首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A D Levinson  A J Levine 《Cell》1977,11(4):871-879
Serum from hamsters bearing group C adenovirus-induced tumors can be divided into two classes: first, a broad spectrum serum that contains antibodies to several early adenovirus proteins, immunoprecipitated from virus-infected cell extracts, with molecular weights of 72,000, 58,000, 44,000 and 17,000 daltons; and second, a narrow spectrum serum that contains antibodies to the 58,000 dalton protein from virus-infected cell extracts. Both types of sera have been used to immunoprecipitate specifically the 58,000 dalton protein from a type 2 adenovirus-transformed hamster cell line and a type 2 adenovirus-SV40 nondefective hybrid (Ad2+ND-1) transformed hamster cell line. In addition, the broad spectrum serum immunoprecipitates or co-precipitates a late adenovirus protein of 120,000 daltons from virus-infected, but not virus-transformed cells.Peptide maps of the 120,000 dalton antigen and the virus hexon structural protein (120,000 daltons) demonstrate that these proteins are closely related. The 72,000 dalton antigen has been shown to be the adenovirus single-strand-specific DNA binding protein. Peptide maps of this 72,000 dalton antigen demonstrate that it contains all the peptides found in the 44,000 dalton antigen. The 72,000 dalton antigen contains two additional peptide fragments not detected in the 44,000 dalton protein, indicating that this 44,000 dalton antigen is a proteolytic breakdown product of the 72,000 dalton protein. The 58,000 dalton adenovirus tumor antigen has a peptide map which is completely distinct from the 120,000, 72,000 and 44,000 dalton proteins. These data demonstrate that the 58,000 dalton antigen is chemically distinct from the 72,000–44,000 dalton early adenovirus proteins.  相似文献   

2.
3.
Nonproliferating zooxanthellae from Anthopleura elegantissima were incubated with 3H-amino acids for 4–16 hr to uniformly label cell protein. Radioactive proteins from the nuclear membrane were extracted and solubilized for electrophoresis in polyacrylamide gels. Four major electrophoretic species of polypeptides were observed at pH 5.0, 7.0, and 9.0 in an SDS-urea-glutathione system. Their molecular weights were estimated to be 32,000, 44,000, 56,000, and 140,000 daltons. All 4 polypeptides are common to the outer as well as inner nuclear envelopes.  相似文献   

4.
The M species (medium sized) dsRNA (1.1–1.4 × 106 daltons) isolated from a toxin-producing yeast killer strain (K+R+) and three related, defective interfering (suppressive) S species dsRNAs of the yeast killer-associated cytoplasmic multicomponent viral-like particle system were analyzed by in vitro translation in a wheat germ cell-free protein synthesis system. Heat-denatured M species dsRNA programmed the synthesis of two major polypeptides, M-P1 (32,000 daltons) and M-P2 (30,000 daltons). M-P1 has been shown by the criteria of proteolytic peptide mapping and cross-antigenicity to contain the 12,000 dalton polypeptide corresponding to the in vivo produced killer toxin, thus establishing that it is the M species dsRNA which carries the toxin gene. An M species dsRNA obtained from a neutral strain (K?R+) also programmed the in vitro synthesis of a polypeptide identical in molecular weight to M-P1, thus indicating that the cytoplasmic determinant of the mutant neutral phenotype is either a simple point mutation in the dsRNA toxin gene or a mutation in a dsRNA gene which is required for functional toxin production. In vitro translation of each of the three different suppressive S dsRNAs resulted in the production of a polypeptide (S-P1) of approximately 8000 daltons instead of the 32,000 dalton M-P1 polypeptide programmed by M dsRNA. This result is consistent with the heteroduplex analysis of these dsRNAs by Fried and Fink (1978), which shows retention of M dsRNA ends, accompanied by large internal deletions in each of the S dsRNAs translated.  相似文献   

5.
Phosphate transport across the chloroplast envelope is rapidly inactivated by the amino-group reagent 2,4,6-trinitrobenzene sulfonate. Subsequent exposure to [3H]NaBH4 leads to an incorporation of the trinitrophenyl moiety into envelope membrane preparations. From the membrane proteins only a polypeptide with 29000 dalton molecular weight is labelled. The inactivation of phosphate transport and the incorporation of radioactivity are both specifically reduced by the presence of substrates.The results lead to the conclusion that a polypeptide with a molecular weight of 29000 dalton and containing a lysyl residue at the substrate binding site is involved in the phosphate translocator function.  相似文献   

6.
Purification of the colicin I receptor   总被引:3,自引:0,他引:3  
The colicin I outer membrane receptor was solubilized from the cell envelope of Escherichia coli K12 by extraction with Triton X-100 and purified to homogeneity by a combination of ion exchange and gel filtration chromatography as well as isoelectric focusing. The receptor was isolated as a single polypeptide and retained capacity to form a complex with pure colicin. The apparent molecular weight of the receptor as determined by polyacrylamide gel electrophoresis in sodium dodecy sulfate was 74,000 or 54,000 depending on whether the preparation was boiled or not in sodium dodecyl sulfate, respectively, prior to electrophoresis. Isoelectric focusing of the receptor in the presence of Triton X-100 revealed that the protein was slightly acidic (pI 4.75).  相似文献   

7.
Gene expression in vitro of colicin El plasmid.   总被引:6,自引:1,他引:5       下载免费PDF全文
  相似文献   

8.
Virus-specific RNA was prepared from cells early after adenovirus type 2 infection and fractionated by hybridization to specific fragments of viral DNA. The viral mRNA was used to program cell-free protein synthesis, and the products were analyzed by electrophoresis. The genes for the early polypeptides of apparent molecular weight 44,000, 15,000, 72,000, 15,500, 19,000, and 11,000 daltons were located, respectively, between positions 0–4.1, 4.1–16.7, 58.5–70.7, 75.9–83.4, 89.7–98.6, and 89.7–98.6 of the conventional adenovirus DNA map. The polypeptide of molecular weight 72,000 daltons was shown to be the single-strand DNA-binding protein described by others. RNAs from three different adeno-transformed cell lines each program the synthesis in vitro of predominantly the 15K polypeptide, as well as variable amounts of the polypeptide of molecular weight 44,000 daltons. The genes for these two polypeptides are located in the portion of DNA known to be required for transformation of rodent cells by adenovirus.  相似文献   

9.
The cyanogenic -glucosidase (linamarase) was purified from white clover leaf tissue. The enzyme is a homodimer with a molecular weight of 105 300–103 400 daltons estimated from molecular exclusion chromatography. The effect of buffer ions on the pH optimum and charge properties of the enzyme are presented. A combination of molecular exclusion chromatography and CM cellulose ion exchange chromatography purified linamarase 16 fold to a single 62 000 dalton polypeptide on SDS polyacrylamide gel electrophoresis. This polypeptide represented about 5% of the total soluble leaf protein and can be seen as a prominent band in SDS polyacrylamide gel electrophoresis of crude leaf extracts from Li Li plants. Screening backcross progeny showed that extracts from li li plants, which have no linamarase activity, lack this 62 000 dalton polypeptide. Linamarase is the major glycoprotein in white clover leaf extracts which binds to Concanavalin A-Sepharose.  相似文献   

10.
Summary The properties of two plasmids coding for the EcoRI restriction and modification enzymes are described. Both plasmids are non auto-transferring (NTP) but can be mobilised by transfer factors. Strains carrying NTP13 produce colicin E1 and the EcoRI enzymes. This plasmid has a molecular weight of 6x106 daltons and is present as approximately 12 copies per chromosome. The second plasmid, NTP14, was detected after mobilisation of the EcoRI plasmid with the R factor R1–19. NTP14 codes for ampicillin resistance, synthesis of the EcoRI enzymes and colicin E1. The molecular weight of NTP14 is 10.7x106 daltons and there are about 14 copies per chromosome. DNA-DNA reassociation experiments were performed to determine the interrelationships of NTP13, NTP14, ColE1 and the R factor R1–19. NTP13 and NTP14 continue to replicate when cellular protein synthesis is inhibited by the addition of chloramphenicol.  相似文献   

11.
Summary The resistance transfer factor R773 confers inducible arsenate, arsenite and antimony resistance on Escherichia coli. The genes for these resistances were cloned into the EcoRi site of plasmid pBR322 to produce a 33 kilobase plasmid, pUM1. Bacterial strains transformed with pUM1 synthesized a polypeptide of the apparent molecular weight 64,000 daltons when induced with arsenite. This polypeptide could be visualized on sodium dodecyl sulfate polyacrylamide gels stained with Coomassie blue. It was observed both in the membrane and cytosol fractions but not among the periplasmic proteins present in osmotic shock fluid. Minicells isolated from strain JR410(pUM1) incorporated [35S]methionine into an inducible 64,000 dalton polypeptide, as demonstrated on autoradiographs of electrophoresed [35S]-labeled minicell lysates, confirming that this polypeptide is a plasmid gene product. A 4.3 kilobase HindIII fragment of pUM1 was subcloned into the HindIII site of pBR322, producing recombinant plasmid pUM3. This plasmid conferred constitutive resistance to arsenite and arsenate. Extensive synthesis of two polypeptides of 64,000 and 16,000 daltons was observed both in Coomassie stained gels of whole cells and autoradiographs of gels of [35S]methionine-labeled minicells. Synthesis of both polypeptides was constitutive.  相似文献   

12.
The receptor protein for phage T5 was isolated from the outer membrane of Escherichia coli B and found to be also a receptor for colicin M. The receptor protein from a phage-resistant mutant inactivates neither the phage nor the colicin. Binding of colicin M to the receptor prevents binding of phage T5. It is concluded that phage T5 and colicin M bind to the same active area of this receptor protein. The receptor protein seems to consist of one polypeptide chain with a molecular weight of 85000.  相似文献   

13.
Escherichia coli K-12 colicinogenic for ColE1 yielded mutants that appeared to produce colicin at 43 C but not at 30 or 37. These mutants proved to have the mutation recA Further study revealed that both recA and recA+ bacteria, when carrying ColE1 or ColE2, produce more colicin during growth at higher temperatures or after brief exposure to temperatures beyond the growth range. Counts of lacunae demonstrated that the increase of colicin production is due to an increase in the number of cells that yield colicin. Heat treatment causes lacunae to increase by the same factor in recA+ and recA cells, although recA bacteria produce 500 times fewer lacunae than recA+. Inhibition of protein synthesis, notably by chloramphenicol, also induces colicin production in as much as 90% of the cells after removal of inhibition (to permit colicin synthesis). Induction of colicin production by chloramphenicol requires that ribonucleic acid synthesis continue during the period of inhibition. These results are discussed in relation to the regulation of colicin production.  相似文献   

14.
Summary The rate of synthesis of total cellular proteins has been studied by pulse labelling cells at various periods after irradiation with UV or -rays, after treatment with mitomycin C (MMC) or after expression of the temperature sensitive mutation tif. Subsequent gel electrophoresis and autoradiography reveals changes in the rate of synthesis of several proteins. The most striking change is in a protein of molecular weight 40,000, protein X, which has been previously most extensively studied in cells treated with nalidixic acid (Gudas, 1976). Synthesis of large quantities of protein X is induced by UV, -rays, MMC treatment or tif expression in rec + but not recA cells. A feature of recA cells is that they break down their DNA excessively after irradiation or MMC treatment. However, if protein synthesis following irradiation is prohibited by chloramphenicol, post-irradiation degradation becomes excessive in recA + cells. This inverse relationship between DNA degradation and new protein synthesis is consistent with the hypothesis that an induced protein such as X is responsible for controlling DNA degradation following irradiation. Protein X is not induced in a lexB mutant following MMC treatment. In this respect the lexB mutant behaves like lexA and recA mutants in that the ability to induce protein X can be correlated with excessive DNA degradation.Studies on the induction of proteins in inf, tif and tif sfi mutants fail to reveal any correlation between induction of protein X and either the induction of prophage or septation.  相似文献   

15.
Summary Deletions of transposons Tn1 and Tn3 that extend into a region of the transposon that specifies a 19,000 molecular weight protein, are unable to resolve presumptive transposition intermediates in recA strains of Escherichia coli. For example, when transposition of such mutant transposons occurs from replicon A to replicon B, cointegrate molecules containing A and B separated by directly repeated copies of the transposons are efficiently produced. Such cointegrates are stable in a recA strain, but are resolved within a recA + host into replicons A and B each containing a copy of the transposon. One mutant gives cointegrates that can be complemented to resolve when a wild type Tn3 is present in the same recA cell, whereas another gives cointegrates that cannot be resolved by complementation in trans. We suggest that the first such mutant still carries the sequences necessary for the recombination event whereas the latter has lost them.The presence of a Tn1/3 specified site-specific recombination system was confirmed by showing that naturally-occurring multimers of a Tn3 derivative of plasmid pMB8 can be efficiently resolved to monomers in a recA - strain, whereas dimers of pMB9 (a Tcr derivative of pMB8) and two deleted Tn3 derivatives of pMB8 that are defective in the production of the 19,000 molecular weight protein, were both stably maintained as dimers in a recA - strain. Analysis of the ability of multimeric forms of other pMB8::Tn3 deletion derivatives to be stably propagated in a recA - strain, has allowed the localization of the Tn3 sequences necessary for the recombination event.  相似文献   

16.
Summary Proteins which are major substrates of epidermal transglutaminases can be identified in cultured keratinocytes of human, cow, and new-born rat.Cow and human keratinocytes both contain substrate proteins which are 30000 to 50000 daltons in size but dissociable in SDS to 12000 daltons or less. In both species these proteins correspond to in vivo synthesized proteins which are probable precursors of cornified envelope. Human keratinocytes synthesize a 125000 dalton protein which is also a precursor of cornified envelope both in cells and tissue. By SDS electrophoresis two 100000 dalton substrate proteins are seen in cow keratinocyte extracts and a 23000 dalton substrate protein is seen in rat keratinocyte extracts. Minor substrates of transglutaminase are seen in human keratinocytes, and one has been isolated by preparative electrophoresis. Major structural proteins of epidermis which are in vitro substrates of epidermal transglutaminase include the keratins and the stratum corneum basic protein.  相似文献   

17.
The specific binding of 125 Iodine labelled colicin Ia and Ib to Escherichia coli cell envelopes and partially purified cell walls is demonstrated. Neither partially purified cytoplasmic membranes isolated from a wild type sensitive strain nor envelopes or cell walls prepared from an E. coli mutant known to be defective in the colicin I receptor could bind the colicins. Competition studies suggest that colicins Ia and Ib have a common bacterial receptor which resides in the bacterial cell wall.  相似文献   

18.
Summary Cells of Escherichia coli containing the cbi locus on plasmids are immune to colicin B which kills cells by dissipating the membrane potential through pore formation in the cytoplasmic membrane. The nucleotide sequence of the cbi region was determined. It contains an open reading frame for a polypeptide consisting of 175 amino acids. The amino acid sequence is homologous to the primary structure of the colicin A immunity protein. This, and the strong homology between the pore-forming domains of colicins A and B suggests a common evolutionary origin for both colicins. The immunity protein could be identified following strong overexpression of cbi. The electrophoretically determined molecular weight of 20 000 was close to the calculated molecular weight of 20 185. The protein contains four large hydrophobic regions. The immunity protein was localized in the membrane fraction and was mainly contained in the cytoplasmic membrane. It is proposed that the immunity protein inactivates the colicin in the cytoplasmic membrane.  相似文献   

19.
Summary The instability of supercoiled pBR322 DNA obtained from different cells has been investigated. Partially purified plasmid DNA species from rec +, recA and recBC sbcB cells are converted in vitro first to relaxed and then to linear molecules. The recA and recBC sbcB cells produce the best conditions for the monomerization of the pBR322 DNA and the stable maintenance of plasmids. The supercoiled pBR322 DNA from the recBC sbcB recF144 cells has been isolated preferentially in multimeric from (circular oligomers). These DNA forms are not converted to plasmid monomers and are converted to linear molecules three-fold slower than the monomer linearization in the case of the recBC sbcB cells.On the other hand, incubation of the pure pBR322 DNA with the recF-dependent protein Z (Krivonogov and Novitskaja 1982) results in the ATP-independent conversion of supercoiled plasmid DNA to relaxed and linear molecules. These results demonstrate an endonuclease activity of the recF-controlled protein Z, which may be involved in general recA-dependent recombination and formation of the pBR322 monomers in the cell.The results also show that the recF144 mutation in recBC sbcB recF and recF cells leads to the absence of detectable amounts of a 49,000 molecular weight protein.  相似文献   

20.
Summary Saccharomyces cerevisiae 2-m DNA and some of its restriction fragments were integrated in vector pCR1, pBR313 or pBR322 and their expression in Escherichia coli P678-54 minicells was analyzed. 2-m DNA inserted at the EcoRI site of pCR1 or pBR313 and at the PstI site of pBR322, promoted the synthesis of polypeptides of 48,000, 37,000, 35,000 and 19,000 daltons. The DNA regions coding for these polypeptides were mapped on the 2-m DNA molecule by insertion of single EcoRI or HindIII restriction fragments and comparison of the polypeptides produced. For the synthesis of the 37,000 dalton polypeptide, intact sites RIB and H3 were required. The disappearance of the 37,000 dalton polypeptide on interruption of one of these sites by insertion of the vector, was correlated with the appearance of a polypeptide of 22,000 or 23,500 daltons repectively. The DNA sequence coding for the 37,000 dalton polypeptide, therefore, has to be located in the S-loop region close to or overlapping with the sites RIB and H3. Assuming that the 22,000 and the 23,500 dalton polypeptides are truncated forms of the 37,000 dalton polypeptide, the last polypeptide can be exactly mapped. The polypeptide of 48,000 daltons was mapped to that half of the L-loop segment containing the sites H1 and H2. If, however, HindIII fragment H1-H2 was expressed, the 48,000 dalton polypeptide was lost and concomitantly a 43,000 dalton polypeptide appeared. We assume that this polypeptide results from early termination of the polypeptide of 48,000 daltons. The 35,000 and 19,000 dalton polypeptides were mapped to the S-loop region.The integrated inverted repeat sequence of yeast 2-m DNA did not induce any detectable insert-specific polypeptide synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号