首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Morphological variations of the serranid fish Cephalopholis taeniops were studied in relation to habitat fragmentation in the Cape Verde Archipelago. While a significant allometric effect existed (11·5% of total body‐shape variation), differences in morphology associated with sex and ontogeny were not significant. MANOVA followed by CVA showed that each island presented a particular allometric pattern. Average body shape for all islands was well discriminated with CVA models. Pair‐wise comparisons of the ontogeny of morphological change between islands revealed that northern islands (Santo Antão, São Vicente and Santa Luzia) along with Boavista Island showed a similar direction in shape ontogeny, while all other paired comparisons indicated different ontogenetic patterns. When comparing directions of inter‐population shape changes, individuals from Fogo Island, the southernmost locality, departed far from the orthogonal relation, suggesting that they were undergoing independent body‐shape trajectories. Physical isolation by geographic distance and depth was positively correlated with morphological divergence among populations from different islands. This finding supports the hypothesis that habitat fragmentation in the Cape Verde Archipelago can be interpreted in terms of marine population structure.  相似文献   

2.
The wildtype leaf blade of Pisum sativum possesses proximalleaflets and distal tendrils, which may be altered by two recessivemutations that affect pinna morphology, afila (afaf) and tendrilless(tltl). Using morphological observations and SEM, the variationin leaf forms along the plant axis and leaf development werecharacterized for plants heterozygous at the Af and/or Tl loci.The Af and Tl genes interacted to affect many characteristicsof shoot ontogeny, including rate changes in leaf blade lengthand complexity increases, as well as time to flowering. TheAf gene retarded early vegetative development and acceleratedthe time to flowering. The leaf phenotypes of these heterozygousgenotypes were specified mainly by changes in the timing ofmajor developmental events. The data support the hypothesesthat both genes are heterochronic in nature and that the pealeaf blade consists of three genetically- and developmentally-determined regions: proximal, distal and terminal. Copyright2000 Annals of Botany Company Heterochrony, leaf development, shoot ontogeny, Pisum sativum L., garden pea, afila,tendrilless .  相似文献   

3.
Populations of Arenaria uniflora exhibit intraspecific variation in floral size and degree of protandry in association with the evolution of self-pollination. Heterochrony, or a simple change in the absolute timing or rate of developmental events, is proposed as the evolutionary mechanism underlying the origin of the small, self-pollinating flowers from their large, outcrossing progenitors. Inflorescence growth in two autogamous populations and their related outcrossing progenitors was studied to provide the temporal data necessary for testing the hypothesis of heterochrony. All four races showed significant variation in the growth and mature length of inflorescence organs. Inflorescences of selfing races were smaller, and had slower relative growth rates and a two-fold increase in the plastochron relative to outcrossing populations. The large-flowered races were both significantly protandrous. A more detailed growth analysis of flower development in two races indicated that the selfing flowers develop at a slower rate and for a longer duration relative to outcrossing flowers. The implications of these temporal changes in floral ontogeny for the heterochronic origin of self-pollinating floral forms are considered.  相似文献   

4.
Heterochrony produces morphological change with effects in shape, size, and/or timing of developmental events of a trait related to an ancestral ontogeny. This paper analyzes heterochrony during the ontogeny of Ceratophryinae (Ceratophrys, Chacophrys, and Lepidobatrachus), a monophyletic group of South American frogs with larval development, and uses different approaches to explore their morphological evolution: (1) inferences of ancestral ontogenies and heterochronic variation from a cladistic analysis based on 102 morphological larval and adult characters recorded in ten anuran taxa; (2) comparisons of size, morphological variation, and timing (age) of developmental events based on a study of ontogenetic series of ceratophryines, Telmatobius atacamensis, and Pseudis platensis. We found Chacophrys as the basal taxon. Ceratophrys and Lepidobatrachus share most derived larval features resulting from heterochrony. Ceratophryines share high rates of larval development, but differ in rates of postmetamorphic growth. The ontogeny of Lepidobatrachus exhibits peramorphic traits produced by the early onset of metamorphic transformations that are integrated in an unusual larval morphology. This study represents an integrative examination of shape, size, and age variation, and discusses evolutionary patterns of metamorphosis. © 2008 The Linnean Society of London, Zoological Journal of the Linnean Society, 2008, 154 , 752–780.  相似文献   

5.
To date, differences in craniofacial robusticity among modern and fossil humans have been primarily addressed by analyzing adult individuals; thus, the developmental basis of such differentiation remains poorly understood. This article aims to analyze the ontogenetic development of craniofacial robusticity in human populations from South America. Geometric morphometric methods were used to describe cranial traits in lateral view by using landmarks and semilandmarks. We compare the patterns of variation among populations obtained with subadults and adults to determine whether population‐specific differences are evident at early postnatal ontogeny, compare ontogenetic allometric trajectories to ascertain whether changes in the ontogeny of shape contribute to the differentiation of adult morphologies, and estimate the amount of size change that occurs during growth along each population‐specific trajectory. The results obtained indicate that the pattern of interpopulation variation in shape and size is already established at the age of 5 years, meaning that processes acting early during ontogeny contribute to the adult variation. The ontogenetic allometric trajectories are not parallel among all samples, suggesting the divergence in the size‐related shape changes. Finally, the extension of ontogenetic trajectories also seems to contribute to shape variation observed among adults. Am J Phys Anthropol 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
The evolution of plant morphology is the result of changes in developmental processes. Heterochrony, the evolutionary change in developmental rate or timing, is a major cause of ontogenetic modification during evolution. It is responsible for both interspecific and intraspecific morphological differences. Other causes include heterotopy, the change of structural position, and homeosis, the replacement of a structure by another. This paper discusses and reviews the role of heterochrony in plant evolution at the organismal, organ, tissue, cellular, and molecular levels, as well as the relationships among heterochrony, heterotopy, and homeosis. An attempt has been made to include all published studies through late 1999. It is likely that most heterochronic change involves more than one of the six classic pure heterochronic processes. Of these processes, we found neoteny (decreased developmental rate in descendant), progenesis (earlier offset), and acceleration (increased rate) to be more commonly reported than hypermorphosis (delayed offset) or predisplacement (earlier onset). We found no reports of postdisplacement (delayed onset). Therefore, although rate changes are common (both neoteny and acceleration), shifts in timing most commonly involve earlier termination in the descendant (progenesis). These relative frequencies may change as more kinds of structures are analyzed. Phenotypic effects of evolutionary changes in onset or offset timing can be exaggerated, suppressed, or reversed by changes in rate. Because not all developmental changes responsible for evolution result from heterochrony, however, we propose that plant evolution be studied from a viewpoint that integrates these different developmental mechanisms.  相似文献   

7.
We studied patterns of growth in a recently established natural population of the house finch (Carpodacus mexicanus) to examine whether phenotypic and genetic covariation among age‐specific trait values is likely to constrain morphological change favoured by selection acting on adults. We found variable patterns of allometric relationships during ontogeny, and documented relatively weak covariations among ages or among traits in individual growth trajectories. Frequent compensatory growth largely cancelled out the initial differences among nestlings, potentially enabling house finches to raise offspring under diverse and unpredictable environmental conditions. Moderate levels of additive genetic variance in morphological traits throughout ontogeny, and relatively low and fluctuating phenotypic and genetic covariation among ages imply strong potential for evolutionary change in morphological traits under selection. This conclusion is consistent with the profound population‐level divergence in morphological patterns that accompanied very successful colonization of most of North America by the house finch over the last 50 years.  相似文献   

8.
Heterochrony and allometry: the analysis of evolutionary change in ontogeny   总被引:6,自引:0,他引:6  
The connection between development and evolution has become the focus of an increasing amount of research in recent years, and heterochrony has long been a key concept in this relation. Heterochrony is defined as evolutionary change in rates and timing of developmental processes; the dimension of time is therefore an essential part in studies of heterochrony. Over the past two decades, evolutionary biologists have used several methodological frameworks to analyse heterochrony, which differ substantially in the way they characterize evolutionary changes in ontogenies and in the resulting classification, although they mostly use the same terms. This review examines how these methods compare ancestral and descendant ontogenies, emphasizing their differences and the potential for contradictory results from analyses using different frameworks. One of the two principal methods uses a clock as a graphical display for comparisons of size, shape and age at a particular ontogenic stage, whereas the other characterizes a developmental process by its time of onset, rate, and time of cessation. The literature on human heterochrony provides particularly clear examples of how these differences produce apparent contradictions when applied to the same problem. Developmental biologists recently have extended the concept of heterochrony to the earliest stages of development and have applied it at the cellular and molecular scale. This extension brought considerations of developmental mechanisms and genetics into the study of heterochrony, which previously was based primarily on phenomenological characterizations of morphological change in ontogeny. Allometry is the pattern of covariation among several morphological traits or between measures of size and shape; unlike heterochrony, allometry does not deal with time explicitly. Two main approaches to the study of allometry are distinguished, which differ in the way they characterize organismal form. One approach defines shape as proportions among measurements, based on considerations of geometric similarity, whereas the other focuses on the covariation among measurements in ontogeny and evolution. Both are related conceptually and through the use of similar algebra. In addition, there are close connections between heterochrony and changes in allometric growth trajectories, although there is no one-to-one correspondence. These relationships and outline links between different analytical frameworks are discussed.  相似文献   

9.
Heterochrony refers to those permutations in timing of differentiation events, and those changes in rates of growth and development through which morphological changes and novelties originate during phyletic evolution. This research analyzes morphological variation during the ontogeny of 18 different anuran species that inhabit semi-arid environments of the Chaco in South America. I use field data, collection samples, and anatomical methods to compare larval growth, and sequences of ontogenetic events. Most species present a similar pattern of larval development, with a size at metamorphosis related to the duration of larval period, and disappearance and transformations of larval features that occur in a short period between forelimb emergence and tail loss. Among these 18 species, Pseudis paradoxa has giant tadpole and long larval development that are the results of deviations of rates of growth. In this species events of differentiation that usually occur at postmetamorphic stages have an offset when tail is still present. Tadpoles of Lepidobatrachus spp. reach large sizes at metamorphosis by accelerate developmental rates and exhibit an early onset of metamorphic features. The uniqueness of the ontogeny of Lepidobatrachus indicates that evolution of anuran larval development may occasionally involve mid-metamorphic morphologies conserving a free feeding tadpole and reduction of the morphological-ecological differences between tadpoles and adults.  相似文献   

10.
Assessments of temporal bone morphology have played an important role in taxonomic and phylogenetic evaluations of fossil taxa, and recent three‐dimensional analyses of this region have supported the utility of the temporal bone for testing taxonomic and phylogenetic hypotheses. But while clinical analyses have examined aspects of temporal bone ontogeny in humans, the ontogeny of the temporal bone in non‐human taxa is less well documented. This study examines ontogenetic allometry of the temporal bone in order to address several research questions related to the pattern and trajectory of temporal bone shape change during ontogeny in the African apes and humans. We further apply these data to a preliminary analysis of temporal bone ontogeny in Australopithecus afarensis. Three‐dimensional landmarks were digitized on an ontogenetic series of specimens of Homo sapiens, Pan troglodytes, Pan paniscus, and Gorilla gorilla. Data were analyzed using geometric morphometric methods, and shape changes throughout ontogeny in relation to size were compared. Results of these analyses indicate that, despite broadly similar patterns, African apes and humans show marked differences in development of the mandibular fossa and tympanic portions of the temporal bone. These findings indicate divergent, rather than parallel, postnatal ontogenetic allometric trajectories for temporal bone shape in these taxa. The pattern of temporal bone shape change with size exhibited by A. afarensis showed some affinities to that of humans, but was most similar to extant African apes, particularly Gorilla. Am J Phys Anthropol 151:630–642, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

11.
Skulls of living baleen whales show distinctive patterns of heterochronic ontogenetic change with implications for mysticete evolution. Here, three baleen whale species are analysed and considered in a heterochronic context. Landmarks show that, during ontogeny, skull morphology changes significantly in the rorqual Balaenoptera borealis and humpback Megaptera novaeangliae (both Balaenopteridae), while the pygmy right whale Caperea marginata (Cetotheriidae: Neobalaeninae) retains an overall juvenile morphology from foetus to adult. Geometric morphometric analyses show that foetal and adult C. marginata are similar, whereas the balaenopterids are more disparate: foetal M. novaeangliae and B. borealis appear in one group, and adult M. novaeangliae and B. borealis are grouped closely. Heterochrony involves paedomorphosis for Caperea, and peramorphosis for the balaenopterids. Heterochrony might cause limited or released developmental constraints, leading to low taxonomic diversity in the single surviving species of neobalaenine, and higher diversity amongst balaenopterids.  相似文献   

12.
During postnatal ontogeny of vertebrates, allometric trends in certain morphological units or dimensions can shift drastically among isometry, positive allometry, and negative allometry. However, detailed patterns of allometric transitions in certain timings have not been explored well. Identifying the presence and nature of allometric shifts is essential for understanding the patterns of changes in relative size and shape and the proximal factors that are controlling these changes mechanistically. Allometric trends in 10 selected vertebrae (cervical 2–caudal 2) from hatchlings to very mature individuals of Alligator mississippiensis (Archosauria, Crocodylia) are reported in the present study. Allometric coefficients in 12 vertebral dimensions are calculated and compared relative to total body length, including centrum, neural spine, transverse process, zygapophysis, and neural pedicle. During the postnatal growth, positive allometry is the most common type of relative change (10 of the 12 dimensions), although the diameter of the neural canal shows a negative allometric trend. However, when using spurious breaks (i.e. allometric trends subdivided into growth stages using certain growth events, and key body sizes and/or ages), vertebral parts exhibit various pathways of allometric shifts. Based on allometric trends in three spurious breaks, separated by the end of endochondral ossification (body length: approximnately 0.9 m), sexual maturity (1.8 m), and the stoppage of body size increase (2.8 m), six types of ontogenetic allometric shifts are established. Allometric shifts exhibit a wide range from positive allometry restricted only in the early postnatal stage (Type I) to life‐long positive allometry (Type VI). This model of ontogenetic allometric shifts is then applied to interpret potential mechanisms (causes) of allometric changes, such as (1) growth itself (when allometric trend gradually decreases to isometric or negative allometric change: Type II–IV allometric shift); (2) developmental constraint (when positive allometry is limited only in the early growth stage: Type I allometric shift); and (3) functional or biomechanical drive (when positive allometry continues throughout ontogeny: Type VI allometric shift).  相似文献   

13.
Ontogenetic allometry, how species change with size through their lives, and heterochony, a decoupling between shape, size, and age, are major contributors to biological diversity. However, macroevolutionary allometric and heterochronic trends remain poorly understood because previous studies have focused on small groups of closely related species. Here, we focus on testing hypotheses about the evolution of allometry and how allometry and heterochrony drive morphological diversification at the level of an entire species‐rich and diverse clade. Pythons are a useful system due to their remarkably diverse and well‐adapted phenotypes and extreme size disparity. We collected detailed phenotype data on 40 of the 44 species of python from 1191 specimens. We used a suite of analyses to test for shifts in allometric trajectories that modify morphological diversity. Heterochrony is the main driver of initial divergence within python clades, and shifts in the slopes of allometric trajectories make exploration of novel phenotypes possible later in divergence history. We found that allometric coefficients are highly evolvable and there is an association between ontogenetic allometry and ecology, suggesting that allometry is both labile and adaptive rather than a constraint on possible phenotypes.  相似文献   

14.
Heterochrony, altered developmental timing between ancestors and their descendents, has been proposed as a pervasive evolutionary feature and recent analytical approaches have confirmed its existence as an evolutionary pattern. Yet, the mechanistic basis for heterochrony remains unclear and, in particular, whether intraspecific variation in the timing of developmental events generates, or has the potential to generate, future between‐species differences. Here we make a key step in linking heterochrony at the inter‐ and intraspecific level by reporting an association between interindividual variation in both the absolute and relative timing (position within the sequence of developmental events) of key embryonic developmental events and genetic distance for the pond snail, Radix balthica. We report significant differences in the genetic distance of individuals exhibiting different levels of dissimilarity in their absolute and relative timing of developmental events such as spinning activity, eyespot formation, heart ontogeny, and hatching. This relationship between genetic and developmental dissimilarity is consistent with there being a genetic basis for variation in developmental timing and so suggests that intraspecific heterochrony could provide the raw material for natural selection to produce speciation.  相似文献   

15.
For many species, seasonal changes in key environmental variables such as food availability, light, and temperature drive the timing (“phenology”) of major life‐history events. Extensive evidence from terrestrial, freshwater, and marine habitats shows that global warming is changing the timings of many biological events; however, few of these studies have investigated the effects of climate change on the phenology of larval recruitment in marine invertebrates. Here, we studied temperature‐related phenological shifts in the breeding season of the shipworm Teredo navalis (Mollusca, Bivalvia). We compared data for the recruitment period of T. navalis along the Swedish west coast during 2004–2006 with similar data from 1971–1973, and related differences in recruitment timing to changes in sea surface temperature over the same period. We found no significant shift in the timing of onset of recruitment over this ~30‐year time span, but the end of recruitment was an average of 26 days later in recent years, leading to significantly longer recruitment periods. These changes correlated strongly with increased sea surface temperatures and coincided with published thermal tolerances for reproduction in T. navalis. Our findings are broadly comparable with other reports of phenological shifts in marine species, and suggest that warmer sea surface temperatures are increasing the likelihood of successful subannual reproduction and intensifying recruitment of T. navalis in this region.  相似文献   

16.
In vivo study of mastication in adult cercopithecine primates demonstrates a link between mandibular symphyseal form and resistance to “wishboning,” or lateral transverse bending. Mechanical consideration of wishboning at the symphysis indicates exponentially higher stresses along the lingual surface with increasing symphyseal curvature. Lengthening the anteroposterior width of the symphysis acts to resist these higher loads. Interspecific adult cercopithecine allometries show that both symphyseal curvature and symphyseal width exhibit positive allometry relative to body mass. The experimental and allometric data support an hypothesis that the cercopithecine mandibular symphysis is designed to maintain functional equivalence—in this case dynamic strain similarity—in wishboning stress and strain magnitudes across adult cercopithecines. We test the hypothesis that functional equivalence during masticatory wishboning is maintained throughout ontogeny by calculating relative stress estimates from morphometric dimensions of the mandibular symphysis in two cercopithecine primates, Macaca fascicularis and M. nemestrina. Results indicate no significant differences in relative stress estimates among the two macaque ontogenies and an interspecific sample of adult papionin primates. Further, relative stress estimates do not change significantly throughout ontogeny in either species. These results offer the first evidence for the maintenance of functional equivalence in stress and strain levels during postnatal growth in a habitually loaded cranial structure. Scaling analyses demonstrate significant slope differences for both symphyseal curvature and width between the ontogenetic and interspecific samples. The distinct interspecific cercopithecine slopes are realized by a series of ontogenetic transpositions in both symphyseal curvature and width. Throughout papionin ontogeny, symphyseal curvature increases with less negative allometry, while symphysis width increases with less positive allometry versus the interspecific pattern. As symphyseal curvature and width are inversely proportional to one another in estimating relative stresses, functionally equivalent stress levels are maintained both ontogenetically and interspecifically, because the relatively slower rate of allometric increase in symphyseal curvature during growth is compensated for by a slower rate of allometric increase in symphyseal width. These results indicate the primacy of maintaining functional equivalence during growth and the need for ontogenetic data in understanding the evolutionary processes that affect form–function relations as well as the interspecific patterning of adult form across a clade. J. Morphol. 235:157–175, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

17.
The Antarctic has experienced major changes in temperature, wind speed and stratospheric ozone levels during the last 50 years. However, until recently continental Antarctica appeared to be little impacted by climate warming, thus biological changes were predicted to be relatively slow. Detecting the biological effects of Antarctic climate change has been hindered by the paucity of long‐term data sets, particularly for organisms that have been exposed to these changes throughout their lives. We show that radiocarbon signals are preserved along shoots of the dominant Antarctic moss flora and use these to determine accurate growth rates over a period of several decades, allowing us to explore the influence of environmental variables on growth and providing a dramatic demonstration of the effects of climate change. We have generated detailed 50‐year growth records for Ceratodon purpureus and three other Antarctic moss species using the 1960s radiocarbon bomb spike. Our growth rate and stable carbon isotope (δ13C) data show that C. purpureus’ growth rates are correlated with key climatic variables, and furthermore that the observed effects of climate variation on growth are mediated through changes in water availability. Our results indicate the timing and balance between warming, high‐wind speeds and elevated UV fluxes may determine the fate of these mosses and the associated communities that form oases of Antarctic biodiversity.  相似文献   

18.
Allometry constitutes an important source of morphological variation. However, its influence in head development in anurans has been poorly explored. By using geometric morphometrics followed by statistical and comparative methods we analyzed patterns of allometric change during cranial postmetamorphic ontogeny in species of Nest‐building frogs Leptodactylus (Leptodactylidae). We found that the anuran skull is not a static structure, and allometry plays an important role in defining its shape in this group. Similar to other groups with biphasic life‐cycle, and following a general trend in vertebrates, ontogenetic changes mostly involve rearrangement in rostral, otoccipital, and suspensorium regions. Ontogenetic transformations are paralleled by shape changes associated with evolutionary change in size, such that the skulls of species of different intrageneric groups are scaled to each other, and small and large species show patterns of paedomorphic/peramorphic features, respectively. Allometric trajectories producing those phenotypes are highly evolvable though, with shape change direction and magnitude varying widely among clades, and irrespective of changes in absolute body size. These results reinforce the importance of large‐scale comparisons of growth patterns to understand the plasticity, evolution, and polarity of morphological changes in different clades.  相似文献   

19.
We analysed ontogenetic shape change in the planorbid limpet Ancylus fluviatilis (Müller, 1774) in two rivers in Southern Italy. We developed a new method to discriminate among different cohorts in Ancylus, based on principal component analysis. The method is useful when shape change during growth is allometric, as in our study model. We discovered that bivoltinism occurs in Ancylus in Southern Italy, contrary to previous accounts, which invariably describe A. fluviatilis as a semelparous and univoltine species, although acknowledging difficulty in discriminating among cohorts. The methods presented here may potentially help research in reproductive traits in many other mollusc populations where shape change during ontogeny is demonstrated to be allometric.  相似文献   

20.
Heterochrony can be defined as change to the timing or rate of development relative to the ancestor. Because organisms generally change in shape as well as increase in size during their development, any variation to the duration of growth or to the rate of growth of different parts of the organism can cause morphological changes in the descendant form. Heterochrony takes the form of both increased and decreased degrees of development, known as “peramorphosis” and “paedomorphosis,” respectively. These are the morphological consequences of the operation of processes that change the duration of the period of an individual’s growth, either starting or stopping it earlier or later than in the ancestor, or by extending or contracting the period of growth. Heterochrony operates both intra- and interspecifically and is the source of much intraspecific variation. It is often also the cause of sexual dimorphism. Selection of a sequence of species with a specific heterochronic trait can produce evolutionary trends in the form of pera- or paedomorphoclines. Many different life history traits arise from the operation of heterochronic processes, and these may sometimes be the targets of selection rather than morphological features themselves. It has been suggested that some significant steps in evolution, such as the evolution of vertebrates, were engendered by heterochrony. Human evolution was fuelled by heterochrony, with some traits, such as a large brain, being peramorphic, whereas others, such as reduced jaw size, are paedomorphic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号