首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
When Bacillus sp. K40T was cultured in the presence of L-fucose, 1,2-α-L-fucosidase was found to be produced specifically in the culture fluid. The enzyme was purified to homogeneity from a culture containing only L-fucose by chromatography on hydroxylapatite and chromatofocusing. The molecular weight of the enzyme was estimated to be 200,000 by gel filtration on Sephadex G-200. The enzyme was optimal at pH 5.5–7.0 and was stable at pH 6.0–9.0. The enzyme hydrolyzed the α(1 → 2)-L-fucosidic linkages in various oligosaccharides and glycoproteins such as lacto-N-fucopentaose (LNF)-I 〈O-α-L-fucose-(1 → 2)-O-β-D-galactose-(1 → 3)-N-acetyl-O-β-D-glucosamine-(1 → 3)-O-β-D-galactose-(1 → 4)-D-glucose〉, porcine gastric mucin, and porcine submaxillary mucin. The enzyme also acted on human erythrocytes, which was confirmed by the hemagglutination test using Ulex anti-H lectin. The enzyme did not hydrolyze α(1 → 3)-, α-(1 → 4)- and α-(1 → 6)-L-fucosidic linkages in LNF-III 〈O-β-D-galactose-(1 → 4)[O-α-L-fucose-(1 → 3)-]-N-acetyl-O-β-D-glucosamine-(1 → 3)-O-β-D-galactose-(1 → 4)-D-glucose〉, LNF-II 〈O-β-D-galactose-(1 → 3)[O-α-L-fucose-(1 → 4)-]-N-acetyl-O-β-D-galactose-(1 → 3)-O-β-D-galactose-(1 → 4)-D-glucose〉 or 6-O-α-L-fucopyranosyl-N-acetylglucosamine.  相似文献   

2.
Structural and serological studies were performed with the lipopolysaccharide (LPS) expressed by Escherichia coli K12 strains No. 30 and No. 64, into which cosmid clones derived from Vibrio cholerae O1 NIH 41 (Ogawa) and NIH 35A3 (Inaba) had been introduced, respectively. The two recombinant strains, No. 30 (Ogawa) and No. 64 (Inaba), produced LPS that included, in common, the O-polysaccharide chain composed of an α(1 → 2)-linked N-(3-deoxy-L -glycero-tetronyl)-D -perosamine (4-amino-4,6-dideoxy-D -manno-pyranose) homopolymer attached to the core oligosaccharide of the LPS of E. coli K12. Structural analysis revealed the presence of N-(3-deoxy-L -glycero-tetronyl)-2-O-methyl-D -perosamine at the non-reducing terminus of the O-polysaccharide chain of LPS from No. 30 (Ogawa) but not from No. 64 (Inaba). Serological analysis revealed that No. 30 (Ogawa) and No. 64 (Inaba) LPS were found to share the group antigen factor A of V. cholerae O1. They were distinguished by presence of the Ogawa antigen factor B [co-existing with relatively small amounts of the Inaba antigen factor (c)] in the former LPS and the Inaba antigen factor C in the latter LPS. It appears, therefore, that No. 30 (Ogawa) and No. 64 (Inaba) have O-antigenic structures that are fully consistent with the AB(c) structure for the Ogawa and the AC structure for the Inaba O-forms of V. cholerae O1, respectively. Thus, the present study clearly confirmed our previous finding that the Ogawa antigenic factor B is substantially related to the 2-O-methyl group at the non-reducing terminus of the α(1 → 2)-linked N-(3-deoxy-L -glycero-tetronyl)-D -perosamine homopolymer that forms the O-polysaccharide chain of LPS of V. cholerae O1 (Ogawa).  相似文献   

3.
A plant glycosphingolipid, O-(β-d-mannopyranosyl)-(l → 4)-O-(β-d-glucopyranosyl)-(l → l)-(2S,3S,4R)-4-hydroxy-N-tetracosanoylsphinganine 1, and the stereoisomer, O-(α-d-mannopyranosyl)-(1 → 4)-O-(β-d-glucopyranosyl)-(l → l)-(2S,3S,4R)-4-hydroxy-N-tetracosanoylsphinganine 6, were synthesized in a stereo- and regio-controlled way.  相似文献   

4.
Abstract

Extracellular α-N-acetylgalactosaminidase from Aspergillus niger catalyzed glycosylation yielding a series of 2-acetamido-2-deoxy-α-D-galactobiosides using 2-acetamido-2-deoxy-D-galactopyranose as a glycosyl donor. The isomers α-D-GalpNAc-(1→6)-D-GalpNAc, α-D-GalpNAc-(1→3)-D-GalpNAc and α-D-GalpNAc-(1→6)-D-GalfNAc were isolated and spectrally characterized. The purified enzyme was further used for the glycosylation of free amino acids (serine and threonine) and their N-(tert-butoxycarbonyl)-protected analogs to synthesize the Tn antigen (GalpNAc-α-O-Ser/Thr) and its N-(tert-butoxycarbonyl)-protected derivatives.  相似文献   

5.
Egg white lysozyme was found to catalyze the transfer of N-acetylglucosamine to cyclo{→6)-α-D-Glcp-(1→3)-α-D-Glcp-(1→6)-α-D-Glcp-(1→3)-α-D-Glcp-(1→} (CTS). Structural analysis showed that the transfer product was3-O-β-N-acetylglucosaminyl CTS, cyclo{→6)-α-D-Glcp-(1→3)-α-D-Glcp-(1→6)-[β-GlcNAc-(1→3)]-α-D-Glcp-(1→3)-α-D-Glcp-(1→}. This branched saccharide is anticipated to be a model compound of the sugar chains of glycoproteins.  相似文献   

6.
Ceramide and mono-, di-, tri-, and tetraglycosylceramide were isolated from the bran and endosperm of rice grains and chemically characterized. The detailed compositions of free ceramide were somewhat different between the bran and endosperm, but those of the ceramide moiety in glycosylceramides were substantially the same. There was a tendency in all the sphingolipid molecules in rice grains for hydroxy acids with C20 to be combined largely with the dihydroxy bases while hydroxy acids with C24< combined mainly with the trihydroxy bases. Representative molecular species of the sphingolipid classes were concluded to be as follows: for ceramide N-2′-hydroxylignoceroyl-4-hydroxysphinganine, for monoglycosylceramide l-O-β-glucosyl-N-2′-hydroxyarachidoyl-4,8-sphingadienine, for diglycosylceramide 1-O-[β-mannosyl(1→-4)-O-β-glucosyl]- and 1-O-[β-glucosyl(1→4)-O-β-glucosyl]-N-2′-hydroxylignoceroyl-4-hydroxy-8-sphingenine, for triglycosylceramide l-O-[β-mannosyl(1→4)-O-β-mannosyl(l→4)-O-β-glucosyl]- and l-O-[β-glucosyl(l→4)-O-β-mannosyl(1→4)-O-β-glucosyl]-N-2′-hydroxylignoceroyl-4-hydroxy-8-sphingenine, and for tetraglycosylceramide 1-0-[β-mannosyl(l→4)-O-β-mannosyl (1→4)-O-β-mannosyl(1→4)-O-β-glucosyl]- and l-O-[β-glucosyl(1→4)-O-β-mannosyl(l→4)-O-β-mannosyl(1β4)-O-β-glucosyl]-N-2′-hydroxylignoceroyl-4-hydroxy-8-sphingenine.  相似文献   

7.
A new glucuronide saponin (1) was isolated as its methyl ester (2) from the leaves of Camellia sinensis var. sinensis. On the basis of its spectral data and the results of chemical degradation, the structure was elucidated to be 3-O-1{β-d-galactopyranosyl(l → 2)-[β-d-xylopyranosyl(1 → 2)-α-l-arabinopyranosyl(1 → 3)]-β-d-glucuronopyranosyl}-21-O-cinnamoyl-16,22–di-O-acetylbarringtogenol C.  相似文献   

8.
The Pseudomonas aeruginosa A-band lipopolysaccharide (LPS) molecule has an O-polysaccharide region composed of trisaccharide repeat units of α1 → 2, α1 → 3, α1 → 3 linked D -rhamnose (Rha). The A-band polysaccharide is assembled by the α-D -rhamnosyltransferases, WbpX, WbpY and WbpZ. WbpZ probably transfers the first Rha residue onto the A-band accepting molecule, while WbpY and WbpX subsequently transfer two α1 → 3 linked Rha residues and one α1 → 2 linked Rha respectively. The last two transferases are predicted to be processive, alternating in their activities to complete the A-band polymer. The genes coding for these transferases were identified at the 3′ end of the A-band biosynthetic cluster. Two additional genes, psecoA and uvrD, border the 3′ end of the cluster and are predicted to encode a co-enzyme A transferase and a DNA helicase II enzyme respectively. Chromosomal wbpX, wbpY and wbpZ mutants were generated, and Western immunoblot analysis demonstrates that these mutants are unable to synthesize A-band LPS, while B-band synthesis is unaffected. WbpL, a transferase encoded within the B-band biosynthetic cluster, was previously proposed to initiate B-band biosynthesis through the addition of Fuc2NAc (2-acetamido-2,6-dideoxy-D -galactose) to undecaprenol phosphate (Und-P). In this study, chromosomal wbpL mutants were generated that did not express A band or B band, indicating that WbpL initiates the synthesis of both LPS molecules. Cross-complementation experiments using WbpL and its homologue, Escherichia coli WecA, demonstrates that WbpL is bifunctional, initiating B-band synthesis with a Fuc2NAc residue and A-band synthesis with either a GlcNAc (N-acetylglucosamine) or GalNAc (N-acetylgalactosamine) residue. These data indicate that A-band polysaccharide assembly requires four glycosyltransferases, one of which is necessary for initiating both A-band and B-band LPS synthesis.  相似文献   

9.
6-N-[3-3H]Trimethyl-dl-lysine was synthesized from 6-N-acetyl-l-lysine by the following chemical scheme: 6-N-acetyl-l-lysine → 2-keto-6-N-acetylcaproic acid → 2-[3-3H]keto-6-N-acetylcaproic acid → 2-[3-3H]keto-6-N-acetylcaproic acid oxime → 6-N-[3-3H]acetyl-dl-lysine → dl-[3-3H]lysine → 2-N-[3-3H]formyl-dl-lysine → 2-[3-3H]formyl-6-N-trimethyl-dl-lysine → 6-N-[3-3H]trimethyl-dl-lysine. Using a 70% ammonium sulfate fraction obtained from a high-speed rat kidney supernatant, the cosubstrate and cofactor requirements for 6-N-trimethyl-l-lysine hydroxylase activity as measured by tritium release from 6-N-[3-3H]trimethyl-dl-lysine were: α-ketoglutarate, ferrous ions, l-ascorbate, and oxygen, with added catalase showing a slight but distinct stimulatory effect. On incubation with the crude rat kidney preparation, the release of tritium from 6-N-[3-3H]trimethyl-dl-lysine was linear with both time of incubation and protein concentration. Hydroxylation of 6-N-trimethyl-l-lysine, as measured by tritium release from the labeled substrate, was examined in rat kidney, heart, liver, and skeletal muscle tissues, and found to be most active in the kidney.  相似文献   

10.
An acidic polysaccharide, termed gordonan, was isolated from the culture medium of Gordonia sp. as an inducer of cell aggregation in an insect cell line, BM-N4. Gordonan had an average molecular weight of 5×106 and its structure was identified as →3)-4-O-(1-carboxyethyl)-β-D-Manp-(1→4)-β-D-GlcAp-(1→4)-β-D-Glcp-(1→ mainly by acid hydrolysis experiments and NMR analysis. It induces cell aggregation at the concentration of 4 μg/ml. A partially hydrolyzed polysaccharide derived from gordonan with a molecular weight of 5×105 showed weak activity, while any fragment molecules with lower molecular weights prepared from gordonan showed no activity.  相似文献   

11.
The transxylosylation reaction products of β-xylosidase-1, excreted by Penicillium wortmanni IFO 7237 using β-(1→4)-xylobiose as substrate, have been separated by chromatography on activated charcoal into four fractions, designated as P-1, P-2, P-3, and P-4, respectively. They were further purified by preparative paper chromatography. The characterization and structural analysis were done by measurement of the degree of polymerization (DP) and specific rotation followed by methylation analysis. Moreover, the enzymatic structural analysis of transxylosylation products, with high performance liquid chromatography (HPLC), allowed the confirmation of each structure. The first product, P-1, was β-(1→3)-xylobiose and the second, P-2, was β-(1→4)-xylotriose, but, P-3 was O-β-d-xylopyranosyl-(1→3)-O-β-d-xylopyranosyl-(1→4)-d-xylopyranose or isomeric xylo-triose and P-4 was assumed to be O-β-d-xylopyranosyl-(1→4)-[O-β-d-xylopyranosyl-(1→3)]-O-β-d-xylopyranosyl-(1→4)-d-xylopyranose.  相似文献   

12.
(1→3, 1→4)-β-Glucanase (EC 3.2.1.73), with a molecular weight of 34, 000 and an isoelectric point of 4.9, was purified to homogeneity from extracts of fresh rice bran. The enzyme specifically hydrolyzed (1→3, 1→4)-β-glucans such as barley β-glucan and lichenans, but laminarins and CM-cellulose were not substrates. Endproduct analysis using barley β-glucan as the substrate suggested that the enzyme is an endo-type (1→3, 1→4)-β-glucanase.  相似文献   

13.
The effects of bovine fetuin O-glycans on its trypsin inhibitory activity were examined. De-sialylated (asialo-) and de-O-glycosylated fetuin were prepared from native fetuin using Arthrobacter neuraminidase and the mixture of it and Bacillus endo-α-N-acetylgalactosaminidase, respectively. De-sialylation and de-O-glycosylation from fetuin were confirmed with SDS-PAGE followed by western blotting using anti-human Thomsen-Friedenreich antigen (T antigen) antibody which recognizes O-linked galactosyl β1,3 N-acetylgalactosamine (Galβ1→3GalNAc). Native fetuin completely inhibited the trypsin activity at about a 1:1 molar ratio. In contrast, the trypsin inhibitory activity of asialo- and de-O-glycosylated fetuin decreased about a half and one-third of that of native fetuin, respectively.  相似文献   

14.
Cyclomaltodextrin glucanotransferase (EC 2.4.1.19, abbreviated as CGTase) derived from Bacillus stearothermophilus produced a series of transfer products from a mixture of cyclomaltohexaose and cyclic tetrasaccharide (cyclo{→6)-α-D-Glcp-(1→3)-α-D-Glcp-(1→6)-α-D-Glcp-(1→3)-α-D-Glcp-(1→}, CTS). Of the transfer products, only two components, saccharides A and D, remained and accumulated after digestion with glucoamylase. The total combined yield of the saccharides reached 63.4% of total sugars, and enzymatic and instrumental analyses revealed the structures of both saccharides. Saccharide A was identified as4-mono-O-α-glucosyl-CTS, {→6)-[α-D-Glcp-(1→4)]-α-D-Glcp-(1→3)-α-D-Glcp-(1→6)-α-D-Glcp-(1→3)-α-D-Glcp-(1→}, and sachharide D was 4,4′-di-O-α-glucosyl-CTS, {→6)-[α-D-Glcp-(1→4)]-α-D-Glcp-(1→3)-α-D-Glcp-(1→6)-[α-D-Glcp-(1→4)]-α-D-Glcp-(1→3)-α-D-Glcp-(1→}. These structures led us to conclude that the glycosyltransfer catalyzed by CGTase was specific to the C4-OH of the 6-linked glucopyranosyl residues in CTS.  相似文献   

15.
The 8-methoxycarbonyloctyl glycoside of the tetrasaccharide hapten, O-α-l-rhamnopyranosyl-(1→2)-O-α-l-rhamnopyranosyl-(1→3)-O-α-l-rhamnopyranosyl-(1→ 3)-2-acetamido-2-deoxy-β-d-glucopyranoside and the trisaccharide glycoside 8-methoxycarbonyloctyl O-α-l-rhamnopyranosyl-(1→3)-O-α-l-rhamnopyr-anosyl-(1→3)-2-acetamido-2-deoxy-β-d-glucopyranoside were synthesized by sequential Koenigs-Knorr reactions from monosaccharide units. The tetrasaccharide represents the complete skeletal repeating unit of Shigella flexneri serogroup Y lipopolysaccharide. Both oligosaccharide haptens are functionalized for covalent attachment to proteins, cell surfaces, and solid supports. 1H-N.m.r. evidence for the conformations of these oligosaccharides in solution is presented and shown to be consistent with predictions based on the exo-anomeric effect  相似文献   

16.
The acylated, amidated and esterified derivatives of N-acetylglucosaminyl-α(1 → 4)-N-acetylmuramyl tri- and tetrapeptide were synthesized and examined as to their protective effect on pseudomonal infection in the mouse and pyrogenicity in the rabbit. Modifications of the terminal end function of the peptide moieties in their molecules caused enhancement of resistance to pseudomonal infection and reduction of pyrogenicity. Among the compounds tested, sodium N-acetylglucosaminyl-β(1 → 4)-N-acetylmuramyl-l-alanyl-d-isoglutaminyl-(l)-stearoyl-(d)-meso-2,6-diaminopimelic acid-(d)-amide and sodium N-acetylglucosaminyl-β(1 → 4)-N-acetylmuramyl-l-alanyl-d-isoglutaminyl-(l)-stearoyl-(d)-meso-2,6-diaminopimelic acid-(d)-amide-(l)-d-alanine were found to be advantageous and conceivably worthwhile for further investigation as immunobiologically active compounds.  相似文献   

17.
transglucosylation by a β-d-glucosidase from cycad seeds. These azoxyglycosides, named neocycasin H, I, and J, were identified as O-β-d-glucopyranosyl-(1→4)-O-β-d-glucopyranosyl-(l→3)-O-β-d-glucopyranoside of methylazoxymethanol (MAM), O-β-d-glucopyranosyl-(1→3)-[O-β-d-glucopyranosyl-(1→6)]-O-β-d-glucopyranoside of MAM, and O-β-d-glucopyranosyl-(1→3)-[O-β-d-xylopyranosyl-(1→6)]-O-β-d-glucopyranoside of MAM, respectively. On the basis of their structures, the mechanism of the formation of these neocycasins is also discussed.  相似文献   

18.
Human colonic adenocarcinoma DLD-1 cells were grown under conditions which induce characteristics of differentiated cells using medium containing 0.8% N,N-dimethylformamide in order to study alterations in glycosphingolipid glycosyltransferase activities during this process. Analysis of biosynthetic reactions involved in lacto-series antigen synthesis revealed no changes in the specific activities of either β1→4galactosyltransferase or α1→3/4fucosyltransferase with N,N-dimethylformamide treatment. However, a dramatic decrease of from 14- to 20-fold in the β1→3N-acetylglucosaminyltransferase activity was observed in the treated cells. This enzyme catalyzes the rate-limiting step in lacto-series core chain synthesis. This is consistent with the pattern of regulation of lacto-series antigen expression found to occur during oncogenesis in human colonic mucosa (Holmes EH, Hakomori S, Ostrander GK: J Biol Chem 262:15649, 1987). Total glycolipids from untreated and N,N-dimethylformamide-treated cells were isolated and subjected to TLC immunostain analysis and solid phase radioimmunoassay with a series of monoclonal antibodies specific for lacto-series-based carbohydrate antigens. A decrease of about 2-fold or less in the quantity of lacto-series antigens was observed as a consequence of N,N-dimethylformamide treatment in both neutral glycolipid and ganglioside fractions. The results suggest that only very low levels of β1→3N-acetylglucosaminyltransferase activity are required for the steady state expression of significant levels of lacto-series based glycolipids and that modulation of its activity levels by N,N-dimethylformamide treatment in DLD-1 cells represents a convenient in vitro system for studying aspects of regulation of lacto-series antigen expression.  相似文献   

19.
Chemical and serological studies were performed with the lipopolysaccharide (LPS) from Vibrio cholerae O144 (O144). The LPS of O144 contained D -glucose, D -galactose, L -glycero-D -manno-heptose, D -fructose, D -quinovosamine (2-amino-2,6-dideoxy-D -gluco-pyranose) and L -perosamine (4-amino-4,6-dideoxy-L -manno-pyranose). The perosamine, a major component sugar of the LPS from O144, was in an L -configuration, as is also the case in the LPS from V. cholerae O76 (O76), in contrast to the D -configuration of the perosamine in the LPS of V. cholerae O1. A structural analysis revealed that the O polysaccharide chain of the LPS from O144 is an α(1 → 2)-linked homopolymer of (R)-(-)-2-hydroxypropionyl-L -perosamine. The serological cross-reactivity between O144 and O76 was clearly revealed by cross-agglutination and cross-agglutinin absorption tests with whole cells, as well as by passive hemolysis tests with sheep red-blood cells that had been sensitized with the LPS from O144 and O76. In contrast, in passive hemolysis tests, the LPS of O144 did not cross-react serologically with the LPSs from other strains such as V. cholerae O1 (Ogawa and Inaba), V. cholerae O140, Vibrio bio-serogroup 1875 (Original and Variant) and Yersinia enterocolitica O9. The LPSs from these strains consist of O polysaccharide chains composed of α(1 → 2)-linked homopolymers of D -perosamine with various N-acyl groups, and they share the Inaba antigen factor C of V. cholerae O1 in common. The results obtained in this study demonstrate that the absolute configuration of the perosamine residue in homopolymers plays a very important role in the expression of the serological specificity of the Inaba antigen factor C of V. cholerae O1.  相似文献   

20.
The substrate specificity of mammalian endo-β-N-acetylglucosaminidase was studied in detail by using rat liver enzyme. The enzyme hydrolytically cleaves the N,N′-diacetylchitobiose moiety of Manα1 → 6 (Manα1 → 3)Manβ1 → 4GlcNacβ1 → 4R in which R represents either GlcNac → Asn or N-acetylglucosamine. The enzyme can hardly act on the sugar chains with Fucα1 → 3 or 6GlcNac → Asn or N-acetylglucosaminitol as their R residues. The sugar chains substituted at C-3 and C-6 positions of the Manα1 → 6 residue and at C-2 position of the Manα1 → 3 residue by other sugars are also cleaved by the enzyme. The sugar chains substituted at C-4 position of the β-mannosyl residue and at C-2 position of the Manα1 → 6 residue by other sugars are hydrolyzed at one place lower rate. The specificity of the mammalian endo-β-N-acetylglucosaminidase indicates that the enzyme is responsible for the formation of most of the oligosaccharides excreted in the urine of patients with congenital exoglycosidase deficiencies and also explains why large amount of glycopeptides are excreted in the urine of fucosidosis patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号