首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Atoposaurids are a group of small‐bodied, extinct crocodyliforms, regarded as an important component of Jurassic and Cretaceous Laurasian semi‐aquatic ecosystems. Despite the group being known for over 150 years, the taxonomic composition of Atoposauridae and its position within Crocodyliformes are unresolved. Uncertainty revolves around their placement within Neosuchia, in which they have been found to occupy a range of positions from the most basal neosuchian clade to more crownward eusuchians. This problem stems from a lack of adequate taxonomic treatment of specimens assigned to Atoposauridae, and key taxa such as Theriosuchus have become taxonomic ‘waste baskets’. Here, we incorporate all putative atoposaurid species into a new phylogenetic data matrix comprising 24 taxa scored for 329 characters. Many of our characters are heavily revised or novel to this study, and several ingroup taxa have never previously been included in a phylogenetic analysis. Parsimony and Bayesian approaches both recover Atoposauridae as a basal clade within Neosuchia, more stemward than coelognathosuchians, bernissartiids, and paralligatorids. Atoposauridae is a much more exclusive clade than previously recognized, comprising just three genera (Alligatorellus, Alligatorium, and Atoposaurus) that were restricted to the Late Jurassic of western Europe, and went extinct at the Jurassic/Cretaceous boundary. A putative Gondwanan atoposaurid (Brillanceausuchus) is recovered as a paralligatorid. Our results exclude both Montsecosuchus and Theriosuchus from Atoposauridae. Theriosuchus is polyphyletic, forming two groupings of advanced neosuchians. Theriosuchus (restricted to Theriosuchus pusillus, Theriosuchus guimarotae, and Theriosuchus grandinaris) spanned the Middle Jurassic to early Late Cretaceous, and is known from Eurasia and North Africa. Two Cretaceous species previously assigned to Theriosuchus (‘Theriosuchusibericus and ‘Theriosuchussympiestodon) are shown to be nested within Paralligatoridae, and we assign them to the new genus Sabresuchus. The revised phylogenetic placement of Theriosuchus has several implications for our understanding of eusuchian evolution. Firstly, the presence of fully pterygoidean choanae, previously regarded as a defining characteristic of Eusuchia, is not found in some basal members of Eusuchia. However, eusuchians can be distinguished from Theriosuchus and other basal neosuchians in that their choanae are posteriorly positioned, with an anterior margin medial to the posterior edge of the suborbital fenestra. This feature distinguishes eusuchians from Theriosuchus and more basal neosuchians. Secondly, our refined understanding of Theriosuchus implies that this taxon possessed only amphicoelous presacral vertebrae, and therefore fully developed vertebral procoely is likely to have evolved only once in Crocodylomorpha, on the lineage leading to Eusuchia. These and other findings presented herein will provide an important framework for understanding the neosuchian–eusuchian transition.  相似文献   

2.
3.
A new species of an atoposaurid crocodilian, Theriosuchus guimarotae, is described from the Late Jurassic (Kimmeridgian) of Portugal. Theriosuchus guimarotae can be distinguished from other species of Theriosuchus by a lateral surface of squamosal bevelled ventrally; a rounded, caudally projecting and dorsally sculptured caudolateral corner of the squamosal; a premaxillomaxillary suture aligned caudomedially in dorsal aspect; a minimum space between the supratemporal foramina that comprises one third of the total width of the cranial table; a minimum width of the frontal between the orbits that comprises one third of the maximum width of the skull at the orbits; a dentition that comprises only pseudocaniniform and lanceolate-shaped teeth; the presence of an external mandibular fenestra and all vertebral bodies amphicoelous. Its osteology also sheds light on the diagnosis of Theriosuchus within Atoposauridae. The material additionally includes specimens representative of several ontogenetic stages, each of which is discussed here. With its Late Jurassic age, T. guimarotae represents the oldest well-preserved material of Theriosuchus and reveals further knowledge about the palaeobiogeography of the genus in western Europe.  相似文献   

4.
It is commonly believed that there are differences in the evolutionary lability of the crania, dentition, and postcrania of mammals, the latter two being more prone to homoplasy because of strong selective pressures for feeding and locomotion, respectively. Further, because of the fragmentary nature of fossils, phylogenetic analyses of extinct taxa often must utilize characters based on only one of these systems. In this paper the levels of homoplasy (as measured by the consistency index; CI) were compared in characters based on these three anatomical systems in therian mammals. No statistically significant differences were found in the overall CIs of 41 data sets based on dental, cranial, or postcranial characters. Differences in homoplasy within data sets with two or three kinds of data were not statistically significant. These findings suggest that dental, cranial, and postcranial characters can be equally prone to homoplasy and none should be automatically dismissed, disregarded, or systematically weighted in phylogenetic analyses. The level of homoplasy in characters derived from a given region of the skeleton may differ depending on the taxonomic level of the taxa considered. Dental, cranial, and postcranial characters may not constitute natural classes, yet examination of the phylogenetic signal of these subsets of data previous to a simultaneous analysis can shed light on significant aspects of the evolutionary process.  相似文献   

5.
We describe a partial crocodilian skull from the Mesozoic non-marine sediments of the Khorat Plateau Sao Khua Formation (Berriasian-Barremian) in northeastern Thailand and assign it to Theriosuchus grandinaris sp. nov. An isolated dentary from the Phu Kradung Formation (latest Jurassic–Early Cretaceous) is also tentatively assigned to the genus Theriosuchus, and an isolated tooth from the Khok Kruat Formation (Aptian-Albian) may belong to this genus. The Thai fossils represent the first unambiguous evidence of presence of Theriosuchus outside Europe. Its occurrence in Thailand increases the known diversity of neosuchian crocodyliforms from Southeast Asia and suggests that Atoposauridae had a wide geographical distribution from the Late Jurassic to the Early Cretaceous.  相似文献   

6.
A comprehensive phylogenetic investigation was performed to elucidate the cladistic relationships and possible monophyly of therocephalian therapsids (Amniota: Synapsida). The phylogenetic positions of 30 therapsid taxa were examined under maximum parsimony, including 23 therocephalian genera. The analysis incorporated 110 cranial and postcranial characters in order to assess the interrelationships of basal therocephalians and eutherocephalians and their relationships to Cynodontia, representing the most complete review of therocephalian phylogeny to date. The analysis supports the hypothesis that Therocephalia represents the monophyletic sister taxon to Cynodontia, with as many as 15 morphological synapomorphies, in contrast with other recent analyses of lesser taxon sampling. The results also support the hypothesis that Scylacosauridae is more closely related to Eutherocephalia than to the basal therocephalian family Lycosuchidae, supporting a ‘Scylacosauria’ clade. The taxa suggested here to be neotenic forms (e.g. Ictidosuchoides and Ictidosuchops) are positioned near the base of a monophyletic Baurioidea. Neotenic development of the therocephalian feeding apparatus and evolutionary parallelism with cynodonts are suggested to have been important trends in the early evolution of baurioid therocephalians into the Late Permian and Early Triassic.  相似文献   

7.
Molecular and paleontological evidence now point to the last common ancestor between chimpanzees and modern humans living between five and seven million years ago. Any species considered to be more closely related to humans than chimpanzees we call hominins. Traditionally, early hominins have been conspicuous by their absence in the fossil record, but discoveries in the last 20 years have finally provided us with a number of very important finds. We currently have three described genera, Ardipithecus, Orrorin and Sahelanthropus, of which Ardipithecus is extremely well represented by cranial, dental, and postcranial remains. All three genera are argued to be hominins based on reduced canine size and an increased capacity for bipedal locomotion. The evolutionary relationships between these taxa and both earlier hominoids and later hominins are somewhat disputed, but this is to be expected for any species thought to be close to the root of the hominin lineage.  相似文献   

8.
Abstract: Fossils of dyrosaurid crocodyliforms are limited in South America, with only three previously diagnosed taxa including the short‐snouted Cerrejonisuchus improcerus from the Paleocene Cerrejón Formation of north‐eastern Colombia. Here we describe a second dyrosaurid from the Cerrejón Formation, Acherontisuchus guajiraensis gen. et sp. nov., based on three partial mandibles, maxillary fragments, teeth, and referred postcrania. The mandible has a reduced seventh alveolus and laterally depressed retroarticular process, both diagnostic characteristics of Dyrosauridae. Acherontisuchus guajiraensis is distinct among known dyrosaurids in having a unique combination of craniomandibular characteristics, and postcranial morphology that suggests it may have occupied a more placid, fluvial habitat than most known Old‐World dyrosaurids. Results from a cladistic analysis of Dyrosauridae, using 82 primarily cranial and mandibular characters, support an unresolved relationship between A. guajiraensis and a combination of New‐ and Old‐World dyrosaurids including Hyposaurus rogersii, Congosaurus bequaerti, Atlantosuchus coupatezi, Guarinisuchus munizi, Rhabdognathus keiniensis and Rhabdognathus aslerensis. Our results are consistent with an African origin for Dyrosauridae with multiple dispersals into the New World during the Late Cretaceous and a transition from marine habitats in ancestral taxa to more fluvial habitats in more derived taxa.  相似文献   

9.
Acoel sperm characters proved useful in deciphering acoel taxonomy. The phylogenetic value of sperm characters in closely related sub-groups or in a monophyletic taxon has not yet been assessed. We have investigated sperm ultrastructure in seven members of the monophyletic taxon Childia sensu (Tekle et al. J Zool Sys Evol Res 43(1):72–90, 2005) and in their closest relatives, the Mecynostomidae (four taxa). All members of Childia examined show little variation in their sperm ultrastructure. The common characters of Childia taxa are: 9 + 1 axoneme structure, the presence of six distal cytoplasmic microtubules in the absence of axial or cortical ones, long nucleus and extensive nucleus–flagella overlap. We have identified a new set of cytoplasmic microtubules lying in the centriolar end of the sperm cell, distal microtubules. The origin and phylogenetic significance of this character is discussed. The types and arrangement of cytoplasmic granules could be used as phylogenetic characters at a low taxonomic level. A loose membrane amorphous core type of granule was found to be a synapomorphy for the following clade within the taxon Childia: C. crassum + C. groenlandica + C. vivipara + C. brachyposthium + C. macroposthium. Sausage shaped granules are plesiomorphic among the taxa examined. The rest of the granule characters were found to be homoplasious. Sperm ultrastructural characters have again proven their concordance with molecular phylogeny. The only morphological synapomorphies known for the sister taxa Childia–Mecynostomidae, in the molecular phylogeny, are characters derived from sperm ultrastructure: distal microtubules arranged in two groups of three microtubules each and a 9 + 1 axoneme structure. The spermatozoa of Childia and Mecynostomidae show 9 + 1 axoneme configuration, seemingly similar to the 9 + ‘1’ axoneme pattern of the Platyhelminthes—Trepaxonemata. Using electron-microscope immunocytochemistry, we have demonstrated that, unlike the central cylinder of trepaxonematans, the central cylinder of the 9 + 1 axonemal pattern in acoels is immunoreactive to tubulin and contains a single central microtubule. Therefore, the 9 + 1 patterns in acoels and trepaxonematans are homoplasious.  相似文献   

10.
Body mass is a key variable in investigating the evolutionary biology of the hominines (Australopithecus, Paranthropus, and Homo). It is not only closely related to life-history parameters but also provides a necessary baseline for studies of encephalization or megadonty. Body mass estimates are normally based on the postcranial skeleton. However, the majority of hominid fossils are cranio-dental remains that are unassociated with postcranial material. Only rarely can postcranial material be linked with craniodentally defined hominid taxa. This study responds to this problem by evaluating body mass estimates based on 15 cranial variables to determine whether they compare in reliability with estimates determined from postcranial variables. Results establish that some cranial variables, and particularly orbital area, orbital height, and biporionic breadth, are nearly as good mass predictors for hominoids as are some of the best postcranial predictors. For the hominines in particular, orbital height is the cranial variable which produces body mass estimates that are most in line with postcranially generated estimates. Both orbital area and biporionic breadth scale differently in the hominines than they do in the other hominoids. This difference in scaling results in unusually large estimates of body mass based on these variables for the larger-sized hominines, although the three cranial variables produce equivalent predicted masses for the smaller-bodied hominines. © 1994 Wiley-Liss, Inc.  相似文献   

11.
Previous attempts to resolve plesiosaurian phylogeny are reviewed and a new phylogenetic data set of 66 taxa (67% of ingroup taxa examined directly) and 178 characters (eight new) is presented. We recover two key novel results: a monophyletic Plesiosauridae comprising Plesiosaurus dolichodeirus, Hydrorion brachypterygius, Microcleidus homalospondylus, Occitanosaurus tournemirensis and Seeleyosaurus guilelmiimperatoris; and five plesiosaurian taxa recovered outside the split between Plesiosauroidea and Pliosauroidea. These taxa are Attenborosaurus conybeari, ‘Plesiosaurusmacrocephalus and a clade comprising Archaeonectrus rostratus, Macroplata tenuiceps and BMNH 49202. Based on this result, a new name, Neoplesiosauria, is erected for the clade comprising Plesiosauroidea and Pliosauroidea. Taxon subsamples of the new dataset are used to simulate previous investigations of global plesiosaurian relationships. Based on these simulations, most major differences between previous global phylogenetic hypotheses can be attributed to differences in taxon sampling. These include the position of Leptocleididae and Polycotylidae and the monophyly or paraphyly of Rhomaleosauridae. On this basis we favour the results recovered by our, larger analysis. Leptocleididae and Polycotylidae are sister taxa, forming a monophyletic clade within Plesiosauroidea, indicating that the large‐headed, short‐necked ‘pliosauromorph’ body plan evolved twice within Plesiosauria. Rhomaleosauridae forms the monophyletic sister taxon of Pliosauridae within Pliosauroidea. Problems are identified with previous phylogenetic definitions of plesiosaurian clades and new, stem‐based definitions are presented that should maintain their integrity over a range of phylogenetic hypotheses. New, rank‐free clade names Cryptoclidia and Leptocleidia are erected to replace the superfamilies Cryptoclidoidea and Leptocleidoidea. These were problematic as they were nested within the superfamily Plesiosauroidea. The incongruence length difference test indicates no significant difference in levels of homoplasy between cranial and postcranial characters.  相似文献   

12.
Aside from use as estimates of body mass dimorphism and fore to hind limb joint size comparisons, postcranial elements have not often contributed to assessments of variation in Australopithecus africanus. Meanwhile, cranial, facial, and dental size variation is interpreted to be high or moderately high. Further, the cranial base and face express patterns of structural (shape) variation, which are interpreted by some as evidence for the presence of multiple species. Here, the proximal femur is used to consider postcranial size and shape variation in A. africanus. Original fossils from Makapansgat and Sterkfontein, and samples from Homo, Pan, Gorilla, and Pongo were measured. Size variation was assessed by comparing the A. africanus coefficient of variation to bootstrapped distributions of coefficient of variation samples for each taxon. Shape variation was assessed from isometrically adjusted shape variables. First, the A. africanus standard deviation of log transformed shape variables was compared to bootstrapped distributions of logged standard deviations in each taxon. Second, shape variable based Euclidean distances between fossil pairs were compared to pairwise Euclidean distance distributions in each reference taxon. The degree of size variation in the A. africanus proximal femur is consistent with that of a single species, and is most comparable to Homo and Pan, lower than A. afarensis, and lower than some estimates of cranial and dental variation. Some, but not all, shape variables show more variation in A. africanus than in extant taxa. The degree of shape difference between some fossils exceeds the majority of pairwise differences in the reference taxa. Proximal femoral shape, but not size, variation is consistent with high estimates of A. africanus cranial variation.  相似文献   

13.
Fifteen cranial measurements were taken from wild caught specimens ofAlouatta seniculus seniculus, A. s. stramineus andA. s. macconnelli. A morphological analysis showed sex dimorphism in these three groups. A multivariate analysis discriminated among these taxa; males being more clearly discriminated than females. Our data showed that these taxa can be separated on the basis of quantitative cranial traits, biogeographic distribution, karyological differences, and biochemical characters. We therefore propose a new taxonomic arrangement, changing their taxonomic status to the species level (Alouatta seniculus, A. macconnelli, andA. stramineus).  相似文献   

14.
Our knowledge of the cranial morphology of early penguins remains poor, particularly for Paleogene taxa. This paper describes a partial penguin skull and additional isolated cranial elements from the Eocene La Meseta Formation of Seymour Island, Antarctica. These specimens cannot be assigned to named taxa at present, but there is a strong possibility they belong to La Meseta penguins known only from postcranial elements. The skull shares extensive dorsal development of the temporal fossae with extant and fossil Spheniscus and the fossil penguins Paraptenodytes and Marplesornis, indicating the adductor complex was powerful in early penguins. Partial mandibles belonging to a much larger penguin are similar to Paraptenodytes and differ from all living penguins in the lack of a hooked medial process of the articular and the presence of a foramen anterior to the mandibular cotyles. Given the rarity of penguin cranial remains, these specimens provide important new insight into early penguin evolution.  相似文献   

15.
Consensus is elusive regarding the phylogenetic relationships among neornithine (crown clade) birds. The ongoing debate over their deep divergences is despite recent increases in available molecular sequence data and the publication of several larger morphological data sets. In the present study, the phylogenetic relationships among 43 neornithine higher taxa are addressed using a data set of 148 osteological and soft tissue characters, which is one of the largest to date. The Mesozoic non‐neornithine birds Apsaravis, Hesperornis, and Ichthyornis are used as outgroup taxa for this analysis. Thus, for the first time, a broad array of morphological characters (including both cranial and postcranial characters) are analyzed for an ingroup densely sampling Neornithes, with crown clade outgroups used to polarize these characters. The strict consensus cladogram of two most parsimonious trees resultant from 1000 replicate heuristic searches (random stepwise addition, tree‐bisection‐reconnection) recovered several previously identified clades; the at‐one‐time contentious clades Galloanseres (waterfowl, fowl, and allies) and Palaeognathae were supported. Most notably, our analysis recovered monophyly of Neoaves, i.e., all neognathous birds to the exclusion of the Galloanseres, although this clade was weakly supported. The recently proposed sister taxon relationship between Steatornithidae (oilbird) and Trogonidae (trogons) was recovered. The traditional taxon “Falconiformes” (Cathartidae, Sagittariidae, Accipitridae, and Falconidae) was not found to be monophyletic, as Strigiformes (owls) are placed as the sister taxon of (Falconidae + Accipitridae). Monophyly of the traditional “Gruiformes” (cranes and allies) and ”Ciconiiformes” (storks and allies) was also not recovered. The primary analysis resulted in support for a sister group relationship between Gaviidae (loons) and Podicipedidae (grebes)—foot‐propelled diving birds that share many features of the pelvis and hind limb. Exclusion of Gaviidae and reanalysis of the data set, however, recovered the sister group relationship between Phoenicopteridae (flamingos) and grebes recently proposed from molecular sequence data.  相似文献   

16.
A new trematopid amphibian, Acheloma dunni, is reported based on excellently preserved cranial and postcranial elements recovered from the Lower Permian fissure fill deposits of the Dolese Brothers Co. limestone quarry near Richards Spur, Oklahoma. The new taxon is characterized by lateral exposures of the palatine (l.e.p.) and ectopterygoid (l.e.e.), which are clearly visible externally and completely enclosed within the suborbital elements. This large, terrestrial carnivore may represent the top predator of the Richards Spur assemblage. A phylogenetic analysis including 12 taxa and 53 cranial characters yielded a single most parsimonious tree, placing Ach. dunni within the monophyletic Trematopidae as the sister taxon to Acheloma cumminsi. Furthermore, the analysis includes the enigmatic Ecolsonia and Actiobates within Trematopidae, forming a clade with the Upper Pennsylvanian Anconastes and the Lower Permian Tambachia. The study comprehensively analyses all valid and aberrant forms of Trematopidae. © 2011 The Linnean Society of London, Zoological Journal of the Linnean Society, 2011, 161 , 789–815.  相似文献   

17.
18.
Cynthiacetus peruvianus nov. sp. is a new basilosaurid species, from Late Eocene to Early Oligocene Otuma Formation of Peru. It is the first described archaeocete in South-America and is represented by a sub-complete skeleton. C. peruvianus differs from C. maxwelli (middle to Late Eocene of Egypt and United States) principally in having one cuspid less on both mesial and distal sides of p3 and p4. Cynthiacetus is among the largest basilosaurids. Its more characteristic features are located on its postcranial skeleton: large vertebrarterial foramina on cervical vertebrae and absence of ventral expansion of the transverse process on C3-C5. Besides, C. peruvianus presents the greatest number of thoracic vertebrae (20) and ribs observed in Cetacea and the first thoracics have an almost vertical neural spine. A preliminary parsimony analysis establishes the monophyly of the Basilosauridae on the basis of three unambiguous cranial synapomorphies. However, within the Basilosauridae, the most diagnostic characters are observed on the postcranial skeleton.  相似文献   

19.
20.
In an attempt to investigate differences between the most widely discussed hypotheses of early tetrapod relationships, we assembled a new data matrix including 90 taxa coded for 319 cranial and postcranial characters. We have incorporated, where possible, original observations of numerous taxa spread throughout the major tetrapod clades. A stem‐based (total‐group) definition of Tetrapoda is preferred over apomorphy‐ and node‐based (crown‐group) definitions. This definition is operational, since it is based on a formal character analysis. A PAUP* search using a recently implemented version of the parsimony ratchet method yields 64 shortest trees. Differences between these trees concern: (1) the internal relationships of aistopods, the three selected species of which form a trichotomy; (2) the internal relationships of embolomeres, with Archeria crassidisca and Pholiderpeton scutigerum collapsed in a trichotomy with a clade formed by Anthracosaurus russelli and Pholiderpeton attheyi; (3) the internal relationships of derived dissorophoids, with four amphibamid species forming an unresolved node with a clade consisting of micromelerpetontids and branchiosaurids and a clade consisting of albanerpetontids plus basal crown‐group lissamphibians; (4) the position of albenerpetontids and Eocaecilia micropoda, which form an unresolved node with a trichotomy subtending Karaurus sharovi, Valdotriton gracilis and Triadobatrachus massinoti;(5) the branching pattern of derived diplocaulid nectrideans, with Batrachiderpeton reticulatum and Diceratosaurus brevirostris collapsed in a trichotomy with a clade formed by Diplocaulus magnicornis and Diploceraspis burkei. The results of the original parsimony run ‐ as well as those retrieved from several other treatments of the data set (e.g. exclusion of postcranial and lower jaw data;character reweighting; reverse weighting) ‐ indicate a deep split of early tetrapods between lissamphibian‐ and amniote‐related taxa. Colosteids, Crassigyrinus, Whatcheeria and baphetids are progressively more crownward stemtetrapods. Caerorhachis, embolomeres, gephyrostegids, Solenodonsaurus and seymouriamorphs are progressively more crownward stem‐amniotes. Eucritta is basal to temnospondyls, with crown‐lissamphibians nested within dissorophoids. Westlothiana is basal to Lepospondyli, but evidence for the monophyletic status of the latter is weak. Westlothiana and Lepospondyli form the sister group to diadectomorphs and crown‐group amniotes. Tuditanomorph and microbrachomorph microsaurs are successively more closely related to a clade including proximodistally: (1) lysorophids; (2) Acherontiscus as sister taxon to adelospondyls; (3) scincosaurids plus diplocaulids; (4) urocordylids plus aïstopods. A data set employing cranial characters only places microsaurs on the amniote stem, but forces remaining lepospondyls to appear as sister group to colosteids on the tetrapod stem in several trees. This arrangement is not significantly worse than the tree topology obtained from the analysis of the complete data set. The pattern of sister group relationships in the crownward part of the temnospondyl‐lissamphibian tree re‐emphasizes the important role of dissorophoids in the lissamphibian origin debate. However, no specific dissorophoid can be identiffed as the immediate sister taxon to crown‐group lissamphibians. The branching sequence of various stem‐group amniotes reveals a coherent set of internested character‐state changes related to the acquisition of progressively more terrestrial habits in several Permo‐Carboniferous forms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号