首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The synthesis of phospholipids and glycolipids during the cell mitotic cycle of an established hamster line, NIL, has been studied. Cells were synchronized with excess thymidine and mitotically harvested by shaking. Cells were radioactively labeled for 4 h with palmitate, glucosamine, or galactose. Lipids were analyzed by thin-layer chromatography. As cells progressed through the mitotic cycle, incorporation into phospholipids increased but the fraction represented by each remained constant. Similarly, ceramide monohexoside, dihexoside, and hematoside were labeled equally in all phases. Ceramide trihexoside and tetrahexoside were labeled only during G1 and S. Ceramide pentahexoside (the Forssman antigen) shows density-dependent synthesis, accumulation, and reactivity. Ceramide pentahexoside was labeled during all phases of the mitotic cycle but the rate of incorporation decreased in S and G2. The total amount of lipid assayed immunologically in cell extracts gradually increased. Exposure of the Forssman antigen in untreated or trypsin-treated cells was studied using binding of chemically labeled antiForssman antiserum. The amount of antigen detected in trypsinized cells increased during G1 and early S but then remained constant. Mitotic cells exposed all detectable antigen. As cells progressed through the mitotic cycle, a large fraction of the Forssman antigen became cryptic.  相似文献   

2.
Summary Exponentially growing HeLa cells have been separated according to their cell cycle age by sedimenting at unit gravity for 3 hr on a phosphate-buffered sucrose density gradient. Measurements of cell size, cell number, DNA content, and tritiated thymidine incorporation in consecutive portions of the gradient showed that cells in upper fractions were in G1, cells in middle fractions were in S, and cells in lower fractions were in G2. Basic amino acids were rapidly incorporated into nuclear protein during late G1 and S; some incorporation also took place during G2. This work is supported by grant A-3458 from the National Research Council of Canada.  相似文献   

3.
New techniques for cell cycle analysis are presented. Using HeLa cells, methods are described for the selection of a narrow window or cohort of lightly [3H]-labeled cells located either at the very beginning or the very end of S phase. The cohort cells are tagged by a labeling procedure which entails alternating pulses of high and low levels of [3H]thymidine and are identified autoradiographically. Additional methods are described for following the progress of cohort cells through the cell cycle. Theoretically, with the methods described, it should be possible to follow the ‘early S cohort’ cells as they exit from S phase, as they enter and exit M and as they enter the subsequent S phase. This would allow a determination of S, S + G2, S + G2+ M and T. It should theoretically be possible to follow ‘late S cohort’ cells in a similar manner, allowing a determination of G2, G2+ M and G2+ M + G1. To test these predictions, several experiments are presented in which the progress of the two cohorts is monitored. The best data were obtained from the mitotic curves of cohort cells. For each of the cohorts, values were obtained for the time required for peak concentration of cells in mitosis, the coefficients of variation and of skew. The curve of cohort cells passing through mitosis is shown to fit a log-normal curve better than a normal curve. In addition, the mitotic curves are used to estimate the length of M and to estimate the loss of cohort synchrony. Other uses of these methods are discussed.  相似文献   

4.
The effects of sodium butyrate on [3H]thymidine incorporation and cell growth characteristics in randomly growing and synchronized HeLa S3 cells have been examined in an attempt to determine what effects, if any, butyrate has on S phase cells. Whereas 5 mM sodium butyrate rapidly inhibits [5H]thymidine incorporation in a randomly growing cell populations, it has no effect on incorporation during the S phase in cells synchronized by double thymidine block techniques. This lack of effect does not result from an impaired ability of the S phase cells to take up butyrate, since butyrate administration during this period leads to histone hyperacetylation that is identical with that seen with butyrate treatment of randomly growing cells. Furthermore, the ability to induce such hyperacetylation with butyrate during an apparently normal progression through S phase indicates that histone hyperacetylation probably has no effect on the overall process of DNA replication. Temporal patterns of [3H]thymidine incorporation and cell growth following release from a 24-h exposure to butyrate confirm blockage of cell growth in the G1 phase of the cell cycle. Thus, the inhibition by butyrate of [3H]thymidine incorporation in randomly growing HeLa S3 cell populations can be accounted for solely on the basis of a G1 phase block, with no inhibitory effects on cells already engaged in DNA synthesis or cells beyond the G1 phase block at the time of butyrate administration.  相似文献   

5.
Nuclei have been isolated from unsynchronized cultures of Chinese hamster fibroblasts after varying intervals of growth following the incorporation of thymidine -3H for 20 min. These nuclei were fractionated by unit gravity sedimentation in a stabilizing density gradient of sucrose, and fractions were analyzed for the concentration of nuclei, DNA, and radioactivity. A more rapidly sedimenting population of nuclei in the G2 phase of the cell cycle was separated from a group of nuclei in the G1 phase, and nuclei in progressive stages of DNA synthesis (S phase) were distributed between these two regions. The fractionation of intact cells by sedimentation according to their position in the cell cycle was found to be less satisfactory than the corresponding separation of nuclei. This probably results from the continuous accumulation of mass within individual cells throughout the entire cell cycle, whereas most of the mass of a nucleus is replicated during a relatively narrow interval of the total cell cycle.  相似文献   

6.
The process of continuous resynchronization with excess thymidine provides sufficient cell material for accurate chemical determination of DNA and RNA in HeLa S3 cells at hourly intervals during the cell cycle. Total DNA is constant during the non-S phase portion of the cell cycle but varies widely among cycles of synchronous growth. Total cellular RNA content increases linearly in the G1 phase and accelerates to a higher linear rate of accumulation, which remains constant during most of the S and G2 phases. The ratios of early and late cycle rates of RNA accumulation are not constant among cycles.  相似文献   

7.
The influence of cisplatin, an anticancer agent, on DNA synthesis and cell cycle progression of a cisplatin-resistant cell line was investigated. Cell cycle analysis using flow cytometry showed that cytotoxic concentrations of cisplatin caused a transient inhibition of parental HeLa cells at S phase, followed by accumulation at G2 phase. In contrast, the resistant cells progressed through the cell cycle without being affected by the same treatment. However, cell cycle distributions were the same in the resistant and the parental cells at IC50, the drug concentration inhibiting cell growth by 50%. Studies using a [3H]thymidine incorporation technique also demonstrated a transient inhibition of DNA synthesis in HeLa cells by cisplatin; such inhibition was greatly reduced in the resistant cells. These data argue for the hypothesis that the inhibition of DNA synthesis is important in determining cisplatin-induced cytotoxicity. In addition, the accumulation of cells at G0/G1 by serum starvation was not effective in the resistant cells compared to the parental cells, suggesting that the control of cell cycle exiting is also altered in the resistant cells. Taken together, these results support the notion that alterations in cell cycle control, in particular G2 arrest, are important in determining the sensitivity or resistance of mammalian cells to cisplatin and may have a role in clinical protocols.  相似文献   

8.
Using mouse thymocytes, mitogen-induced [3H]thymidine incorporation was compared with a recently developed flow-cytometric technique, based on acridine orange staining of cells, which differentiates the G0 and G1 phase of thymocytes. PHA induces a transient but considerable G0-G1 shift without any substantial proliferation. On the other hand, crude supernatants derived from Con A-stimulated human peripheral blood mononuclear cells induce only a minor G0-G1 shift and no proliferation. However, PHA in the presence of this supernatant induced an increased [3H]thymidine uptake in thymocytes and a shift from G1 to S. These results support the current hypothesis that a factor present in Con A-activated supernatants in conjunction with PHA stimulation indeed facilitates the entrance of G1 cells into the S phase. The flow-cytometric technique might be used in the study of the interaction of endogenous mediators with exogenous mitogenic agents in activating lymphocytes to proceed through the initial G0-G1 phases of the cell cycle.  相似文献   

9.
HeLa cells synthesize heterogeneous nuclear RNA (HnRNA) in the G1, S, and G2 portions of the cell cycle. HnRNA prepared from these various periods was compared by RNA-DNA hybridization experiments. The results indicated that some of the HnRNA molecules were equivalent at all times in the cell cycle, but limitations in the sensitivity of the hydridization reactions, as well as in the spectrum of hybridizing molecules, restrict the conclusions that can be drawn from these comparisons.  相似文献   

10.
The methylation of nucleic acids has been investigated during the cell cycle of an asparagine dependent strain of transformed fibroblasts (BHK 21 HS 5). The synchrony was carried out by a partial asparagine starvation of cells for 24 hours. The amino acid supply induced all cells to enter synchronously the G1 phase. Methylation and DNA synthesis were respectively measured by pulsed [methyl-14C] methionine and [methyl-3H] thymidine incorporation. DNA methylation followed a biphasic pattern with maximal methyl incorporations during both S phase and mitosis. A partial desynchronisation induced the S phase of the second cycle to proceed before all the cells have achieved their division. Hydroxyurea was used in order to inhibit the DNA synthesis of cells entering the second cell cycle, which might interfer with the mitosis of the first one. The inhibitor was added either at the first beginning of cell division or during all the G1 phase. In both conditions it suppressed 3H thymidine incorporation of the second cycle. However, mitosis took place and methylations occurred as in previous experiments. The DNA methylation of the mitotic phase in the first cell cycle could thus be dissociated from the classical post-synthetic DNA maturation and did not correspond to any DNA methylation appearing in the course of the second cell cycle.  相似文献   

11.
Chloramphenicol sensitive [3H]leucine incorporation into protein (due to mitochondrial protein synthesis) in synchronized HeLa cells has been found to continue throughout interphase, its rate per cell approximately doubling from the G1 to the G2 phase. This increase in the rate of [3H]leucine incorporation during the cycle does not seem to parallel closely the increase in cell mass. In fact, the observations made on cultures incubated at 34.5 °C, where the G1 and S phases are better resolved than at 37 °C, indicate that the rate remains constant during the G1 phase, and starts to accelerate with the onset of nuclear DNA synthesis. Correspondingly, on a per unit mass basis, there appears to be a slight decline in the rate of [3H]leucine incorporation into protein during the G1 phase, which is compensated by an increase in the early S phase. No significant variations were observed in the mitochondrial leucine pool labeling during the cell cycle; therefore, the observed pattern of [3H]leucine incorporation into protein should reflect fairly accurately the behavior of mitochondrial protein synthesis. Evidence has been obtained indicating a depression in the rate of incorporation of [3H]leucine into protein in mitochondria of mitotic cells. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of the products of mitochondrial protein synthesis has not revealed any differences in the size distribution of the proteins synthesized in the various portions of the cell cycle.  相似文献   

12.
Smooth muscle cell (SMC) proliferation plays an important role in the pathogenesis of vascular diseases such as atherosclerosis and postangioplasty restenosis. Recently we demonstrated the thiol antioxidantN-acetylcysteine (NAC) inhibits constitutive NF-κB/Rel activity and growth of vascular SMCs. Here we show that treatment of human and bovine aortic SMC with the thiol antioxidant NAC causes cells to exit the cell cycle and remain quiescent as determined by a greatly reduced incorporation of [3H]thymidine and G0/G1DNA content. Removal of NAC from the culture medium stimulates SMCs to synchronously reenter the cell cycle as judged by induction of cyclin D1 and B-mybgene expression during mid and late G1phase, respectively, and induction of histone gene expression and [3H]thymidine incorporation during S phase. The time course of cyclin D1, B-myb,and histone gene expression after NAC removal was similar to that of serum-deprived cells induced to resume cell cycle progression by the addition of fetal bovine serum to the culture medium. Taken together, these results indicate that NAC treatment causes SMCs to enter a reversible G0quiescent, growth-arrested state. Thus, NAC provides an important new method for synchronizing SMCs in culture.  相似文献   

13.
The action of tubulosine on the mitotic cycle was studied using continuous labelling with tritiated thymidine. This alkaloid provokes a lengthening of the G1 and S phases and a blocking of G2 is totally reversible when the treatment is followed by recovery in normal medium. At a dose of tubulosine which induces a reversible mitostasis in the shortest possible time the lengthening of the phases of the cell cycle was estimated by three different techniques: labelled mitoses for the determination of G2; labelling intensity for the determination of S; binucleate cells for the determination of T, and an original technique using labelling index of binucleate cells for the determination of G1. The limits of the technique of labelled mitosis together with the interest of the technique aiming at the direct determination of G1 in the case of a perturbed cycle are then discussed.  相似文献   

14.
An investigation of the rate of incorporation of [5-3H]ur dine into mitochondrial RNA in synchronized HeLa cells in different phases of the cell cycle has revealed a considerable acceleration of this incorporation in cells in S and especially in G2 phase. An analysis of the labeling of the intramitochondrial UTP pool has shown that this acceleration reflects a true increase in the rate of synthesis of mitochondrial RNA: this increase is considerably greater than can be accounted for by the expected doubling of mit-DNA templates during the S and G2 phases.  相似文献   

15.
Summary Mammary and adipose explants from eight mid-lactation Holstein cows were co-cultured for 24 h in the presence or absence of liver explants, 1 μg/ml pituitary bovine somatotrophin, or 100 ng/ml insulinlike growth factor-I. Liver explants in the media significantly depressed DNA and protein synthesis by mammary tissue as measured by [14C]-thymidine and amino acid incorporation. As measured by flow cytometry, the concentration of DNA in the G0G1 and G2M cells and the percentage of cells in the G0G1 population of mammary tissue was also significantly depressed by liver tissue. Changes in the percentage of cells in the S and G2M phases were not significant. Insulinlike growth factor-I in the presence of liver explants depressed protein synthesis, thymidine incorporation, and the concentration of DNA in the G0G1 and G2M cells compared to control but did not affect the percentage of cells in the G0G1, S, or G2M phases. Previously it was assumed that changes in [14C]thymidine incorporation indicated that changes in cell division were occurring. Flow cytometry revealed that changes in DNA content of mammary cells as a result of liver or hormonal stimulation were not due to changes in cell division. Indications are that differences in cellular DNA content result from changes in the rate of amplification of individual genes responsible for milk protein synthesis.  相似文献   

16.
Temporal relationships between hydroxymethylglutaryl-CoA reductase activity, biosynthesis of C27 sterols, and [3H]thymidine incorporation into DNA were studied in a rat embryo fibroblast cell line synchronized by double thymidine block and cultured in cholesterol-containing medium. Cyclic variations of HMG-CoA reductase activity and C27 sterols occurred, with two maxima in S and G2M phases; the relative shortness of the G1 phase (3 h) in these cells could be responsible for the shift of sterol synthesis in the S phase. No noticeable variation of the individual C27 sterols was observed during the entire cell cycle. In each experiment, there was a good linear correlation between HMG-CoA reductase activity and C27 sterol synthesis, but from one experiment to another, a given level of enzymatic activity led to varying levels of [2-14C]acetate incorporation into sterols. In our experimental conditions, total HMG-CoA reductase activity is measured, and the preceding observation could be explained by a varying degree of phosphorylation of the enzyme depending on the metabolic state of the cells at the start of the experiment. The cyclic variations of the enzyme activity seem to be due more to increased synthesis at given times of the cycle than to periodic dephosphorylation. We question the existence of a relationship between cell division and cyclic sterol synthesis occurring in cells cultured in cholesterol-containing medium.  相似文献   

17.
Cessation of mitosis was brought about in Vicia faba roots incubated for 24 hours in the thymine analogue, 5-aminouracil. Recovery of mitotic activity began 8 hours after removal from 5-aminouracil and reached a peak at 15 hours. If colchicine was added 4 hours before the peak of mitoses, up to 80 per cent of all cells accumulated in mitotic division stages. By use of single and double labeling techniques, it was shown that synchrony of cell divisions resulted from depression in the rate of DNA synthesis by 5-aminouracil, which brought about an accumulation of cells in the S phase of the cell cycle. Treatment with 5-aminouracil may have also caused a delay in the rate of exit of cells from the G2 period. It appeared to have no effect on the duration of the G1 period. When roots were removed from 5-aminouracil, DNA synthesis resumed in all cells in the S phase. Although thymidine antagonized the effects of 5-aminouracil, an exogenous supply of it was not necessary for the resumption of DNA synthesis, as shown by incorporation studies with tritiated deoxycytidine.  相似文献   

18.
Growth deceleration of an Ehrlich ascites tumor with increasing mass is associated with a prolongation of the cell cycle and a decline in the growth fraction. These effects are reversed upon transfer of cells from an older tumor into a new host. Studies were made to locate the stages at which a cell cycle could be suspended or resumed. Transplantation caused a prompt rise in both mitotic and flash H3TdR labeling indices. When all the cells in cycle including mitoses were prelabeled with H3TdR in older tumors, the fraction of labeled mitoses did not decline for a considerable period after transplantation into new hosts. This suggests that the early rise in mitoses is not due to a flow of resting (Go) cells from a G2 store (G2-Go transition). It appears rather to be a reflection of a lag of the mitotic process relative to other stages during the initial readjustment of the cycle. A prompt rise in flash H3TdR indices in the transplants suggested cell entry into S from either a suspended GI (G1-Go transition) or a suspended S (S-Go transition). These possibilities were examined by relating micro-spectrophotometric estimates of DNA to the cell cycle stage as revealed by H3TdR autoradiography. Since Go cells had DNA values corresponding to GI, it was concluded that decycling or recycling could occur only after mitosis and before DNA synthesis.  相似文献   

19.
Cytochalasin B (CB) shows a marked concentration-dependent inhibition of the incorporation of [3H]thymidine into Chinese hamster ovary cells. This inhibition was shown to result from an inhibition of thymidine uptake, not from an inhibition of DNA synthesis. Cells normally acquire the capacity to transport thymidine as they move from the G1 stage of the cell cycle into the S phase. If CB is added to cells while they are in G1, they do not acquire the ability to transport thymidine as they enter S. However, the addition of CB to cells that are already in S has no effect on their ability to transport thymidine. These results are discussed in terms of a model in which elements involved in thymidine transport enter the cell surface membrane as the cells move from G1 to S. It is proposed that CB prevents this structural transition by binding to the cell surface.  相似文献   

20.
The kinetics of acidic residual chromosomal protein synthesis and transport were studied throughout the cell cycle in HeLa S-3 cells synchronized by 2 mM thymidine block and selective detachment of mitotic cells. Pulse labeling the cells with leucine-3H for 2 min and then "chasing" the radioactive proteins for up to 3 hr showed that the amount of protein synthesized, transported, and retained in the acidic residual chromosomal protein fraction is greater immediately after mitosis and later in G1 than in the S or G2 phases of the cell cycle. During S, only 20–25% of the proteins synthesized and transported to the acidic residual chromosomal protein fraction are chased during the first 2 hr after pulse labeling, whereas up to 40% of the material entering the residual nuclear fraction in mitosis, G1, and G2 leaves during a 2 hr chase. Polyacrylamide gel electrophoretic profiles of these proteins, at various times after pulse labeling, reveal that the turnover of individual polypeptides within this fraction has kinetics of synthesis and turnover which are markedly different from one another and undergo stage-specific changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号