphitropical distributions (i.e. taxa found in South and North American xeric regions yet absent from the tropics), we examine the historical biogeography of the bee genus Diadasia using a hypothesis of Diadasia phylogenetic relationships. Nuclear and mitochondrial genetic loci are used to reconstruct a phylogeny of Diadasia, which is then used to estimate divergence dates and reconstruct ancestral area relationships. Our analyses suggest the divergence between North and South American Diadasia species occurred between 20.5 and 15 Ma, long before the formation of the Isthmus of Panama. This study is the first to show a Miocene connection for an amphitropically‐distributed insect group. It suggests that the biotic connection between continents is more complicated than previously thought and may have initiated long before the late Pliocene.  相似文献   

16.
Aim The species‐rich family of true toads (Anura: Bufonidae) has been the focus of several earlier studies investigating the biogeography of geographically widespread taxa. Herein, we employ newly developed Bayesian divergence estimate methods to investigate the biogeographical history of this group. Resulting age estimates are used to test several key temporal hypotheses including that the origin of the bufonid clade pre‐dates Gondwanan vicariance (~105 million years ago, Ma). Area cladograms are also invoked to investigate the geographical origin of the family. Location Worldwide, except the Australia–New Guinea plate, Madagascar and the Antarctic. Methods A phylogenetic hypothesis of the relationships among true toads was derived from analysis of 2521 bp of DNA data including fragments from three mitochondrial (12S, tRNAval, 16S) and two nuclear (RAG‐1, CXCR‐4) genes. Analysis of multiple, unlinked loci with a Bayesian method for estimating divergence times allowed us to address the timing and biogeographical history of Bufonidae. Resulting divergence estimates permitted the investigation of alternative vicariance/dispersal scenarios that have been proposed for true toads. Results Our area cladogram resulting from phylogenetic analysis of DNA data supports a South American origin for Bufonidae. Divergence estimates indicate that the family originated earlier than had been suggested previously (78–99 Ma). The age of the enigmatic Caribbean clade was dated to the late Palaeocene–early Eocene. A return of bufonids to the New World in the Eocene was followed by rapid diversification and secondary expansion into South America by the early Oligocene (Rupelian). Main conclusions The South American origin of Bufonidae in the Upper Cretaceous was followed by relatively rapid expansion and radiation around the globe, ending with a return to the Americas via a Eurasian/North American land bridge in the Eocene. Though the exact route of this dispersal (Beringia or North Atlantic) remains unclear, an argument is made for the less frequently invoked North Atlantic connection. The origin of the enigmatic Caribbean lineage was found to be consistent with colonization following the bolide impact at the K/T boundary. These findings provide the first, firm foundation for understanding true toad divergence times and their truly remarkable and global radiation.  相似文献   

17.
Aim The sequential break‐up of Gondwana is thought to be a dominant process in the establishment of shared biota across landmasses of the Southern Hemisphere. Yet similar distributions are shared by taxa whose radiations clearly post‐date the Gondwanan break‐up. Thus, determining the contribution of vicariance versus dispersal to seemingly Gondwanan biota is complex. The southern freshwater crayfishes (family Parastacidae) are distributed on Australia and New Guinea, South America, Madagascar and New Zealand and are unlikely to have dispersed via oceans, owing to strict freshwater limitations. We test the hypotheses that the break‐up of Gondwana has led to (1) a predominately east–west (((Australia, New Zealand: 80 Ma) Madagascar: 160–121 Ma) South America: 165–140 Ma), or (2) a southern (((Australia, South America: 52–35 Ma) New Zealand: 80 Ma) Madagascar: 160–121 Ma) pattern for parastacid crayfish. Further, we examine the evidence for a complete drowning of New Zealand and subsequent colonization by freshwater crayfish. Location Southern Hemisphere. Methods The evolutionary relationships among the 15 genera of Parastacidae were reconstructed using mitochondrial [16S, cytochrome c oxidase subunit I (COI)] and nuclear (18S, 28S) sequence data and maximum likelihood and Bayesian methods of phylogenetic reconstruction. A Bayesian (multidivtime ) molecular dating method using six fossil calibrations and phylogenetic inference was used to estimate divergence time among crayfish clades on Gondwanan landmasses. Results The South American crayfish are monophyletic and a sister group to all other southern crayfish. Australian crayfish are not monophyletic, with two Tasmanian genera, Spinastacoides and Ombrastacoides, forming a clade with New Zealand and Malagasy crayfish (both monophyletic). Divergence of crayfish among southern landmasses is estimated to have occurred around the Late Jurassic to Early Cretaceous (109–178 Ma). Main conclusions The estimated phylogenetic relationships and time of divergence among the Southern Hemisphere crayfishes were consistent with an east–west pattern of Gondwanan divergence. The divergence between Australia and New Zealand (109–160 Ma) pre‐dated the rifting at around 80 Ma, suggesting that these lineages were established prior to the break‐up. Owing to the age of the New Zealand crayfish, we reject the hypothesis that there was a complete drowning of New Zealand crayfish habitat.  相似文献   

18.
19.
Disturbance regimes in much of the boreal forest have shifted from wildfire to clearcutting over the last century, resulting in concerns for biodiversity. Because the boreal forest has evolved under a natural fire regimes, we hypothesized that application of prescribed burning (PB) after clearcutting would result in plant communities more similar to wildfire than clearcut only. However, because clearcutting + PB involves multiple disturbances in a short interval, we proposed an alternate hypothesis that clearcutting + PB would result in a species composition and trait assemblage that differ from those that develop after a single wildfire or clearcutting event. We determined species composition, diversity, and trait composition of 17 clearcut, 17 clearcut + PB, and 15 wildfire sites of jack pine (Pinus banksiana) dominated forests in northwestern Ontario, Canada 15–37 years after disturbance. Contrary to our primary hypothesis we found that clearcut + PB formed communities different from wildfire and clearcut, the latter two being similar. Clearcut + PB harbored more early successional species associated with seed banking, wind dispersal, deciduous foliage, and alien origin than wildfire or clearcut sites, which showed no specific trait associations. Taxonomic and trait analysis of clearcut + PB sites exhibited effects of compound disturbances, as observed after short-interval fires, supporting our alternate hypothesis. We concluded that PB after clearcutting formed plant communities significantly different from those developed either after clearcutting or wildfire alone. We attribute this community divergence to the compounding effects associated with the addition of prescribed fire to these previously disturbed forests.  相似文献   

20.
We investigate the timing of diversification in allopolyploids of Nicotiana (Solanaceae) utilising sequence data of maternal and paternal origin to look for evidence of a lag phase during which diploidisation took place. Bayesian relaxed clock phylogenetic methods show recent allopolyploids are a result of several unique polyploidisation events, and older allopolyploid sections have undergone subsequent speciation at the polyploid level (i.e. a number of these polyploid species share a singular origin). The independently formed recent polyploid species in the genus all have mean age estimates below 1 million years ago (Ma). Nicotiana section Polydicliae (two species) evolved 1.5 Ma, N. section Repandae (four species) formed 4 Ma, and N. section Suaveolentes (~35 species) is about 6 million years old. A general trend of higher speciation rates in older polyploids is evident, but diversification dramatically increases at approximately 6 Ma (in section Suaveolentes). Nicotiana sect. Suaveolentes has spectacularly radiated to form 35 species in Australia and some Pacific islands following a lag phase of almost 6 million years. Species have filled new ecological niches and undergone extensive diploidisation (e.g. chromosome fusions bringing the ancestral allotetraploid number, n = 24, down to n = 15 and ribosomal loci numbers back to diploid condition). Considering the progenitors of Suaveolentes inhabit South America, this represents the colonisation of Australia by polyploids that have subsequently undergone a recent radiation into new environments. To our knowledge, this study is the first report of a substantial lag phase being investigated below the family level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号