首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The dual-specificity MAPK phosphatase MKP-1/CL100/DUSP1 is an inducible nuclear protein controlled by p44/42 MAPK (ERK1/2) in a negative feedback mechanism to inhibit kinase activity. Here, we report on the molecular basis for a novel positive feedback mechanism to sustain ERK activation by triggering MKP-1 proteolysis. Active ERK2 docking to the DEF motif (FXFP, residues 339-342) of N-terminally truncated MKP-1 in vitro initiated phosphorylation at the Ser(296)/Ser(323) domain, which was not affected by substituting Ala for Ser at Ser(359)/Ser(364). The DEF and Ser(296)/Ser(323) sites were essential for ubiquitin-mediated MKP-1 proteolysis stimulated by MKK1-ERK signaling in H293 cells, whereas the N-terminal domain and Ser(359)/Ser(364) sites were dispensable. ERK activation by serum increased the endogenous level of ubiquitinated phospho-Ser(296) MKP-1 and the degradation of MKP-1. Intriguingly, active ERK-promoted phospho-Ser(296) MKP-1 bound to SCF(Skp2) ubiquitin ligase in vivo and in vitro. Forced expression of Skp2 enhanced MKP-1 polyubiquitination and proteolysis upon ERK activation, whereas depletion of endogenous Skp2 suppressed such events. The kinetics of ERK signaling stimulated by serum correlated with the endogenous MKP-1 degradation rate in a Skp2-dependent manner. Thus, MKP-1 proteolysis can be achieved via ERK and SCF(Skp2) cooperation, thereby sustaining ERK activation.  相似文献   

2.
Lower micromolar concentrations of peroxovanadium compound potassium bisperoxo(1,10-phenanthroline)oxovanadate (V) [bpV (phen)] stimulate RINm5F cell metabolic activity. 1 and 3 mol/L bpV (phen) induces strong and sustained activation of extracellular signal-regulated kinase (ERK). However, it seems that bpV (phen) does not effect c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) phosphorylation. In addition, bpV (phen) induces mitogen-activated protein kinase phosphatase-1 (MKP-1) expression. We found that ERK activation could be completely abolished if RINm5F cells were incubated with both bpV (phen) and PD 98059, a specific inhibitor of upstream ERK kinase MEK1. On the other hand, this combined treatment up-regulated activation of stress kinases, JNK and p38 MAPK, significantly suppressed MKP-1 expression and induced cell death. Thus, our results suggest that the mechanism underlying bpV (phen) survival-enhancing effect could be associated with induced ERK activation and MKP-1 expression.  相似文献   

3.
Rad51 protein is essential for homologous recombination repair of DNA damage, and is over-expressed in chemo- or radioresistant carcinomas. The polycyclic hydrocarbon carcinogen benzo[a]pyrene (B[a]P) affects MAPKs transduction pathways. Gefitinib (IressaR, ZD1839) is a selective epidermal growth factor receptor tyrosine kinase inhibitor that blocks growth factor-mediated cell proliferation and ERK1/2 activation. We hypothesized that gefitinib enhances B[a]P-mediated cytotoxicity by decreasing ERK1/2 activation. Exposure of human lung cancer cells to gefitinib decreased B[a]P-elicited ERK1/2 activation and induced Rad51 protein expression. Gefitinib and B[a]P co-treatment decreased Rad51 protein stability by triggering degradation via a 26S proteasome-dependent pathway. Expression of constitutive active MKK1/2 vectors (MKK1/2-CA) rescues the decreased ERK1/2 activity, and restores Rad51 protein level and stability under gefitinib and B[a]P co-treatment. Gefitinib enhances B[a]P-induced growth inhibition, cytotoxicity and mutagenicity. Co-treatment with gefitinib and B[a]P can further inhibit cell growth significantly after depletion of endogenous Rad51 by siRad51 RNA transfection. Enhancement of ERK1/2 activation by MKK1-CA expression decrease B[a]P- and gefitinib-induced cytotoxicity, and B[a]P-induced mutagenicity. Rad51 protein protects lung cancer cells from synergistic cytotoxic and mutagenic effects induced by gefitinib and B[a]P. Suppression of Rad51 protein expression may be a novel lung cancer therapeutic modality to overcome drug resistance to gefitinib.  相似文献   

4.
5.
Previous work has shown that inhibition of Jak2 via the pharmacological compound AG490 blocks the angiotensin II (Ang II)-dependent activation of ERK2, thereby suggesting an essential role of Jak2 in ERK activation. However, recent studies have thrown into question the specificity of AG490 and therefore the role of Jak2 in ERK activation. To address this, we reconstituted an Ang II signaling system in a Jak2-/-cell line and measured the ability of Ang II to activate ERK2 in these cells. Controls for this study were the same cells expressing Jak2 via the addition of a Jak2 expression plasmid. In the cells expressing Jak2, Ang II induced a marked increase in ERK2 activity as measured by Western blot analysis and in vitro kinase assays. ERK2 activity returned to basal levels within 30 min. However, in the cells lacking Jak2, Ang II treatment resulted in ERK2 activation that did not return to basal levels until 120 min after ligand addition. Analysis of phosphatase gene expression revealed that Ang II induced mitogen-activated protein kinase phosphatase 1 (MKP-1) expression in cells expressing Jak2 but failed to induce MKP-1 expression in cells lacking Jak2. Therefore, our results suggest that Jak2 is not required for Ang II-induced ERK2 activation. Rather Jak2 is required for Ang II-induced ERK2 inactivation via induction of MKP-1 gene expression.  相似文献   

6.
7.
MAP kinase-dependent phosphorylation processes have been shown to interfere with the degradation of the antiapoptotic protein Bcl-2. The cytosolic MAP kinase phosphatase MAP kinase phosphatase-3 (MKP-3) induces apoptosis of endothelial cells in response to tumor necrosis factor alpha (TNFalpha) via dephosphorylation of the MAP kinase ERK1/2, leading to Bcl-2 proteolysis. Here we report that the endothelial cell survival factor nitric oxide (NO) down-regulated MKP-3 by destabilization of MKP-3 mRNA. This effect of NO was paralleled by a decrease in MKP-3 protein levels. Moreover, ERK1/2 was found to be protected against TNFalpha-induced dephosphorylation by coincubation of endothelial cells with the NO donor. Subsequently, both the decrease in Bcl-2 protein levels and the mitochondrial release of cytochrome c in response to TNFalpha were largely prevented by exogenous NO. In cells overexpressing MKP-3, no differences in phosphatase activity in the presence or absence of NO were found, excluding potential posttranslational modifications of MKP-3 protein by NO. These data demonstrate that upstream of the S-nitrosylation of caspase-3, NO exerts additional antiapoptotic effects in endothelial cells, which rely on the down-regulation of MKP-3 mRNA.  相似文献   

8.
All-trans retinoic acid (RA) has been implicated in mediation of cardiac growth inhibition in neonatal cardiomyocytes. However, the associated signaling mechanisms remain unclear. Utilizing neonatal cardiomyocytes, we demonstrated that RA suppressed the hypertrophic features induced by cyclic stretch or angiotensin II (Ang II). Cyclic stretch- or Ang II-induced activation of extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (MAP kinase) was dose- and time-dependently inhibited by RA. Significant inhibition was observed by 5 microm RA, from 8 to 24 h of pretreatment. This inhibitory effect was not mediated at the level of mitogen-activated protein kinase kinases (MKKs), because RA had no effect on stretch- or Ang II-induced phosphorylation of MEK1/2, MKK4, and MKK3/6. However, the phosphatase inhibitor vanadate reversed the inhibitory effect of RA on MAP kinases and protein synthesis. RA up-regulated the expression level of MAP kinase phosphatase-1 (MKP-1) and MKP-2, and the time course was correlated with the inhibitory effect of RA on activation of MAP kinases. Overexpression of wild-type MKP-1 inhibited the phosphorylation of JNK and p38 in cardiomyocytes. These data indicated that MKPs were involved in the inhibitory effect of RA on MAP kinases. Using specific RAR and RXR antagonists, we demonstrated that both RARs and RXRs were involved in regulating stretch- or Ang II-induced activation of MAP kinases. Our findings provide the first evidence that the anti-hypertrophic effect of RA is mediated by up-regulation of MKPs and inhibition of MAP kinase signaling pathways.  相似文献   

9.
Emodin, a tyrosine kinase inhibitor, is a natural anthraquinone derivative found in the roots and rhizomes of numerous plants. It reportedly exhibits an anticancer effect on lung cancer. Gefitinib (Iressa) is a selective epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor for human non-small cell lung cancer (NSCLC). However, the molecular mechanism of how emodin combined with gefitinib decreases NSCLC cell viability is unclear. The recombinase protein Rad51 is essential for homologous recombination repair, and Rad51 overexpression is resistant to DNA double-strand break-inducing cancer therapies. In this study, we found that emodin enhanced the cytotoxicity induced by gefitinib in two NSCLC cells lines, A549 and H1650. Emodin at low doses of 2-10 μM did not affect ERK1/2 activation, mRNA, and Rad51 protein levels; however, it enhanced a gefitinib-induced decrease in phospho-ERK1/2 and Rad51 protein levels by enhancing Rad51 protein instability. Expression of constitutively active MKK1/2 vectors (MKK1/2-CA) significantly rescued the reduced phospho-ERK1/2 and Rad51 protein levels as well as cell viability on gefitinib and emodin cotreatment. Blocking of ERK1/2 activation by U0126 (an MKK1/2 inhibitor) lowered Rad51 protein levels and cell viability in emodin-treated H1650 and A549 cells. Knockdown of Rad51 expression by transfection with si-Rad51 RNA enhanced emodin cytotoxicity. In contrast, Rad51 overexpression protected the cells from the cytotoxic effects induced by emodin and gefitinib. Consequently, emodin-gefitinib cotreatment may serve as the basis for a novel and better therapeutic modality in the management of advanced lung cancer.  相似文献   

10.
Familial amyloidotic polyneuropathy (FAP) is a neurodegenerative disorder characterized by the extracellular deposition of transthyretin (TTR), especially in the PNS. Given the invasiveness of nerve biopsy, salivary glands (SG) from FAP patients were used previously in microarray analysis; mitogen-activated protein (MAP) kinase phosphatase 1 (MKP-1) was down-regulated in FAP. Results were validated by RT-PCR and immunohistochemistry both in SG and in nerve biopsies of different stages of disease progression. MKP-3 was also down-regulated in FAP SG biopsies. Given the relationship between MKPs and MAPKs, the latter were investigated. Only extracellular signal-regulated kinases 1/2 (ERK1/2) displayed increased activation in FAP SG and nerves. ERK1/2 kinase (MEK1/2) activation was also up-regulated in FAP nerves. In addition, an FAP transgenic mouse model revealed increased ERK1/2 activation in peripheral nerve affected with TTR deposition when compared to control animals. Cultured rat Schwannoma cell line treatment with TTR aggregates stimulated ERK1/2 activation, which was partially mediated by the receptor for advanced glycation end-products (RAGE). Moreover, caspase-3 activation triggered by TTR aggregates was abrogated by U0126, a MEK1/2 inhibitor, indicating that ERK1/2 activation is essential for TTR aggregates-induced cytotoxicity. Taken together, these data suggest that abnormally sustained activation of ERK in FAP may represent an early signaling cascade leading to neurodegeneration.  相似文献   

11.
Aplidin is an antitumor agent in phase II clinical trials that induces apoptosis through the sustained activation of Jun N-terminal kinase (JNK). We report that Aplidin alters glutathione homeostasis increasing the ratio of oxidized to reduced forms (GSSG/GSH). Aplidin generates reactive oxygen species and disrupts the mitochondrial membrane potential. Exogenous GSH inhibits these effects and also JNK activation and cell death. We found two mechanisms by which Aplidin activates JNK: rapid activation of Rac1 small GTPase and downregulation of MKP-1 phosphatase. Rac1 activation was diminished by GSH and enhanced by L-buthionine (SR)-sulfoximine, which inhibits GSH synthesis. Downregulation of Rac1 by transfection of small interfering RNA (siRNA) duplexes or the use of a specific Rac1 inhibitor decreased Aplidin-induced JNK activation and cytotoxicity. Our results show that Aplidin induces apoptosis by increasing the GSSG/GSH ratio, a necessary step for induction of oxidative stress and sustained JNK activation through Rac1 activation and MKP-1 downregulation.  相似文献   

12.
We have previously found that hypoxia stimulates proliferation of vascular fibroblasts through Galphai-mediated activation of ERK1/2. Here, we demonstrate that hypoxia also activates the atypical protein kinase Czeta (PKCzeta) isozyme and stimulates the expression of ERK1/2-specific phosphatase, MAP kinase phosphatase-1 (MKP-1), which attenuates ERK1/2-mediated proliferative signals. Replication repressor activity is unique to PKCzeta because the blockade of classical and novel PKC isozymes does not affect fibroblast proliferation. PKCzeta is phosphorylated upon prolonged (24 h) exposure to hypoxia, whereas ERK1/2, the downstream kinases, are maximally activated in fibroblasts exposed to acute (10 min) hypoxia. However, PKCzeta blockade results in persistent ERK1/2 phosphorylation and marked increase in hypoxia-induced replication. Similarly prolonged ERK1/2 phosphorylation and increase in hypoxia-stimulated proliferation are also observed upon blockade of MKP-1 activation. Because of the parallel suppressive actions of PKCzeta and MKP-1 on ERK1/2 phosphorylation and proliferation, the role of PKCzeta in the regulation of MKP-1 expression was evaluated. PKCzeta attenuation reduces MKP-1 expression, whereas PKCzeta overexpression increases MKP-1 levels. In conclusion, our results indicate for the first time that hypoxia activates PKCzeta, which acts as a terminator of ERK1/2 activation through the regulation of downstream target, MKP-1 expression and thus serves to limit hypoxia-induced proliferation of fibroblasts.  相似文献   

13.
Effects of MAP kinase cascade inhibitors on the MKK5/ERK5 pathway   总被引:24,自引:0,他引:24  
Mody N  Leitch J  Armstrong C  Dixon J  Cohen P 《FEBS letters》2001,502(1-2):21-24
Antibodies that recognise the active phosphorylated forms of mitogen-activated protein kinase (MAPK) kinase 5 (MKK5) and extracellular signal-regulated kinase 5 (ERK5) in untransfected cells have been exploited to show that the epidermal growth factor (EGF)-induced activation of MKK5 and ERK5 occurs subsequent to the activation of ERK1 and ERK2 in HeLa cells. The drugs U0126 and PD184352, which prevent the activation of MKK1 (and hence the activation of ERK1/ERK2), also prevent the activation of MKK5, although higher concentrations are required. Our studies define physiological targets of the MKK5/ERK5 pathway as proteins whose phosphorylation is largely prevented by 10 microM PD184352, but unaffected by 2 microM PD184352. Surprisingly, 2 microM PD184352 prolongs the activation of MKK5 and ERK5 induced by EGF or H(2)O(2), indicating negative control of the MKK5/ERK5 pathway by the classical MAPK cascade. Our results also indicate that ERK5 is not a significant activator of MAPK-activated protein kinase-1/RSK in HeLa cells.  相似文献   

14.
15.
We examined the signaling pathway by which hepatocyte growth factor (HGF) induces cell motility, with special focus on the role of extracellular signal-regulated kinase (ERK) in the nucleus. We used Madin-Darby canine kidney cells overexpressing ERK2 because of their prominent motility response to HGF. HGF stimulation of the cells induces not only a rapid, marked, and sustained activation and rapid nuclear accumulation of ERK1/2, but also a prolonged nuclear retention of the activated ERK1/2. Interruption of the ERK1/2 activation by PD98059 treatment of the cells 30 min after HGF stimulation abolishes the HGF-induced cell motility. Enforced cytoplasmic retention of the activated ERK1/2 by the expression of an inactive form of MKP-3 cytoplasmic phosphatase inhibits the cell motility response. Although epidermal growth factor stimulation of the cells induces the activation and nuclear accumulation of ERK1/2, it does not induce the prolonged nuclear retention of the activated ERK1/2, and fails to induce cell motility. In the nucleus, activated ERK1/2 continuously phosphorylate Elk-1, leading to the prolonged expression of c-fos, which results in the expression of several genes such as matrix metalloproteinase (mmp)-9; MMP-9 activity is required for the induction of the cell motility response. Our results indicate that the sustained activity of ERK1/2 in the nucleus is required for the induction of HGF-induced cell motility.  相似文献   

16.
The dual-specificity mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP-1) inactivates MAP kinases by dephosphorylation. Here we show that the proinflammatory cytokine interleukin (IL)-17A induces adult mouse primary cardiac fibroblast (CF) proliferation and migration via IL-17 receptor A//IL-17 receptor C-dependent MKP-1 suppression, and activation of p38 MAPK and ERK1/2. IL-17A mediated p38 MAPK and ERK1/2 activation is inhibited by MKP-1 overexpression, but prolonged by MKP-1 knockdown. IL-17A induced miR-101 expression via PI3K/Akt, and miR-101 inhibitor reversed MKP-1 down regulation. Importantly, MKP-1 knockdown, pharmacological inhibition of p38 MAPK and ERK1/2, or overexpression of dominant negative MEK1, each markedly attenuated IL-17A-mediated CF proliferation and migration. Similarly, IL-17F and IL-17A/F heterodimer that also signal via IL-17RA/IL-17RC, stimulated CF proliferation and migration. These results indicate that IL-17A stimulates CF proliferation and migration via Akt/miR-101/MKP-1-dependent p38 MAPK and ERK1/2 activation. These studies support a potential role for IL-17 in cardiac fibrosis and adverse myocardial remodeling.  相似文献   

17.
Ethanol metabolism plays a central role in activating the mitogen-activated protein kinase (MAPK) cascade leading to inflammation and apoptosis. Sustained activation of c-Jun N-terminal kinase (JNK), one of the MAPKs, has been shown to induce apoptosis in hepatocytes. MAPK phosphatase-1 (MKP-1) has been shown to dephosphorylate MAPKs in several cells. The aim of the study is to evaluate the role of MKP-1 in sustained JNK activation as a mechanism to explain ethanol-induced hepatocyte apoptosis. VL-17A cells (HepG2 cells overexpressing alcohol dehydrogenase and cytochrome P450-2E1) were exposed to ethanol for different time periods. Western blots were performed for MKP-1, phospho-JNK, phosphotyrosine, and protein kinase Cdelta (PKCdelta). Electrophoretic mobility shift assays for AP-1 were performed. Apoptosis was measured by caspase-3 activity assay, TUNEL, and 4',6-diamidino-2-phenylindole staining. Reactive oxygen species were neutralized by overexpressing both superoxide dismutase-3 and catalase genes using lentiviral vectors in VL-17A cells. Ethanol incubation markedly decreased the MKP-1 protein levels to 15% of control levels and was associated with sustained phosphorylation of p46 JNK and p54 JNK, as well as increased apoptosis. VL-17A cells overexpressing superoxide dismutase-3 and catalase, treatment with a tyrosine kinase inhibitor, or incubation of the cells with PKCdelta small interference RNAs significantly inhibited the ethanol-induced MKP-1 degradation and apoptosis. Ethanol-induced oxidative stress enhanced the tyrosine phosphorylation of PKCdelta, which in turn caused the proteasomal degradation of MKP-1, leading to sustained JNK activation and increased apoptosis in VL-17A cells.  相似文献   

18.
Mitogen-activated protein (MAP) kinase phosphatases (MKPs) are dual-specificity phosphatases that dephosphorylate phosphothreonine and phosphotyrosine residues within MAP kinases. Here, we describe a novel posttranslational mechanism for regulating MKP-3/Pyst1/DUSP6, a member of the MKP family that is highly specific for extracellular signal-regulated kinase 1 and 2 (ERK1/2) inactivation. Using a fibroblast model in which the expression of either MKP-3 or a more stable MKP-3-green fluorescent protein (GFP) chimera was induced by tetracycline, we found that serum induces the phosphorylation of MKP-3 and its subsequent degradation by the proteasome in a MEK1 and MEK2 (MEK1/2)-ERK1/2-dependent manner. In vitro phosphorylation assays using glutathione S-transferase (GST)-MKP-3 fusion proteins indicated that ERK2 could phosphorylate MKP-3 on serines 159 and 197. Tetracycline-inducible cell clones expressing either single or double serine mutants of MKP-3 or MKP-3-GFP confirmed that these two sites are targeted by the MEK1/2-ERK1/2 module in vivo. Double serine mutants of MKP-3 or MKP-3-GFP were more efficiently protected from degradation than single mutants or wild-type MKP-3, indicating that phosphorylation of either serine by ERK1/2 enhances proteasomal degradation of MKP-3. Hence, double mutation caused a threefold increase in the half-life of MKP-3. Finally, we show that the phosphorylation of MKP-3 has no effect on its catalytic activity. Thus, ERK1/2 exert a positive feedback loop on their own activity by promoting the degradation of MKP-3, one of their major inactivators in the cytosol, a situation opposite to that described for the nuclear phosphatase MKP-1.  相似文献   

19.
20.
Testicular function is highly dependent on temperature control. In Leydig testicular cells, the signaling pathway activated by heat stress is poorly defined. Here we describe the molecular events triggered by heat shock (HS, 10 min, 45 degrees C) in MA-10 cells. HS produced a rapid and transient activation of ERK1/2 and JNK kinases, and also increased MAP kinase phosphatase-1 (MKP-1) protein and mRNA levels. The effect of HS on MKP-1 messenger reached significance at 15 min, peaked (3.5-fold) at 60 min, and was partially dependent on ERK1/2 activity. The temporal profiles of MKP-1 protein levels and MAPKs phospho-dephosphorylation suggest that MKP-1 induction could contribute to ERK1/2 and JNK inactivation after HS. In summary, this study indicates that the response to heat stress in Leydig cells includes the activation of MAPKs related to cell survival (ERK1/2) and death (JNK), and the induction of a MAPK activity inhibitory loop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号