首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cope's rule describes the evolutionary trend for animal lineages to increase in body size over time. In this study, we tested the validity of Cope's rule for a marine mammal clade, the Pinnipedimorpha, which includes the extinct Desmatophocidae, and extant Phocidae (earless seals), Otariidae (fur seals and sea lions), and Odobenidae (walruses). We tested for the presence of Cope's rule by compiling a large dataset of body size data for extant and fossil pinnipeds and then examined how body size evolved through time. We found that there was a positive relationship between geologic age and body size. However, this trend is the result of differences between early assemblages of small-bodied pinnipeds (Oligocene to early Miocene) and later assemblages (middle Miocene to Pliocene) for which species exhibited greater size diversity. No significant differences were found between the number of increases or decreases in body size within Pinnipedimorpha or within specific pinniped clades. This suggests that the pinniped body size increase was driven by passive diversification into vacant niche space, with the common ancestor of Pinnipedimorpha occurring near the minimum adult body size possible for a marine mammal. Based upon the above results, the evolutionary history of pinnipeds does not follow Cope's rule.  相似文献   

2.
The relationship between body size and feeding ecology is well established for primates. It is argued that the evolutionary history of modern New World monkeys and, in particular, the path to attainment of current body size is significant in understanding the similarities and differences between dietary strategies and other ecological parameters of similar-sized monkeys. Current interpretations of New World monkey evolutionary relationships are reviewed. Based on a synthesis of available body weights and the assumption that the earliest New World monkeys weighed close to 1 kg, similar to modern Aotus and Callicebus, predicted patterns of body size change in each lineage are given. Restrictions on directions of body size change in primates are discussed, and it is shown that "Stanley's Rule" offers a good explanation for differing body size ranges in New and Old World anthropoids. Predicted ecological correlates to body size drawn from the mammalian literature are offered and tested using data on New World monkeys, which show some concurrence and several interesting departures from predicted patterns. Sexual dimorphism in body weight of New World monkey species is reviewed, based on the new summary of body weight data given.  相似文献   

3.
Explanations for the evolution of body size in mammals have remained surprisingly elusive despite the central importance of body size in evolutionary biology. Here, we present a model which argues that the body sizes of Nearctic mammals were moulded by Cenozoic climate and vegetation changes. Following the early Eocene Climate Optimum, forests retreated and gave way to open woodland and savannah landscapes, followed later by grasslands. Many herbivores that radiated in these new landscapes underwent a switch from browsing to grazing associated with increased unguligrade cursoriality and body size, the latter driven by the energetics and constraints of cellulose digestion (fermentation). Carnivores also increased in size and digitigrade, cursorial capacity to occupy a size distribution allowing the capture of prey of the widest range of body sizes. With the emergence of larger, faster carnivores, plantigrade mammals were constrained from evolving to large body sizes and most remained smaller than 1 kg throughout the middle Cenozoic. We find no consistent support for either Cope's Rule or Bergmann's Rule in plantigrade mammals, the largest locomotor guild (n = 1186, 59% of species in the database). Some cold‐specialist plantigrade mammals, such as beavers and marmots, showed dramatic increases in body mass following the Miocene Climate Optimum which may, however, be partially explained by Bergmann's rule. This study reemphasizes the necessity of considering the evolutionary history and resultant form and function of mammalian morphotypes when attempting to understand contemporary mammalian body size distributions.  相似文献   

4.
Cope's rule is the tendency for body size to increase over time along a lineage. A set of 65 phylogenetically independent comparisons, between earlier and later genera, show that Cope's rule applied in dinosaurs: later genera were on average about 25% longer than the related earlier genera to which they were compared. The tendency for size to increase was not restricted to a particular clade within the group, nor to a particular time within its history. Small lineages were more likely to increase in size, and large lineages more likely to decrease: this pattern may indicate an intermediate optimum body size, but can also be explained as an artefact of data error. The rate of size increase estimated from the phylogenetic comparisons is significantly higher than the rate seen across the fauna as a whole. This difference could indicate that within-lineage selection for larger size was opposed by clade selection favouring smaller size, but data limitations mean that alternative explanations (which we discuss) cannot be excluded. We discuss ways of unlocking the full potential usefulness of phylogenies for studying the dynamics of evolutionary trends.  相似文献   

5.
Geographical and temporal variations in body size are common phenomena among organisms and may evolve within a few years. We argue that body size acts much like a barometer, fluctuating in parallel with changes in the relevant key predictor(s), and that geographical and temporal changes in body size are actually manifestations of the same drivers. Frequently, the principal predictors of body size are food availability during the period of growth and ambient temperature, which often affects food availability. Food availability depends on net primary productivity that, in turn, is determined by climate and weather (mainly temperature and precipitation), and these depend mainly on solar radiation and other solar activities. When the above predictors are related to latitude the changes have often been interpreted as conforming to Bergmann's rule, but in many cases such interpretations should be viewed with caution due to the interrelationships among various environmental predictors. Recent temporal changes in body size have often been related to global warming. However, in many cases the above key predictors are not related to either latitude and/or year, and it is the task of the researcher to determine which particular environmental predictor is the one that determines food availability and, in turn, body size. The chance of discerning a significant change in body size depends to a large extent on sample size (specimens/year). The most recent changes in body size are probably phenotypic, but there are some cases in which they are partly genetic.  相似文献   

6.
The largest known dinosaurs weighed at least 20 million times as much as the smallest, indicating exceptional phenotypic divergence. Previous studies have focused on extreme giant sizes, tests of Cope's rule, and miniaturization on the line leading to birds. We use non‐uniform macroevolutionary models based on Ornstein–Uhlenbeck and trend processes to unify these observations, asking: what patterns of evolutionary rates, directionality and constraint explain the diversification of dinosaur body mass? We find that dinosaur evolution is constrained by attraction to discrete body size optima that undergo rare, but abrupt, evolutionary shifts. This model explains both the rarity of multi‐lineage directional trends, and the occurrence of abrupt directional excursions during the origins of groups such as tiny pygostylian birds and giant sauropods. Most expansion of trait space results from rare, constraint‐breaking innovations in just a small number of lineages. These lineages shifted rapidly into novel regions of trait space, occasionally to small sizes, but most often to large or giant sizes. As with Cenozoic mammals, intermediate body sizes were typically attained only transiently by lineages on a trajectory from small to large size. This demonstrates that bimodality in the macroevolutionary adaptive landscape for land vertebrates has existed for more than 200 million years.  相似文献   

7.
Atmospheric hyperoxia, with pO(2) in excess of 30%, has long been hypothesized to account for late Paleozoic (360-250 million years ago) gigantism in numerous higher taxa. However, this hypothesis has not been evaluated statistically because comprehensive size data have not been compiled previously at sufficient temporal resolution to permit quantitative analysis. In this study, we test the hyperoxia-gigantism hypothesis by examining the fossil record of fusulinoidean foraminifers, a dramatic example of protistan gigantism with some individuals exceeding 10 cm in length and exceeding their relatives by six orders of magnitude in biovolume. We assembled and examined comprehensive regional and global, species-level datasets containing 270 and 1823 species, respectively. A statistical model of size evolution forced by atmospheric pO(2) is conclusively favored over alternative models based on random walks or a constant tendency toward size increase. Moreover, the ratios of volume to surface area in the largest fusulinoideans are consistent in magnitude and trend with a mathematical model based on oxygen transport limitation. We further validate the hyperoxia-gigantism model through an examination of modern foraminiferal species living along a measured gradient in oxygen concentration. These findings provide the first quantitative confirmation of a direct connection between Paleozoic gigantism and atmospheric hyperoxia.  相似文献   

8.
A major macroevolutionary question concerns how long-term patterns of body-size evolution are underpinned by smaller scale processes along lineages. One outstanding long-term transition is the replacement of basal therapsids (stem-group mammals) by archosauromorphs, including dinosaurs, as the dominant large-bodied terrestrial fauna during the Triassic (approx. 252-201 million years ago). This landmark event preceded more than 150 million years of archosauromorph dominance. We analyse a new body-size dataset of more than 400 therapsid and archosauromorph species spanning the Late Permian-Middle Jurassic. Maximum-likelihood analyses indicate that Cope's rule (an active within-lineage trend of body-size increase) is extremely rare, despite conspicuous patterns of body-size turnover, and contrary to proposals that Cope's rule is central to vertebrate evolution. Instead, passive processes predominate in taxonomically and ecomorphologically more inclusive clades, with stasis common in less inclusive clades. Body-size limits are clade-dependent, suggesting intrinsic, biological factors are more important than the external environment. This clade-dependence is exemplified by maximum size of Middle-early Late Triassic archosauromorph predators exceeding that of contemporary herbivores, breaking a widely-accepted 'rule' that herbivore maximum size greatly exceeds carnivore maximum size. Archosauromorph and dinosaur dominance occurred via opportunistic replacement of therapsids following extinction, but were facilitated by higher archosauromorph growth rates.  相似文献   

9.
Titanosauriformes is a conspicuous and diverse group of sauropod dinosaurs that inhabited almost all land masses during Cretaceous times. Besides the diversity of forms, the clade comprises one of the largest land animals found so far, Argentinosaurus, as well as some of the smallest sauropods known to date, Europasaurus and Magyarosaurus. They are therefore good candidates for studies on body size trends such as the Cope's rule, the tendency towards an increase in body size in an evolutionary lineage. We used statistical methods to assess body size changes under both phylogenetic and nonphylogenetic approaches to identify body size trends in Titanosauriformes. Femoral lengths were collected (or estimated from humeral length) from 46 titanosauriform species and used as a proxy for body size. Our findings show that there is no increase or decrease in titanosauriform body size with age along the Cretaceous and that negative changes in body size are more common than positive ones (although not statistically significant) for most of the titanosauriform subclades (e.g. Saltasaridae, Lithostrotia, Titanosauria and Somphospondyli). Therefore, Cope's rule is not supported in titanosauriform evolution. Finally, we also found a trend towards a decrease of titanosauriform mean body size coupled with an increase in body size standard deviation, both supporting an increase in body size variation towards the end of Cretaceous.  相似文献   

10.
We estimate the body sizes of direct ancestors of extant carnivores, and examine selected aspects of life history as a function not only of species' current size, but also of recent changes in size. Carnivore species that have undergone marked recent evolutionary size change show life history characteristics typically associated with species closer to the ancestral body size. Thus, phyletic giants tend to mature earlier and have larger litters of smaller offspring at shorter intervals than do species of the same body size that are not phyletic giants. Phyletic dwarfs, by contrast, have slower life histories than nondwarf species of the same body size. We discuss two possible mechanisms for the legacy of recent size change: lag (in which life history variables cannot evolve as quickly as body size, leading to species having the 'wrong' life history for their body size) and body size optimization (in which life history and hence body size evolve in response to changes in energy availability); at present, we cannot distinguish between these alternatives. Our finding that recent body size changes help explain residual variation around life history allometries shows that a more dynamic view of character change enables comparative studies to make more precise predictions about species traits in the context of their evolutionary background.  相似文献   

11.
Cope's rule defines lineages that trend towards an increase in body size through geological time. The trilobite family Asaphidae is one of the most diverse of the class Trilobita and ranges from the Upper Cambrian through to the Upper Ordovician. The group is one trilobite clades that displays a large size range and contains several of the largest trilobite species. Reduced major axis correlations between the lengths of cephala and pygidia and the total sagittal length of complete individuals have high support and were used to standardise all incomplete specimens to total axial length. Phylogenetic studies into Cope's rule tend to use supertrees, composite trees or a single tree selected through a fit criterion. Here, for the first time, all trees recovered from a maximum parsimony analysis were analysed equally. Maximum likelihood was used to fit four evolutionary models: random walk, directional, Ornstein–Uhlenbeck (evolution towards an adaptive optimum) and stasis. These were compared equally using Akaike weights. Fitting of evolutionary models by maximum likelihood supports stasis as consistently the most likely model across all trees with low support for directionality.  相似文献   

12.
Body mass is undoubtedly central to the overall adaptive profile of any organism. Despite this, very little is known of what forces drive evolutionary changes in body mass and, consequently, shape patterns of body mass distribution exhibited by animal radiations. The search for factors that may influence evolutionary processes in general frequently focuses on environmental parameters such as climate change or interspecific competition. With respect to body mass, there is also the suggestion that evolutionary lineages may follow an inherent trend toward increased body mass, known as Cope's rule. The present paper investigates whether overall directional trends of body mass change, or correlations between patterns of body mass evolution and environmental factors have influenced the evolution of body mass in plesiadapiforms and primates. Analyses of the global fossil record of plesiadapiforms and primates suggest that the former did indeed follow an overall trend toward increased body mass compatible with the predictions of Cope's rule. In contrast, neither primates as a whole, nor a number of individual primate radiations (Adapiformes, Omomyiformes, and Anthropoidea), show any indication of overall directional patterns of body mass change. No correlations of primate body mass change with either the latitudinal distribution of fossil species, or with estimates of global temperature trends, were found. There is evidence, however, that direct competition between omomyiforms and adapiforms (the two main primate radiations known from the Paleogene) influenced processes of body mass evolution in omomyiforms.  相似文献   

13.
Abstract: Body size is a common focus of macroevolutionary, macroecological and palaeontological investigations. Here, we document body‐size evolution in 19 species‐level ostracod lineages from the deep Indian Ocean (Deep Sea Drilling Program Site 253) over the past 40 myr. Body‐size trajectories vary across taxa and time intervals, but most lineages (16/19) show net gains in body size. Because many modern ostracod taxa are larger in colder parts of their geographical range, we compared the timing and magnitude of these size changes to established Cenozoic deep‐water cooling patterns confirmed through δ18O measurements of benthic foraminifera in the samples studied. These data show a significant negative correlation between size changes and temperature changes (ostracods get larger as temperatures get colder), and that systematic size increases only occur during intervals of sustained cooling. In addition, statistical support for an explicit temperature‐tracking model exceeds that of purely directional evolution. We argue that this Cope’s Rule pattern is driven by secular changes in the environment, rather than any universal or intrinsic advantages to larger body sizes, and we note some difficulties in the attempts to link Cope’s Rule to observations made within a single generation.  相似文献   

14.
A model relating relative size of the posterior teeth to diet is suggested for forest and savanna primates and Homo. Relative tooth size is calculated for the South African gracile australopithecine sample using posterior maxillary area sums and size estimates based on four limb bones. A number of limbs were shown to be non-hominid. Comparisons show the South African gracile sample apparently adapted to a very heavily masticated diet with relative tooth size significantly greater than any living hominoid. Periodic intensive utilization of grains and roots combined with scavenged animal protein are suggested as the most likely dietary reconstruction.  相似文献   

15.
Intraspecific latitudinal clines in the body size of terrestrial vertebrates, where members of the same species are larger at higher latitudes, are widely interpreted as evidence for natural selection and adaptation to local climate. These clines are predicted to shift in response to climate change. We used museum specimens to measure changes in the body size of eight passerine bird species from south-eastern Australia over approximately the last 100 years. Four species showed significant decreases in body size (1.8–3.6% of wing length) and a shift in latitudinal cline over that period, and a meta-analysis demonstrated a consistent trend across all eight species. Southern high-latitude populations now display the body sizes typical of more northern populations pre-1950, equivalent to a 7° shift in latitude. Using ptilochronology, we found no evidence that these morphological changes were a plastic response to changes in nutrition, a likely non-genetic mechanism for the pattern observed. Our results demonstrate a generalized response by eight avian species to some major environmental change over the last 100 years or so, probably global warming.  相似文献   

16.
The remarkable extinct flying reptiles, the pterosaurs, show increasing body size over 100 million years of the Late Jurassic and Cretaceous, and this seems to be a rare example of a driven trend to large size (Cope's Rule). The size increases continue throughout the long time span, and small forms disappear as larger pterosaurs evolve. Mean wingspan increases through time. Examining for Cope's Rule at a variety of taxonomic levels reveals varying trends within the Pterosauria as a whole, as pterodactyloid pterosaurs increase in size at all levels of examination, but rhamphorhynchoid pterosaurs show both size increase and size decrease in different analyses. These results suggest that analyses testing for Cope's Rule at a single taxonomic level may give misleading results.  相似文献   

17.
18.
The correlation between large body size and digestive efficiency has been hypothesized to have driven trends of increasing mass in herbivorous clades by means of directional selection. Yet, to date, few studies have investigated this relationship from a phylogenetic perspective, and none, to our knowledge, with regard to trophic shifts. Here, we reconstruct body mass in the three major subclades of non-avian theropod dinosaurs whose ecomorphology is correlated with extrinsic evidence of at least facultative herbivory in the fossil record—all of which also achieve relative gigantism (more than 3000 kg). Ordinary least-squares regressions on natural log-transformed mean mass recover significant correlations between increasing mass and geological time. However, tests for directional evolution in body mass find no support for a phylogenetic trend, instead favouring passive models of trait evolution. Cross-correlation of sympatric taxa from five localities in Asia reveals that environmental influences such as differential habitat sampling and/or taphonomic filtering affect the preserved record of dinosaurian body mass in the Cretaceous. Our results are congruent with studies documenting that behavioural and/or ecological factors may mitigate the benefit of increasing mass in extant taxa, and suggest that the hypothesis can be extrapolated to herbivorous lineages across geological time scales.  相似文献   

19.
Tooth size varies exponentially with body weight in primates. Logarithmic transformation of tooth crown area and body weight yields a linear model of slope 0.67 as an isometric (geometric) baseline for study of dental allometry. This model is compared with that predicted by metabolic scaling (slope = 0.75). Tarsius and other insectivores have larger teeth for their body size than generalized primates do, and they are not included in this analysis. Among generalized primates, tooth size is highly correlated with body size. Correlations of upper and lower cheek teeth with body size range from 0.90–0.97, depending on tooth position. Central cheek teeth (P and M) have allometric coefficients ranging from 0.57–0.65, falling well below geometric scaling. Anterior and posterior cheek teeth scale at or above metabolic scaling. Considered individually or as a group, upper cheek teeth scale allometrically with lower coefficients than corresponding lower cheek teeth; the reverse is true for incisors. The sum of crown areas for all upper cheek teeth scales significantly below geometric scaling, while the sum of crown areas for all lower cheek teeth approximates geometric scaling. Tooth size can be used to predict the body weight of generalized fossil primates. This is illustrated for Aegyptopithecus and other Eocene, Oligocene, and Miocene primates. Regressions based on tooth size in generalized primates yield reasonable estimates of body weight, but much remains to be learned about tooth size and body size scaling in more restricted systematic groups and dietary guilds.  相似文献   

20.
The fast-start is an ecologically relevant behavior pattern in fishes. The present article analyses the distribution of five continuous kinematic traits (latency for response initiation, time to maximum angular velocity, time to maximum displacement velocity, maximum angular velocity, and maximum displacement velocity) in eight of the eleven species described in Eaton (66:65–81, 1977). Phylogenetic generalized least square estimation of ancestor states demonstrated evolutionary changes in maximum angular velocity and maximum displacement velocity, consistent with species differences in the same variables. These changes in maximum velocity are also correlated (phylogenetically independent contrasts) with the mean body sizes of all species, pointing to the possibility that body size was an evolutionary constraint on maximum velocities. The conservation of the other traits suggest that they are mainly constrained by neural control, and a trade-off between neural and body size-constraints is proposed ex hypothesi. An erratum to this article can be found at  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号