首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Witton MP  Habib MB 《PloS one》2010,5(11):e13982
The size and flight mechanics of giant pterosaurs have received considerable research interest for the last century but are confused by conflicting interpretations of pterosaur biology and flight capabilities. Avian biomechanical parameters have often been applied to pterosaurs in such research but, due to considerable differences in avian and pterosaur anatomy, have lead to systematic errors interpreting pterosaur flight mechanics. Such assumptions have lead to assertions that giant pterosaurs were extremely lightweight to facilitate flight or, if more realistic masses are assumed, were flightless. Reappraisal of the proportions, scaling and morphology of giant pterosaur fossils suggests that bird and pterosaur wing structure, gross anatomy and launch kinematics are too different to be considered mechanically interchangeable. Conclusions assuming such interchangeability--including those indicating that giant pterosaurs were flightless--are found to be based on inaccurate and poorly supported assumptions of structural scaling and launch kinematics. Pterosaur bone strength and flap-gliding performance demonstrate that giant pterosaur anatomy was capable of generating sufficient lift and thrust for powered flight as well as resisting flight loading stresses. The retention of flight characteristics across giant pterosaur skeletons and their considerable robustness compared to similarly-massed terrestrial animals suggest that giant pterosaurs were not flightless. Moreover, the term 'giant pterosaur' includes at least two radically different forms with very distinct palaeoecological signatures and, accordingly, all but the most basic sweeping conclusions about giant pterosaur flight should be treated with caution. Reappraisal of giant pterosaur material also reveals that the size of the largest pterosaurs, previously suggested to have wingspans up to 13 m and masses up to 544 kg, have been overestimated. Scaling of fragmentary giant pterosaur remains have been misled by distorted fossils or used inappropriate scaling techniques, indicating that 10-11 m wingspans and masses of 200-250 kg are the most reliable upper estimates of known pterosaur size.  相似文献   

2.
New discoveries on the ichnological site known as “the Pterosaur Beach of Crayssac” (lower Tithonian, Upper Jurassic; south-western France) answer the question of terrestrial capabilities of non-pterodactyloid pterosaurs. If the terrestrial type of locomotion of pterodactyloid pterosaurs has been solved from ichnological evidence for more than twenty years, no tracks and trackways referable to non-pterodactyloid pterosaurs have ever been described. Thus, the debate on terrestrial capabilities of these non-pterodactyloids was based on morpho-functional studies, with the main conclusion that those pterosaurs were arboreal dwellers and bad walkers. Six trackways referable to three non-pterodactyloid new ichnotaxa, maybe closely related to Rhamphorhynchidae, are described in this work. Their study leads to the conclusion that grounded non-pterodatyloids, at least during the Late Jurassic, were quadrupedal with digitigrade manus and plantigrade to digitigrade pes. They were clearly good walkers, even if hindlimbs are supposed to be hampered by the uropatagium, what could have constrained the terrestrial agility of these animals. Thus, from ichnological evidence and contrary to the current hypotheses, non-pterodactyloid pterosaurs seem to have been good walkers even though their trackways are very rare or unidentified to date. This rarity could be due to behaviour rather than to functional capacities, many non-pterodactyloids being considered both littoral fishers and arboreal or cliff dwellers. However, the concept of non-pterodactyloid “good climbers and bad walkers” has to be modified to “good climbers and rare walkers”, unless many non-pterodactyloid ichnites have yet to be discovered.  相似文献   

3.
David Peters 《Ichnos》2013,20(2):114-141
The matching of ichnites to extinct trackmakers has been done successfully with a variety of taxa, from basal hominids to basal tetrapods. Traces attributed to pterosaurs have been studied for more than 50 years, but little interest has been shown in the pedes themselves. While ichnites can vary greatly in their correspondence to their trackmaker, most pterosaur tracks appear to preserve sufficient detail to assess their origins. This report presents a catalog of pterosaur pedal skeletons that can be matched to a wider spectrum of ichnites, including digitigrade and bipedal ichnites previously not associated with pterosaurs. A variety of pedal characters separate several putative genera into distinct clades, some only distantly related to one another. Distinct pedal characters indicate certain tiny pterosaurs were not juveniles of dissimilar adults, but were separate taxa and likely adults themselves. A squamate and fenestrasaur origin for pterosaurs is supported. These new insights overturn long-standing paradigms. The pterosaur pes contains a wealth of data that should not be ignored. Application of this data enables a more precise identification of both skeletal taxa and ichnotaxa.  相似文献   

4.
Similarities between the anatomies of living organisms are often used to draw conclusions regarding the ecology and behaviour of extinct animals. Several pterosaur taxa are postulated to have been skim-feeders based largely on supposed convergences of their jaw anatomy with that of the modern skimming bird, Rynchops spp. Using physical and mathematical models of Rynchops bills and pterosaur jaws, we show that skimming is considerably more energetically costly than previously thought for Rynchops and that pterosaurs weighing more than one kilogram would not have been able to skim at all. Furthermore, anatomical comparisons between the highly specialised skull of Rynchops and those of postulated skimming pterosaurs suggest that even smaller forms were poorly adapted for skim-feeding. Our results refute the hypothesis that some pterosaurs commonly used skimming as a foraging method and illustrate the pitfalls involved in extrapolating from limited morphological convergence.  相似文献   

5.

Three theories about the origin of flight in pterosaurs have been proposed: 1) the arboreal parachuting theory (passive falling from trees leading to gliding and eventually to powered flight); 2) the cursorial theory (bipedal running and leaping leading directly to powered flight); and 3) the arboreal leaping theory (active leaping between branches and trees leading to powered flight). The available evidence as to the functional morphology of pterosaurs, and in particular their hindlimb, is reviewed and used to test the three theories. Pterosaurs were well suited for arboreality and their hindlimb morphology argues against cursoriality, but supports an arboreal leaping lifestyle for early pterosaurs or their immediate ancestors.  相似文献   

6.
The two living groups of flying vertebrates, birds and bats, both have constricted genome sizes compared with their close relatives. But nothing is known about the genomic characteristics of pterosaurs, which took to the air over 70 Myr before birds and were the first group of vertebrates to evolve powered flight. Here, we estimate genome size for four species of pterosaurs and seven species of basal archosauromorphs using a Bayesian comparative approach. Our results suggest that small genomes commonly associated with flight in bats and birds also evolved in pterosaurs, and that the rate of genome-size evolution is proportional to genome size within amniotes, with the fastest rates occurring in lineages with the largest genomes. We examine the role that drift may have played in the evolution of genome size within tetrapods by testing for correlated evolution between genome size and body size, but find no support for this hypothesis. By contrast, we find evidence suggesting that a combination of adaptation and phylogenetic inertia best explains the correlated evolution of flight and genome-size contraction. These results suggest that small genome/cell size evolved prior to or concurrently with flight in pterosaurs. We predict that, similar to the pattern seen in theropod dinosaurs, genome-size contraction preceded flight in pterosaurs and bats.  相似文献   

7.
In recent years the hypothesis that pterosaurs were the major sister-group of dinosaurs and a closely-linked hypothesis that pterosaurs evolved flight from the ground up have gained general acceptance. A cladistic analysis of the Archosauromorpha using characters presented by previous workers results in a single most parsimonious tree with the Pterosauria as the major sister-group of the Dinosauria. However, that sister-group relationship is supported only by a suite of hindlimb characters that are correlated with bipedal digitigrade locomotion in dinosaurs. In pterosaurs the characters have been interpreted as correlates of bipedal cursorial locomotion, arboreal leaping, or involvement of the hindlimb in the wing. The homology of those characters in dinosaurs and pterosaurs cannot be supported. Reanalysis of the data after exclusion of those hindlimb characters results in most parsimonious trees with the Pterosauria as the sister-group of the Erythrosuchidae + Proterochampsidae + Euparkeria + Archosauria, in that order. This sister-group relationship is supported by a diverse assemblage of functionally independent skeletal characters from all regions of the skeleton. The results of the analysis cast doubt on the hypothesis that pterosaurs evolved flight from the ground up.  相似文献   

8.
On the basis of a well‐preserved pelvis of Anhanguera sp. from the Lower Cretaceous (Aptian) of the Chapada do Araripe, Brazil, the problem of terrestrial locomotion in pterosaurs is discussed. A three‐dimensional reconstruction of the pelvis led to a lateral, dorsal and posterior orientation of the acetabula. By use of the preserved proximal ends of the femora of the same individual, the articulation in the hip socket could be tested. The normal articulation of the femur resulted in a horizontal position of the femur shaft, probably during flight. For constructional reasons the femur could not be brought down to a vertical position. Therefore, a parasagittal swing of the femora necessary for a bird‐like stance and gait must have been impossible. It is suggested that in pterosaurs the wing membrane was attached to the upper leg, which helped in stretching, steering and cambering.

Moreover, on the basis of comparisons of the fossil preservation of pterosaurs Compsognathus and Archaeopteryx in the Solnhofen limestone, it is concluded that the femora of pterosaurs were splayed out laterally, and that they had a semi‐erect gait. They were not bipedal animals, but had to use their fore limbs as well on the ground. Nevertheless, as vertebrates extremely adapted to flight, they could not have been able quadrupeds, either.  相似文献   

9.
The limb proportions of the extinct flying pterosaurs were clearly distinct from their living counterparts, birds and bats. Within pterosaurs, however, we show that further differences in limb proportions exist between the two main groups: the clade of short-tailed Pterodactyloidea and the paraphyletic clades of long-tailed rhamphorhynchoids. The hindlimb to forelimb ratios of rhamphorhynchoid pterosaurs are similar to that seen in bats, whereas those of pterodactyloids are much higher. Such a clear difference in limb ratios indicates that the extent of the wing membrane in rhamphorhynchoids and pterodactyloids may also have differed; this is borne out by simple ternary analyses. Further, analyses also indicate that the limbs of Sordes pilosus, a well-preserved small taxon used as key evidence for inferring the extent and shape of the wing membrane in all pterosaurs, are not typical even of its closest relatives, other rhamphorhynchoids. Thus, a bat-like extensive hindlimb flight membrane, integrated with the feet and tail may be applicable only to a small subset of pterosaur diversity. The range of flight morphologies seen in these extinct reptiles may prove much broader than previously thought.  相似文献   

10.
Kevin Padian 《Ichnos》2013,20(2-4):115-126
The tracks ascribed to pterosaurs from the Late Jurassic limestones at Crayssac, France, must be pterosaurian because the manus prints are so far outside those of the pes, the pes print is four times longer than wide, and the manus prints appear to preserve distinct traces of a posteromedially directed wing-finger. These tracks are different in important ways from previously described Pteraichnus trackways, which have been variably considered pterosaurian, crocodilian, or indeterminate. No Pteraichnus (sensu stricto: those not from Crayssac) tracks have diagnostic features of pterosaurs and in none can a complete phalangeal or digital formula be reconstructed; however, all published Pteraichnidae tracks fulfill the criteria of poor preservation, and some have some diagnostic features of crocodile tracks. Reconstructions of pterosaurs walking in pteraichnid tracks do not fit those tracks well, but crocodiles do. In contrast, the Crayssac tracks demonstrate the erect stance and parasagittal gait previously reconstructed for pterosaurs. They also demonstrate that the footfall pattern was not as in typical reptiles (LH-RF-RH-LF), but that the manus must have been raised before the next forward step of the ipselateral foot (LH-LF-RH-RF), suggesting that the quadrupedal pattern was secondary. The metatarsus in pterosaurs was set low at the beginning of a stride, as it is in crocodilians and basal dinosaurs. The diagnosis of the Ichnofamily Pteraichnidae comprises features of possible crocodilian trackmakers, but not of possible pterosaurian trackmakers. Trackways considered for attribution to pterosaurs should show (1) manus prints up to three interpedal widths from midline of body, and always lateral to pes prints, (2) pes prints four times longer than wide at the metatarso-phalangeal joint, and (3) penultimate phalanges longest among those of the pes.  相似文献   

11.
Disparity, or morphological diversity, is often quantified by evolutionary biologists investigating the macroevolutionary history of clades over geological timescales. Disparity is typically quantified using proxies for morphology, such as measurements, discrete anatomical characters, or geometric morphometrics. If different proxies produce differing results, then the accurate quantification of disparity in deep time may be problematic. However, despite this, few studies have attempted to examine disparity of a single clade using multiple morphological proxies. Here, as a case study for this question, we examine the disparity of the volant Mesozoic fossil reptile clade Pterosauria, an intensively studied group that achieved substantial morphological, ecological and taxonomic diversity during their 145+ million-year evolutionary history. We characterize broadscale patterns of cranial morphological disparity for pterosaurs for the first time using landmark-based geometric morphometrics and make comparisons to calculations of pterosaur disparity based on alternative metrics. Landmark-based disparity calculations suggest that monofenestratan pterosaurs were more diverse cranially than basal non-monofenestratan pterosaurs (at least when the aberrant anurognathids are excluded), and that peak cranial disparity may have occurred in the Early Cretaceous, relatively late in pterosaur evolution. Significantly, our cranial disparity results are broadly congruent with those based on whole skeleton discrete character and limb proportion data sets, indicating that these divergent approaches document a consistent pattern of pterosaur morphological evolution. Therefore, pterosaurs provide an exemplar case demonstrating that different proxies for morphological form can converge on the same disparity signal, which is encouraging because often only one such proxy is available for extinct clades represented by fossils. Furthermore, mapping phylogeny into cranial morphospace demonstrates that pterosaur cranial morphology is significantly correlated with, and potentially constrained by, phylogenetic relationships.  相似文献   

12.
Three vertebrate groups – birds, bats and pterosaurs – have evolved flapping flight over the past 200 million years. This innovation allowed each clade access to new ecological opportunities, but did the diversification of one of these groups inhibit the evolutionary radiation of any of the others? A related question is whether having the wing attached to the hindlimbs in bats and pterosaurs constrained their morphological diversity relative to birds. Fore‐ and hindlimb measurements from 894 specimens were used to construct a morphospace to assess morphological overlap and range, a possible indicator of competition, among the three clades. Neither birds nor bats entered pterosaur morphospace across the Cretaceous–Paleogene (Tertiary) extinction. Bats plot in a separate area from birds, and have a significantly smaller morphological range than either birds or pterosaurs. On the basis of these results, competitive exclusion among the three groups is not supported.  相似文献   

13.
Animals that fly must be able to do so over a huge range of aerodynamic conditions, determined by weather, wind speed and the nature of their environment. No single parameter can be used to determine-let alone measure-optimum flight performance as it relates to wing shape. Reconstructing the wings of the extinct pterosaurs has therefore proved especially problematic: these Mesozoic flying reptiles had a soft-tissue membranous flight surface that is rarely preserved in the fossil record. Here, we review basic mechanical and aerodynamic constraints that influenced the wing shape of pterosaurs, and, building on this, present a series of theoretical modelling results. These results allow us to predict the most likely wing shapes that could have been employed by these ancient reptiles, and further show that a combination of anterior sweep and a reflexed proximal wing section provides an aerodynamically balanced and efficient theoretical pterosaur wing shape, with clear benefits for their flight stability.  相似文献   

14.
Abstract Although pterosaurs are a well‐known lineage of Mesozoic flying reptiles, their fossil record and evolutionary dynamics have never been adequately quantified. On the basis of a comprehensive data set of fossil occurrences correlated with taxon‐specific limb measurements, we show that the geological ages of pterosaur specimens closely approximate hypothesized patterns of phylogenetic divergence. Although the fossil record has expanded greatly in recent years, collectorship still approximates a sigmoid curve over time as many more specimens (and thus taxa) still remain undiscovered, yet our data suggest that the pterosaur fossil record is unbiased by sites of exceptional preservation (lagerstätte). This is because as new species are discovered the number of known formations and sites yielding pterosaur fossils has also increased – this would not be expected if the bulk of the record came from just a few exceptional faunas. Pterosaur morphological diversification is, however, strongly age biased: rarefaction analysis shows that peaks of diversity occur in the Late Jurassic and Early Cretaceous correlated with periods of increased limb disparity. In this respect, pterosaurs appear unique amongst flying vertebrates in that their disparity seems to have peaked relatively late in clade history. Comparative analyses also show that there is little evidence that the evolutionary diversification of pterosaurs was in any way constrained by the appearance and radiation of birds.  相似文献   

15.
The flight of pterosaurs and the extreme sizes of some taxa have long perplexed evolutionary biologists. Past reconstructions of flight capability were handicapped by the available aerodynamic data, which was unrepresentative of possible pterosaur wing profiles. I report wind tunnel tests on a range of possible pterosaur wing sections and quantify the likely performance for the first time. These sections have substantially higher profile drag and maximum lift coefficients than those assumed before, suggesting that large pterosaurs were aerodynamically less efficient and could fly more slowly than previously estimated. In order to achieve higher efficiency, the wing bones must be faired, which implies extensive regions of pneumatized tissue. Whether faired or not, the pterosaur wings were adapted to low-speed flight, unsuited to marine style dynamic soaring but adapted for thermal/slope soaring and controlled, low-speed landing. Because their thin-walled bones were susceptible to impact damage, slow flight would have helped to avoid injury and may have contributed to their attaining much larger sizes than fossil or extant birds. The trade-off would have been an extreme vulnerability to strong or turbulent winds both in flight and on the ground, akin to modern-day paragliders.  相似文献   

16.
Patterns of postcranial skeletal pneumatization (PSP) indicate that pterosaurs possessed components of a bird-like respiratory system, including a series of ventilatory air-sacs. However, the presence of PSP in the oldest known pterosaurs has not been unambiguously demonstrated by previous studies. Here we provide the first unequivocal documentation of PSP in Late Triassic and earliest Jurassic pterosaurs. This demonstrates that PSP and, by inference, air-sacs were probably present in the common ancestor of almost all known pterosaurs, and has broader implications for the evolution of respiratory systems in bird-line archosaurs, including dinosaurs.  相似文献   

17.
The body mass of extinct animals have never been estimated from footprints, despite its potential utility. To redeem this situation, the relationship between body mass and the areas of footprints was derived from 17 species of modern tetrapods. Body mass of seven ichnospecies of pterosaur tracks were estimated, because pterosaur body weight is an intriguing topic with reference to their flying ability. Estimated body weights of pterosaurs range from 110 g to 145 kg. The result provides evidence that large pterosaurs are about 10 times heavier than the heaviest modern bird.  相似文献   

18.
The remarkable extinct flying reptiles, the pterosaurs, show increasing body size over 100 million years of the Late Jurassic and Cretaceous, and this seems to be a rare example of a driven trend to large size (Cope's Rule). The size increases continue throughout the long time span, and small forms disappear as larger pterosaurs evolve. Mean wingspan increases through time. Examining for Cope's Rule at a variety of taxonomic levels reveals varying trends within the Pterosauria as a whole, as pterodactyloid pterosaurs increase in size at all levels of examination, but rhamphorhynchoid pterosaurs show both size increase and size decrease in different analyses. These results suggest that analyses testing for Cope's Rule at a single taxonomic level may give misleading results.  相似文献   

19.
Air Space Proportion (ASP) is a measure of how much air is present within a bone, which allows for a quantifiable comparison of pneumaticity between specimens and species. Measured from zero to one, higher ASP means more air and less bone. Conventionally, it is estimated from measurements of the internal and external bone diameter, or by analyzing cross-sections. To date, the only pterosaur ASP study has been carried out by visual inspection of sectioned bones within matrix. Here, computed tomography (CT) scans are used to calculate ASP in a small sample of pterosaur wing bones (mainly phalanges) and to assess how the values change throughout the bone. These results show higher ASPs than previous pterosaur pneumaticity studies, and more significantly, higher ASP values in the heads of wing bones than the shaft. This suggests that pneumaticity has been underestimated previously in pterosaurs, birds, and other archosaurs when shaft cross-sections are used to estimate ASP. Furthermore, ASP in pterosaurs is higher than those found in birds and most sauropod dinosaurs, giving them among the highest ASP values of animals studied so far, supporting the view that pterosaurs were some of the most pneumatized animals to have lived. The high degree of pneumaticity found in pterosaurs is proposed to be a response to the wing bone bending stiffness requirements of flight rather than a means to reduce mass, as is often suggested. Mass reduction may be a secondary result of pneumaticity that subsequently aids flight.  相似文献   

20.
Examples of four types of pathologies have been found on specimens of large pterodactyloid pterosaurs. Osteoarthritis of the intersyncarpal, carpometacarpal, or metacarpophalangeal joints, indicated by grooving of the articular surfaces in the direction of joint motion, is present on at least four pterosaur specimens from the Cambridge Greensand. This pathology has not been found in Pteranodon despite comparably large samples of specimens. Pteranodon most commonly exhibits deformed bones and lumps apparently resulting from injury, necrosis, and subsequent repair. A small number of pathological bone growths apparently not associated with injuries were found, as were healed fractures of a fourth wing phalanx and a pedal phalanx. The absence of healed fractures of other elements suggests that they were either uncommon or catastrophic and fatal. This study suggests that pathologies were not uncommon in large pterosaurs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号