首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The outgrowth of neurites from rat PC12 cells stimulated by combined treatment of nerve growth factor (NGF) with cAMP is significantly more rapid and extensive than the outgrowth induced by either factor alone. We have compared the responses of PC12 cells under three different growth conditions, NGF alone, cAMP alone, and combined treatment, with respect to surface morphology, rapidity of neurite outgrowth, and stability of neurite microtubules, to understand the synergistic action of NGF and cAMP on PC12. Surface events at early times in these growth conditions varied, suggesting divergent pathways of action of NGF and cAMP. This suggestion is strongly supported by the finding that cells exposed to saturating levels of dibutyryl cAMP without substantial neurite outgrowth initiated neurites within 5 min of NGF. This response has been adopted as a convenient assay for NGF. Neurites that regenerated in the three growth conditions showed marked differences in stability to treatments that depolymerize microtubules. The results indicate that microtubules in cells treated with both NGF and cAMP are significantly more stable than in either growth factor alone. We suggest that a shift of the assembly equilibrium favoring tubulin assembly is a necessary prerequisite for the initiation of neurites by PC12.  相似文献   

2.
Dibutyryl cyclic AMP (DBC) and Nerve Growth Factor (NGF) have both been shown to enhance in vitro neuronal maturation in embryonic sensory ganglia. Since microfilaments and microtubules are known to be involved in neurite elongation, embryonic chick dorsal root ganglia have been treated with cytochalasin B and colcemid in the presence of these growth promoters (DBC or NGF). Established 48-hr cultures show drastic neurite retraction when treated with either inhibitor. The treatment of cultures with DBC or NGF in the presence of colcemid reverses the inhibitive effects and normal elongation occurs. The growth stimulators, however, are unable to effectively reverse the action of cytochalasin B. These data suggest that increased microtubule assembly is involved in DBC and NGF stimulation of neurite elongation, and hence provide further support for the suggestion that cyclic AMP mediates some of the actions of NGF.  相似文献   

3.
The effect of cyclic AMP (cAMP) analogs and phosphodiesterase (PDE) inhibitors on neurite outgrowth was studied in explant cultures of olfactory neurons. Nasal pits from 5- or 6-day-old chick embryos were minced, explanted into culture dishes, and grown in a serum-free medium. One of the cyclic AMP analogs, dibutyryl cyclic AMP (dbcAMP) or 8-bromo-cyclic AMP (8-Br-cAMP), or one of the PDE inhibitors, theophylline or isobutylmethylxanthine (IBMX), was added to the culture medium. The explants were examined for neurite outgrowth after 2 days in vitro. Db-cAMP increased the number of explants expressing neurites by 25-35% over control cultures, whereas 8-Br-cAMP had essentially no effect at the same concentrations. Addition of dibutyryl cyclic GMP (dbcGMP) gave no increase in neurite outgrowth, thus indicating that the effect of enhancing neuritic growth is specific to cAMP and not cyclic nucleotides in general. The resulting increase in neurite outgrowth is due to the cyclic nucleotide component of dbcAMP, since both IBMX and theophylline, which elevate intracellular cAMP, also increased neurite outgrowth significantly. When forskolin was added to the culture medium, there was a trend to increased neurite outgrowth; this was significantly enhanced when a subthreshold concentration of theophylline was added in addition to the forskolin.  相似文献   

4.
Cells of the rat pheochromocytoma line PC12 cease proliferation and develop neurites in response to nerve growth factor (NGF). Quantification of beta and gamma isoforms of nonmuscle actin in extracts of these differentiating cells showed that the beta:gamma ratio decreased from 1.30 +/- 0.05 to 0.99 +/- 0.05 after 6 days of NGF treatment. Cells treated with N6,O2-dibutyryl cyclic AMP (dbcAMP) also showed a shift in the ratio of beta:gamma isoforms, although few of these cells extended neurites. Administration of dbcAMP or both NGF and dbcAMP to cells accelerated the decrease in the beta:gamma actin isoform ratio relative to treatment with NGF alone. Those cells treated with both NGF and dbcAMP also showed an accelerated rate of neurite outgrowth. Suspension-grown PC12 cells treated with NGF showed neither an isoform ratio decrease nor neurite development. Our results suggest that either cyclic AMP may be a "second messenger" for NGF or it may effect the isoform ratio change by an independent mechanism. In addition, our data demonstrate an alteration in actin isoform expression, which accompanies the morphological differentiation of PC12 cells.  相似文献   

5.
We have previously shown that amitriptyline, a tricyclic antidepressant, inhibited neurite outgrowth from chick embryonic cerebral explants, and that dibutyryl cyclic AMP, 3-isobutyl-1-methylxanthine, or theophylline can enhance neurite outgrowth from embryonic olfactory explants. In the present study, we examined the mechanism(s) underlying amitriptyline-mediated inhibition of neurite outgrowth by studying the effects of amitriptyline on adenylate cyclase activity and cyclic AMP levels. In cultured chick embryonic cerebral explants, dibutyryl cyclic AMP or theophylline, but not dibutyryl cyclic GMP, enhanced neurite outgrowth and partially reduced the inhibitory effects of amitriptyline on neurite outgrowth. Explants treated with amitriptyline for 2 days showed decreased cyclic AMP levels that significantly correlated with the degree of neurite outgrowth. Amitriptyline inhibited both basal and forskolin-stimulated adenylate cyclase activity in vitro, but only in the presence of GTP. Taken together, these data suggest that amitriptyline inhibits the activity of adenylate cyclase via a GTP-dependent mechanism, and that the subsequent decrease in cyclic AMP level may be involved in amitriptyline-mediated inhibition of neurite outgrowth.  相似文献   

6.
Nerve growth factor (NGF) induced the activities of acetylcholinesterase (AChE) and Na+,K+-ATPase concomitant with neurite outgrowth in PC12h cells, while dibutyryl cyclic AMP (DBcAMP) caused the induction of AChE activity and neurite outgrowth but not Na+,K+-ATPase activity. A nonproteinaceous extract isolated from the inflamed skin of rabbits inoculated with vaccinia virus (Neurotropin) induced neurite outgrowth and cell surface change similar to NGF without affecting AChE activity. The results suggest that NGF, DBcAMP and Neurotropin act on PC12h cells through different mechanisms.  相似文献   

7.
During dibutyryl cyclic AMP (dbcAMP)-mediated differentiation, axonal neurites elaborated by mouse NB2a/d1 neuroblastoma cells are initially colchicine-labile but attain colchicine-stability after 7 days. To examine whether or not differences in tubulin subunit turnover could account for the development of colchicine-stability, anti-tubulin antibodies were delivered into NB2a/d1 cells at various times during dbcAMP-mediated neurite outgrowth. These antibodies prevented initial neurite elaboration, and induced neurite retraction in cells treated with dbcAMP for up to 3 days, but did not induce neurite retraction for cells treated for 7 days. We conclude that a less dynamic, more slowly-turning over population of microtubules develops within neurites of cells treated with dbcAMP for 7 days.  相似文献   

8.
We present evidence that the survival of PC12 cells exposed to hydroxyl radicals generated by hydrogen peroxide applied for 30 min at 1 mM was effective when they were differentiated in response to Nerve Growth Factor (NGF) and/or other inducers of neurite outgrowth such as basic-fibroblast growth factor and dibutyryl cyclic AMP. The time- and dose-dependent differentiation triggered by NGF was (1) markedly increased by basic fibroblast growth factor, interleukin-6 or dibutyryl cyclic AMP; (2) diminished by leukemia inhibitory factor or ciliary neurotrophic factor; (3) not potentiated by insulin-like growth factor I or progesterone. The influence of these various factors and agents on PC12 cells was evaluated by the estimation of neurite outgrowth, whereas their possible protective effects were assessed by the measurement of cell survival. Our results would indicate that the factors and agents that induced differentiation were also able to protect the cells against an oxidative stress.  相似文献   

9.
We report here that basic fibroblast growth factor (bFGF)-elicited neurite outgrowth in PC12 cells is potentiated by dibutyryl cyclic adenosine monophosphate (dbcAMP) or forskolin. This property was also described for nerve growth factor (NGF), suggesting that both NGF and bFGF may share common intracellular events leading to neurite outgrowth and synergism with dbcAMP and forskolin. The synergistic effect of dbcAMP and forskolin is specific, since treatment of PC12 cells with bFGF and dibutyryl cyclic guanosine monophosphate (dbcGMP) or phorbol ester did not change the neurite outgrowth response of cells treated with bFGF alone. Furthermore, neurite outgrowth depends on cellular adhesion. Increasing adhesion by plate treatment with poly-d-lysine increases the neurite outgrowth elicited by bFGF alone or bFGF plus dbcAMP. On the other hand, decreasing cellular adhesiveness by plating PC12 cells in semi-solid agarose renders the cells unable to develop neuritic processes. In addition, 3H-methylthymidine incorporation studies showed that bFGF-treated PC12 cells cease growth only when they become fully differentiated after 3-5 days of treatment. In contrast, dbcAMP, which is a poor differentiation factor, is able to block cellular growth after 24 hour treatment. These results suggest that when PC12 cells become differentiated, they stop growing. However, growth inhibition does not necessarily lead to differentiation.  相似文献   

10.
11.
This report describes the influence of neurite fasciculation on two aspects of nerve growth from chick spinal ganglia in vitro: the inhibition of outgrowth by high concentrations of nerve growth factor (NGF) and the preferential growth of neurites toward a capillary tube containing NGF. These studies involved a comparison of cultures of single cells, cell aggregates, and intact ganglia and the use of antibodies against the nerve cell adhesion molecule (CAM) to perturb fasciculation under a variety of conditions. The inhibition of outgrowth, which was observed with ganglia and aggregates but not with single cells, was correlated with a thickening of neurite fascicles. In accord with this observation, anti-CAM, which diminishes fasciculation by inhibiting side-to-side interactions between individual neurites, also partially reversed the inhibition of neurite outgrowth at high NGF concentrations. On the basis of these and other studies, we consider the possibility that neurite bundling causes an increase in the elastic tension of a fascicle without a compensatory increase in its adhesion to substratum. It is proposed that this imbalance could inhibit neurites from growing out from a ganglion and even result in retraction of preexisting outgrowth. In the analysis of NGF-directed growth, it was found that a capillary source of NGF produced a steep but transient NGF gradient that subsided before most neurites had emerged from the ganglion. Nevertheless, the presence of a single NGF capillary caused a dramatic and persistent asymmetry in the outgrowth of neurites from ganglia or cell aggregates. In contrast, processes of individual cells did not appear to orient themselves toward the capillary. The most revealing finding was that anti-CAM antibodies caused a decrease in the asymmetry of neurite outgrowth. These results suggest that side-to-side interactions among neurites can influence the guidance of nerve bundles by sustaining and amplifying an initial directional signal.  相似文献   

12.
Several groups have shown that PC12 will extend microtubule-containing neurites on extracellular matrix (ECM) with no lag period in the absence of nerve growth factor. This is in contrast to nerve growth factor (NGF)-induced neurite outgrowth that occurs with a lag period of several days. During this lag period, increased synthesis or activation of assembly-promoting microtubule-associated proteins (MAPs) occurs and is apparently required for neurite extension. We investigated the growth and microtubule (MT) content of PC12 neurites grown on ECM in the presence or absence of inhibitors of neurite outgrowth. On ECM, neurites of cells with or without prior exposure to NGF contain a normal density of MTs, but frequently contain unusual loops of MTs in their termini that may indicate increased MT assembly. On ECM, neurites extend from PC12 cells in the presence of 10 microM LiCl at significantly higher frequency than on polylysine. On other substrates, LiCl inhibits neurite outgrowth, apparently by inhibiting phosphorylation of particular MAPs (Burstein, D. E., P. J. Seeley, and L. A. Greene. 1985. J. Cell Biol. 101:862-870). Although 35-45% of 60 Li(+)-neurites examined were found to contain a normal array of MTs, 25-30% were found to have a MT density approximately 15% of normal. The remaining 30% of these neurites were found to be nearly devoid of MTs, containing only occasional, ambiguous, short tubular elements. We also found that neurites would extend on ECM in the presence of the microtubule depolymerizing drug, nocodazole. At 0.1 micrograms/ml nocodazole, cells on ECM produce neurites that contain a normal density of MTs. This is in contrast to the lack of neurite outgrowth and retraction of extant neurites that this dose produces in cells grown on polylysine. At 0.2 microgram/ml nocodazole, neurites again grew out in substantial number and four of five neurites examined ultrastructurally were found to be completely devoid of microtubules. We interpret these results by postulating that growth on ECM relieves the need for MTs to serve as compressive supports for neurite tension (Dennerll, T. J., H. C. Joshi, U. L. Steel, R. E. Buxbaum, and S. R. Heidemann. 1988. J. Cell Biol. 107:665). Because compression destabilizes MTs and favors disassembly, this would tend to increase MT assembly relative to other conditions, as we found. Additionally, if MTs are not needed as compressive supports, neurites could grow out in their absence, as we also observed.  相似文献   

13.
Mouse NB2a/dl neuroblastoma cells elaborate axonal neurites in response to various chemical treatments including dibutyryl cyclic AMP and serum deprivation. Hirudin, a specific inhibitor of thrombin, initiated neurite outgrowth in NB2a/dl cells cultured in the presence of serum; however, these neurites typically retracted within 24 h. The cysteine protease inhibitors leupeptin and N-acetyl-leucyl-leucyl-norleucinal (CI; preferential inhibitor of micromolar calpain but also inhibits millimolar calpain) at 10(-6) M considerably enhanced neurite outgrowth induced by serum deprivation, but could not induce neuritogenesis in the presence of serum. A third cysteine protease inhibitor, N-acetyl-leucyl-leucyl-methional (CII; preferential inhibitor of millimolar calpain but also inhibits micromolar calpain), had no detectable effects by itself. Cells treated simultaneously with hirudin and either leupeptin, CI, or CII elaborated stable neurites in the presence of serum. Cell-free enzyme assays demonstrated that hirudin inhibited thrombin but not calpain, CI and CII inhibited calpain but not thrombin, and leupeptin inhibited both proteases. These results imply that distinct proteolytic events, possibly involving more than one protease, regulate the initiation and subsequent elongation and stabilization of axonal neurites. Since the addition of exogenous thrombin or calpain to serum-free medium did not modify neurite outgrowth, the proteolytic events affected by these inhibitors may be intracellular or involve proteases distinct from thrombin or calpain.  相似文献   

14.
《The Journal of cell biology》1985,101(5):1799-1807
Nerve growth factor (NGF) regulates the microtubule-dependent extension and maintenance of axons by some peripheral neurons. We show here that one effect of NGF is to promote microtubule assembly during neurite outgrowth in PC12 cells. Though NGF causes an increase in total tubulin levels, the formation of neurites and the assembly of microtubules follow a time course completely distinct from that of the tubulin induction. The increases in microtubule mass and neurite extension closely parallel 10- and 20-fold inductions of tau and MAP1, proteins shown previously to promote microtubule assembly in vitro. When NGF is removed from PC12 cells, neurites disappear, microtubule mass decreases, and both microtubule-associated proteins return to undifferentiated levels. These data suggest that the induction of tau and MAP1 in response to NGF promotes microtubule assembly and that these factors are therefore key regulators of neurite outgrowth.  相似文献   

15.
The effects of nerve growth factor (NGF) and dibutyryl cyclic AMP (DBC) on the density of cytoskeletal structures in cultured dorsal root ganglia were examined using morphometric techniques. After 24 hr in culture, NGF-treated neurites were longer than either DBC-treated or control neurites. At 48 hr, neurites produced in response to NGF and DBC were of equivalent length, while controls were considerably shorter. Comparison of electron micrographs of neuritic profiles revealed some differences of area and cytoskeletal density between treatment groups. Morphometric analysis was used to determine these differences under several growth conditions, at various rates of elongation and at different neurite lengths. As shown by analysis of variance, both NGF-treated and control neurites tapered in diameter at 48 hr in vitro, while DBC-induced neurites increased in area. An increase in cytoskeletal density for all treatment groups indicated that density was not always correlated with changes in area. An increased density of microtubules as compared to neurofilaments was seen at 24 hr, with equal densities of both cytoskeletal elements present after 48 hr in vitro. Comparisons between individual groups of data indicated that NGF-treated neurites relied primarily on microtubular density at 24 hr in vitro, when NGF induced longer, faster growing neurites. At 48 hr, there was an increase in neurofilaments proximal to the explant in the presence of DBC, implying that DBC may cause increased synthesis and/or transport of these structures. A comparison of microtubule to neurofilament ratios indicated that at 24 hr, there was always a greater density of microtubules. However, after 48 hr, neurofilament density increased such that there were equivalent densities of both cytoskeletal elements, possibly due to the overall increase in length observed in each treatment group. These data imply that 1) neurites with different rates of elongation may exhibit differences in cytoskeletal density; 2) neurites of equivalent lengths may be of differing stabilities; 3) NGF and DBC produce neurites with different cytoskeletal densities, implying divergent mechanisms of neurite induction; 4) the presence or absence of NGF may be partially responsible for variations in cytoskeletal densities observed between peripheral and central processes of DRG during development.  相似文献   

16.
17.
High levels of the neuron-specific protein kinase C substrate, B-50 (= GAP43), are present in neurites and growth cones during neuronal development and regeneration. This suggests a hitherto nonelucidated role of this protein in neurite outgrowth. Comparable high levels of B-50 arise in the pheochromocytoma PC12 cell line during neurite formation. To get insight in the putative growth-associated function of B-50, we compared its ultrastructural localization in naive PC12 cells with its distribution in nerve growth factor (NGF)- or dibutyryl cyclic AMP (dbcAMP)-treated PC12 cells. B-50 immunogold labeling of cryosections of untreated PC12 cells is mainly associated with lysosomal structures, including multivesicular bodies, secondary lysosomes, and Golgi apparatus. The plasma membrane is virtually devoid of label. However, after 48-h NGF treatment of the cells, B-50 immunoreactivity is most pronounced on the plasma membrane. Highest B-50 immunoreactivity is observed on plasma membranes surrounding sprouting microvilli, lamellipodia, and filopodia. Outgrowing neurites are scattered with B-50 labeling, which is partially associated with chromaffin granules. In NGF-differentiated PC12 cells, B-50 immunoreactivity is, as in untreated cells, also associated with organelles of the lysosomal family and Golgi stacks. B-50 distribution in dbcAMP-differentiated cells closely resembles that in NGF-treated cells. The altered distribution of B-50 immunoreactivity induced by differentiating agents indicates a shift of the B-50 protein towards the plasma membrane. This translocation accompanies the acquisition of neuronal features of PC12 cells and points to a neurite growth-associated role for B-50, performed at the plasma membrane at the site of protrusion.  相似文献   

18.
Abstract: Nerve growth factor (NGF) and dibutyryl cyclic AMP (dbcAMP) have synergistic effects on the neurite outgrowth of rat pheochromocytoma PC12 cells. The sites of interaction between NGF and dbcAMP have been studied extensively; however, the role of Ca2+ in differentiation induced by the two agents remains unclear. To understand whether intracellular Ca2+ is involved in the differentiation induced by the two agents, PC12 cells were treated with NGF, dbcAMP, or NGF plus dbcAMP for 2 days, and then effects on neurite outgrowth, ATP-induced Ca2+ influx, and Ca2+ mobilization from intracellular Ca2+ pools were examined. NGF or dbcAMP alone enhanced neurite outgrowth and Ca2+ accumulation by nonmitochondrial Ca2+ pools or the thapsigargin (TG)-sensitive Ca2+ pool. The dbcAMP acted synergistically with NGF to increase neurite outgrowth and to enlarge the TG-sensitive Ca2+ pool. The synergistic effect occurred within the first hour of treatment with dbcAMP plus NGF. On the other hand, dbcAMP abolished NGF's ability to enhance ATP-induced influx of extracellular Ca2+. Therefore, NGF and dbcAMP induced different effects on Ca2+ signaling pathways through two different but interacting pathways. In PC12 cells pretreated with TG to deplete the TG-sensitive Ca2+ pool, the dbcAMP- or dbcAMP plus NGF-mediated neurite outgrowth was significantly inhibited, whereas NGF-mediated neurite outgrowth was not affected by TG pretreatment. Our results suggest that the intracellular nonmitochondrial Ca2+ pools were changed in the differentiation process and were necessary for the synergistic effect of NGF and dbcAMP.  相似文献   

19.
20.
Morphological and biochemical parameters of neuroblastoma differentiation were assessed in 12 clonal derivatives of the N-18 mouse neuroblastoma cell line selected for their ouabain-resistant (ouar) property. When cultured in a normal growth medium, nine of the 12 ouar cell lines exhibited a more complex pattern of neurite outgrowth than the parental N-18 cells. The morphological pattern most frequently observed with the ouar cells was the extension of several branched processes per cell. This pattern of spontaneous neurite outgrowth in the ouar cell lines can be correlated with an increase in expression of the 47,000-dalton RI cyclic AMP (cAMP)-binding protein. The growth rate, intracellular level of cAMP, and acetylcholinesterase activity of the ouar cell lines were not significantly different from those of the parental N-18 neuroblastoma cells. Treatment of the parental and ouar neuroblastoma cell lines with 1 mM N6, O2-dibutyryl cAMP promoted an elaborate pattern of neurite outgrowth and marked increases in acetylcholinesterase and RI cAMP-binding activities. The distinctive pattern of differentiation phenotype exhibited by the ouar cells and the dibutyryl cAMP-induced differentiated neuroblastoma cell suggests that these two protocols yielded different degrees of differentiation. Furthermore, our results suggest a linkage of the biochemical events underlying ouabain resistance and expression of differentiation phenotypes in the mouse neuroblastoma cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号