首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
On activation of a receptor the G protein betagamma complex translocates away from the receptor on the plasma membrane to the Golgi complex. The rate of translocation is influenced by the type of gamma subunit associated with the G protein. Complementary approaches--imaging living cells expressing fluorescent protein tagged G proteins and assaying reconstituted receptors and G proteins in vitro--were used to identify mechanisms at the basis of the translocation process. Translocation of Gbetagamma containing mutant gamma subunits with altered prenyl moieties showed that the differences in the prenyl moieties were not sufficient to explain the differential effects of geranylgeranylated gamma5 and farnesylated gamma11 on the translocation process. The translocation properties of Gbetagamma were altered dramatically by mutating the C terminal tail region of the gamma subunit. The translocation characteristics of these mutants suggest that after receptor activation, Gbetagamma retains contact with a receptor through the gamma subunit C terminal domain and that differential interaction of the activated receptor with this domain controls Gbetagamma translocation from the plasma membrane.  相似文献   

2.
Tannert A  Voigt P  Burgold S  Tannert S  Schaefer M 《Biochemistry》2008,47(43):11239-11250
Phosphoinositide 3-kinase gamma (PI3Kgamma) is activated by Gbetagamma release after stimulation of Galpha i -coupled receptors, involving a recruitment of the enzyme to the plasma membrane via interaction of the regulatory subunit p101 or p87 with Gbetagamma. The receptor-mediated release of Gbetagamma was, however, insufficient to elicit a translocation of p101 observable by classical fluorescence microscopy approaches. Since the mobilities of plasma membrane-associated and cytosolic proteins differ strongly, small changes in the amount of plasma membrane association should be detectable by an altered diffusional behavior. Here, changes in mobility were monitored by fluorescence redistribution after photobleaching (FRAP) which was repetitively applied before and after stimulation of cells. To combine the advantages of total internal reflection (TIR) illumination, which preferentially excites fluorophors located at or near the plasma membrane, with that provided by the mobility information, we developed a combined TIR/FRAP setup which enabled us to point bleach parts of an image that was observed under TIR illumination. For FRAP data analysis, we introduce a convolution-based method and a global two component model. Using this TIR/FRAP approach, an increased plasma membrane association of the fluorescent Gbetagamma-binding domain of p101 after Gbetagamma release by G protein-coupled receptor stimulation could be detected and quantified. By comparing the translocation efficiency of this domain with that of YFP-GRP1(PH), a biosensor for the PI3Kgamma product PI(3,4,5)P3, we evaluate the signal amplification between Gbetagamma release and PI(3,4,5)P3 formation after activation of Galpha i -coupled receptors.  相似文献   

3.
Receptors as well as some G protein subunits internalize after agonist stimulation. It is not clear whether Galpha(q) or Gbetagamma undergo such regulated translocation. Recent studies demonstrate that m3 muscarinic receptor activation in SK-N-SH neuroblastoma cells causes recruitment of tubulin to the plasma membrane. This subsequently transactivates Galpha(q) and activates phospholipase Cbeta1. Interaction of tubulin-GDP with Gbetagamma at the offset of phospholipase Cbeta1 signaling appears involved in translocation of tubulin and Gbetagamma to vesicle-like structures in the cytosol (Popova, J. S., and Rasenick, M. M. (2003) J. Biol. Chem. 278, 34299-34308). The relationship of this internalization to the clathrin-mediated endocytosis of the activated m3 muscarinic receptors or Galpha(q) involvement in this process has not been clarified. To test this, SK-N-SH cells were treated with carbachol, and localization of Galpha(q), Gbetagamma, tubulin, clathrin, and m3 receptors were analyzed by both cellular imaging and biochemical techniques. Upon agonist stimulation both tubulin and clathrin translocated to the plasma membrane and co-localized with receptors, Galpha(q) and Gbetagamma. Fifteen minutes later receptors, Gbetagamma and tubulin, but not Galpha(q), internalized with the clathrin-coated vesicles. Coimmunoprecipitation of m3 receptors with Gbetagamma, tubulin, and clathrin from the cytosol of carbachol-treated cells was readily observed. These data suggested that Gbetagamma subunits might organize the formation of a multiprotein complex linking m3 receptors to tubulin since they interacted with both proteins. Such protein assemblies might explain the dynamin-dependent but beta-arrestin-independent endocytosis of m3 muscarinic receptors since tubulin interaction with dynamin might guide or insert the complex into clathrin-coated pits. This novel mechanism of internalization might prove important for other beta-arrestin-independent endocytic pathways. It also suggests cross-regulation between G protein-mediated signaling and the dynamics of the microtubule cytoskeleton.  相似文献   

4.
G proteins are critical cellular signal transducers for a variety of cell surface receptors. Both alpha and betagamma subunits of G proteins are able to transduce receptor signals. Several direct effect molecules for Gbetagamma subunits have been reported; yet the biochemical mechanism by which Gbetagamma executes its modulatory role is not well understood. We have shown that Gbetagamma could directly increase the kinase activity of Bruton's tyrosine kinase (Btk) whose defects are responsible for X chromosome-linked agammaglobulinemia in patients. The well characterized interaction of Gbetagamma with the PH (pleckstrin homology)/TH (Tec-homology) module of Btk was proposed to be the underlying activation mechanism. Here we show that Gbetagamma also interacts with the catalytic domain of Btk leading to increased kinase activity. Furthermore, we showed that the PH/TH module is required for Gbetagamma-induced membrane translocation of Btk. The membrane anchorage is also dependent on the interaction of Btk with phosphatidylinositol 3,4,5-trisphosphate, the product of phosphoinositide 3-kinase. These data support a dual role for Gbetagamma in the activation of Btk signaling function, namely membrane translocation and direct regulation of Btk catalytic activity.  相似文献   

5.
G protein activation by Gi/Go coupling M2 muscarinic receptors, Gq coupling M3 receptors and Gs coupling beta2 adrenergic receptors causes rapid reversible translocation of the G protein gamma11 subunit from the plasma membrane to the Golgi complex. Co-translocation of the beta1 subunit suggests that gamma11 translocates as a betagamma complex. Pertussis toxin ADP ribosylation of the alphai subunit type or substitution of the C terminal domain of alphao with the corresponding region of alphas inhibits gamma11 translocation demonstrating that alpha subunit interaction with a receptor and its activation are requirements for the translocation. The rate of gamma11 translocation is sensitive to the rate of activation of the G protein alpha subunit. alpha subunit types that show high receptor activated rates of guanine nucleotide exchange in vitro support high rates of gamma11 translocation compared to alpha subunit types that have a relatively lower rate of guanine nucleotide exchange. The results suggest that the receptor induced translocation of gamma11 is controlled by the rate of cycling of the G protein through active and inactive forms. They also demonstrate that imaging of gamma11 translocation can be used as a non-invasive tool to measure the relative activities of wild type or mutant receptor and alpha subunit types in a live cell.  相似文献   

6.
Heterotrimeric G proteins are peripheral membrane proteins that propagate signals from membrane receptors to regulatory proteins localized in distinct cellular compartments. To facilitate signal amplification, G proteins are in molar excess with respect to G protein-coupled receptors. Because G proteins are capable of translocating from membrane to cytosol, protein-lipid interactions play a crucial role in signal transduction. Here, we studied the binding of heterotrimeric G proteins (Galphabetagamma) to model membranes (liposomes) and that of the entities formed upon receptor-mediated activation (Galpha and Gbetagamma). The model membranes used were composed of defined membrane lipids capable of organizing into either lamellar or nonlamellar (hexagonal H(II)) membrane structures. We demonstrated that although heterotrimeric G(i) proteins and Gbetagamma dimers can bind to lipid bilayers of phosphatidylcholine, their binding to membranes was markedly and significantly enhanced by the presence of nonlamellar phases of phosphatidylethanolamine. Conversely, activated G protein alpha subunits showed an opposite membrane binding behavior with a marked preference for lamellar membranes. These results have important consequences in cell signaling. First, the binding characteristics of the Gbetagamma dimer account for the lipid binding behavior and the cellular localization of heterotrimeric G proteins. Second, the distinct protein-lipid interactions of heterotrimeric G proteins, Gbetagamma dimers, and Galpha subunits with membrane lipids explain, in part, their different cellular mobilizations during signaling upon receptor activation. Finally, their differential interactions with lipids suggest an active role of the membrane lipid secondary structure in the propagation of signals through G protein-coupled receptors.  相似文献   

7.
Gbetagamma subunits modulate several distinct molecular events involved with G protein signaling. In addition to regulating several effector proteins, Gbetagamma subunits help anchor Galpha subunits to the plasma membrane, promote interaction of Galpha with receptors, stabilize the binding of GDP to Galpha to suppress spurious activation, and provide membrane contact points for G protein-coupled receptor kinases. Gbetagamma subunits have also been shown to inhibit the activities of GTPase-activating proteins (GAPs), both phospholipase C (PLC)-betas and RGS proteins, when assayed in solution under single turnover conditions. We show here that Gbetagamma subunits inhibit G protein GAP activity during receptor-stimulated, steady-state GTPase turnover. GDP/GTP exchange catalyzed by receptor requires Gbetagamma in amounts approximately equimolar to Galpha, but GAP inhibition was observed with superstoichiometric Gbetagamma. The potency of inhibition varied with the GAP and the Galpha subunit, but half-maximal inhibition of the GAP activity of PLC-beta1 was observed with 5-10 nM Gbetagamma, which is at or below the concentrations of Gbetagamma needed for regulation of physiologically relevant effector proteins. The kinetics of GAP inhibition of both receptor-stimulated GTPase activity and single turnover, solution-based GAP assays suggested a competitive mechanism in which Gbetagamma competes with GAPs for binding to the activated, GTP-bound Galpha subunit. An N-terminal truncation mutant of PLC-beta1 that cannot be directly regulated by Gbetagamma remained sensitive to inhibition of its GAP activity, suggesting that the Gbetagamma binding site relevant for GAP inhibition is on the Galpha subunit rather than on the GAP. Using fluorescence resonance energy transfer between cyan or yellow fluorescent protein-labeled G protein subunits and Alexa532-labeled RGS4, we found that Gbetagamma directly competes with RGS4 for high-affinity binding to Galpha(i)-GDP-AlF4.  相似文献   

8.
RACK1 regulates specific functions of Gbetagamma   总被引:6,自引:0,他引:6  
We showed previously that Gbetagamma interacts with Receptor for Activated C Kinase 1 (RACK1), a protein that not only binds activated protein kinase C (PKC) but also serves as an adaptor/scaffold for many signaling pathways. Here we report that RACK1 does not interact with Galpha subunits or heterotrimeric G proteins but binds free Gbetagamma subunits released from activated heterotrimeric G proteins following the activation of their cognate receptors in vivo. The association with Gbetagamma promotes the translocation of RACK1 from the cytosol to the membrane. Moreover, binding of RACK1 to Gbetagamma results in inhibition of Gbetagamma-mediated activation of phospholipase C beta2 and adenylyl cyclase II. However, RACK1 has no effect on other functions of Gbetagamma, such as activation of the mitogen-activated protein kinase signaling pathway or chemotaxis of HEK293 cells via the chemokine receptor CXCR2. Similarly, RACK1 does not affect signal transduction through the Galpha subunits of G(i), G(s), or G(q). Collectively, these findings suggest a role of RACK1 in regulating specific functions of Gbetagamma.  相似文献   

9.
Control of heart rate is a complex process that integrates the function of multiple G protein-coupled receptors and ion channels. Among them, the G protein-regulated inwardly rectifying K+ (GIRK or KACh) channels of sinoatrial node and atria play a major role in beat-to-beat regulation of the heart rate. The atrial KACh channels are heterotetrameric proteins that consist of two pore-forming subunits, GIRK1 and GIRK4. Following m2-muscarinic acetylcholine receptor (M2R) stimulation, KACh channel activation is conferred by the direct binding of G protein betagamma subunits (Gbetagamma) to the channel. Here we show that atrial KACh channels are assembled in a signaling complex with Gbetagamma, G protein-coupled receptor kinase, cyclic adenosine monophosphate-dependent protein kinase, two protein phosphatases, PP1 and PP2A, receptor for activated C kinase 1, and actin. This complex would enable the KACh channels to rapidly integrate beta-adrenergic and M2R signaling in the membrane, and it provides insight into general principles governing spatial integration of different transduction pathways. Furthermore, the same complex might recruit protein kinase C (PKC) to the KACh channel following alpha-adrenergic receptor stimulation. Our electro-physiological recordings from single atrial KACh channels revealed a potent inhibition of Gbetagamma-induced channel activity by PKC, thus validating the physiological significance of the observed complex as interconnecting site where signaling molecules congregate to execute a coordinated control of membrane excitability.  相似文献   

10.
Current studies involve an investigation of the role of the pleckstrin homology (PH) domain in membrane targeting and activation of phospholipase Cbeta(1) (PLCbeta(1)). Here we report studies on the membrane localization of the isolated PH domain from the amino terminus of PLCbeta(1) (PLCbeta(1)-PH) using fluorescence microscopy of a green fluorescent protein fusion protein. Whereas PLCbeta(1)-PH does not localize to the plasma membrane in serum-starved cells, it undergoes a rapid but transient migration to the plasma membrane upon stimulation of cells with serum or lysophosphatidic acid (LPA). Regulation of the plasma membrane localization of PLCbeta(1)-PH by phosphoinositides was also investigated. PLCbeta(1)-PH was found to bind phosphatidylinositol 3-phosphate most strongly, whereas other phosphoinositides were bound with lower affinity. The plasma membrane localization of PLCbeta(1)-PH induced by serum and LPA was blocked by wortmannin pretreatment and by LY294002. In parallel, activation of PLCbeta by LPA was inhibited by wortmannin, by LY294002, or by the overexpression of PLCbeta(1)-PH. Microinjection of betagamma subunits of G proteins in serum-starved cells induced the translocation of PLCbeta(1)-PH to the plasma membrane. These results demonstrate that a cooperative mechanism involving phosphatidylinositol 3-phosphate and the Gbetagamma subunit regulates the plasma membrane localization and activation of PLCbeta(1)-PH.  相似文献   

11.
Several extracellular stimuli mediated by G protein-coupled receptors activate c-fos promoter. Recently, we and other groups have demonstrated that signals from G protein-coupled receptors stimulate mitogen-activated protein kinases (MAPKs), extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 MAPK. The activation of these three MAPKs is mediated in part by the G protein betagamma subunit (Gbetagamma). In this study, we characterized the signals from Gbetagamma to c-fos promoter using transient transfection of c-fos luciferase into human embryonal kidney 293 cells. Activation of m2 muscarinic acetylcholine receptor and overexpression of Gbetagamma, but not constitutively active Galphai2, stimulated c-fos promoter activity. The c-fos promoter activation by m2 receptor and Gbetagamma was inhibited by beta-adrenergic receptor kinase C-terminal peptide (betaARKct), which functions as a Gbetagamma antagonist. MEK1 inhibitor PD98059 and kinase-deficient mutant of JNK kinase, but not p38 MAPK inhibitor SB203580, attenuated the m2 receptor- and Gbetagamma-induced c-fos promoter activation. Activated mutants of Ras and Rho stimulated the c-fos promoter activity, and the dominant negative mutants of Ras and Rho inhibited the c-fos promoter activation by m2 receptor and Gbetagamma. Moreover, c-fos promoter activation by m2 receptor, Gbetagamma, and active Rho, but not active Ras, was inhibited by botulinum C3 toxin. These data indicated that both Ras- and Rho-dependent signaling pathways are essential for c-fos promoter activation mediated by Gbetagamma.  相似文献   

12.
To investigate how G protein alpha subunit localization is regulated under basal and activated conditions, we inserted green fluorescent protein (GFP) into an internal loop of Galpha(q). alpha(q)-GFP stimulates phospholipase C in response to activated receptors and inhibits betagamma-dependent activation of basal G protein-gated inwardly rectifying K(+) currents as effectively as alpha(q) does. Association of alpha(q)-GFP with the plasma membrane is reduced by mutational activation and eliminated by mutation of the alpha(q) palmitoylation sites, suggesting that alpha(q) must be in the inactive, palmitoylated state to be targeted to this location. We tested the effects of activation by receptors and by AlF(4)(-) on the localization of alpha(q)-GFP in cells expressing both alpha(q)-GFP and a protein kinase Cgamma-red fluorescent protein fusion that translocates to the plasma membrane in response to activation of G(q). In cells that clearly exhibit protein kinase Cgamma-red fluorescent protein translocation responses, relocalization of alpha(q)-GFP is not observed. Thus, under conditions associated with palmitate turnover and betagamma dissociation, alpha(q)-GFP remains associated with the plasma membrane. These results suggest that upon reaching the plasma membrane alpha(q) receives an anchoring signal in addition to palmitoylation and association with betagamma, or that during activation, one or both of these factors continues to retain alpha(q) in this location.  相似文献   

13.
Chinese hamster embryonic fibroblasts (IIC9 cells) express the Galpha subunits Galphas, Galphai2, Galphai3, Galphao, Galpha(q/11), and Galpha13. Consistent with reports in other cell types, alpha-thrombin stimulates a subset of the expressed G proteins in IIC9 cells, namely Gi2, G13, and Gq as measured by an in vitro membrane [35S]guanosine 5'-O-(3-thio)triphosphate binding assay. Using specific Galpha peptides, which block coupling of G-protein receptors to selective G proteins, as well as dominant negative xanthine nucleotide-binding Galpha mutants, we show that activation of the phosphatidylinositol 3-kinase/Akt pathway is dependent on Gq and Gi2. To examine the role of the two G proteins, we examined the events upstream of PI 3-kinase. The activation of the PI 3-kinase/Akt pathway by alpha-thrombin in IIC9 cells is blocked by the expression of dominant negative Ras and beta-arrestin1 (Phillips-Mason, P. J., Raben, D. M., and Baldassare, J. J. (2000) J. Biol. Chem. 275, 18046-18053, and Goel, R., Phillips-Mason, P. J., Raben, D. M., and Baldassare, J. J. (2002) J. Biol. Chem. 277, 18640-18648), indicating a role for Ras and beta-arrestin1. Interestingly, inhibition of Gi2 and Gq activation blocks Ras activation and beta-arrestin1 membrane translocation, respectively. Furthermore, expression of the Gbetagamma sequestrant, alpha-transducin, inhibits both Ras activation and membrane translocation of beta-arrestin1, suggesting that Gbetagamma dimers from Galphai2 and Galphaq activate different effectors to coordinately regulate the PI 3-kinase/Akt pathway.  相似文献   

14.
G protein-coupled receptors (GPCRs) are important targets for medicinal agents. Four different G protein families, G(s), G(i), G(q), and G(12), engage in their linkage to activation of receptor-specific signal transduction pathways. G(12) proteins were more recently studied, and upon activation by GPCRs they mediate activation of RhoGTPase guanine nucleotide exchange factors (RhoGEFs), which in turn activate the small GTPase RhoA. RhoA is involved in many cellular and physiological aspects, and a dysfunction of the G(12/13)-Rho pathway can lead to hypertension, cardiovascular diseases, stroke, impaired wound healing and immune cell functions, cancer progression and metastasis, or asthma. In this study, regulator of G protein signaling (RGS) domain-containing RhoGEFs were tagged with enhanced green fluorescent protein (EGFP) to detect their subcellular localization and translocation upon receptor activation. Constitutively active Galpha(12) and Galpha(13) mutants induced redistribution of these RhoGEFs from the cytosol to the plasma membrane. Furthermore, a pronounced and rapid translocation of p115-RhoGEF from the cytosol to the plasma membrane was observed upon activation of several G(12/13)-coupled GPCRs in a cell type-independent fashion. Plasma membrane translocation of p115-RhoGEF stimulated by a GPCR agonist could be completely and rapidly reversed by subsequent application of an antagonist for the respective GPCR, that is, p115-RhoGEF relocated back to the cytosol. The translocation of RhoGEF by G(12/13)-linked GPCRs can be quantified and therefore used for pharmacological studies of the pathway, and to discover active compounds in a G(12/13)-related disease context.  相似文献   

15.
G proteins (Galphabetagamma) are essential signaling molecules, which dissociate into Galpha and Gbetagamma upon activation by heptahelical membrane receptors. We have identified the betagamma subunit complex of the photoreceptor-specific G protein, transducin (T), as a target of the ubiquitin-proteasome pathway. Ubiquitylated species of the transducin gamma-subunit (Tgamma) but not the alpha- or beta-subunits were assembled de novo in bovine photoreceptor preparations. In addition, Tgamma was exclusively ubiquitylated when Tbetagamma was dissociated from Talpha. Ubiquitylation of Tbetagamma on Tgamma was selectively catalyzed by human ubiquitin-conjugating enzymes UbcH5 and UbcH7 and was coincident with degradation of the entire Tbetagamma subunit complex in vitro by a mechanism requiring ATP and the proteasome. We also show that Tbetagamma association with phosducin, a photoreceptor-specific protein of unknown physiological function, blocks Tbetagamma ubiquitylation and subsequent degradation. Phosphorylation of phosducin by Ca(2+)/calmodulin-dependent protein kinase II, which inhibits phosducin-Tbetagamma complex formation, completely restored Tbetagamma ubiquitylation and degradation. We conclude that Tbetagamma is a substrate of the ubiquitin-proteasome pathway and suggest that phosducin serves to protect Tbetagamma following the light-dependent dissociation of Talphabetagamma.  相似文献   

16.
Receptors of the seven transmembrane domain family are coupled to heterotrimeric G proteins [1]. Binding of ligand to these receptors induces dissociation of the heterotrimeric complex into free GTP-Galpha and Gbetagamma subunits, which then interact with their respective effector molecules to stimulate specific cellular responses. In some cases, these cellular responses involve mitogenic signalling [2]. The mitogen-activated protein (MAP) kinase cascade is initiated by the protein kinase cRaf1 and links growth factor receptor signalling to cell growth and differentiation [3]. The main activator of cRaf1 is the small GTP-binding protein Ras [4], and the binding of cRaf1 to GTP-Ras translocates cRaf1 to the plasma membrane, where it is activated [5]. It has been reported that cRaf1 associates directly with the beta subunit of heterotrimeric G proteins in vitro, and with the betagamma subunit complex in vivo [6], but the role of this association is not yet understood. Here, we show that cRaf1 associates with Gbeta1gamma2, and that this association in mammalian cells is significantly enhanced when active p21(Ras) is present or when cRaf1 is otherwise targeted to the membrane. Association with Gbeta1gamma2 has no effect on the kinase activity of cRaf1, but cRaf1 can affect Gbetagamma-mediated signalling events. Thus, membrane-localised cRaf1 inhibits G-protein-coupled receptor (GPCR)-stimulated activation of phospholipase Cbeta (PLCbeta) by sequestration of Gbetagamma subunits, an effect also observed with endogenous levels of cRaf1. Our data suggest that cRaf1 may be an important regulator of signalling by Gbetagamma, particularly in those GPCR systems that stimulate the MAP kinase cascade through the activation of p21(Ras).  相似文献   

17.
Basic fibroblast growth factor (bFGF), a ligand of receptor protein-tyrosine kinases, promoted the dissociation of G(s) and had antagonistic stimulatory and inhibitory effects on adenylyl cyclase and NADPH oxidase in human fat cell plasma membranes. The bFGF-induced activation of adenylyl cyclase was blocked by COOH-terminal anti-Galpha(s), indicating that it was mediated by Galpha(s). The inhibitory action of bFGF was mimicked by exogenously supplied Gbetagamma-subunits and was reversed by anti-Gbeta(1/2), or betaARK-CT, a COOH-terminal beta-adrenergic receptor kinase fragment that specifically binds free Gbetagamma, indicating that it was transduced by Gbetagamma complexes. The bFGF-induced inhibition of NADPH-dependent H(2)O(2) generation was also reversed by peptide 100-119, an inhibitor of G(s) activation by ligand-occupied beta-adrenergic receptors, indicating that the Gbetagamma complexes mediating the inhibitory action of the growth factor are derived from G(s). The findings suggest a direct, non-kinase-dependent, coupling of bFGF receptor(s) to G(s) and provide the first example of a ligand of receptor protein-tyrosine kinases that is capable of utilizing both types of component subunits of a single heterotrimeric G protein for dual signaling in a single cell type.  相似文献   

18.
Membrane targeting of G-protein alphabetagamma heterotrimers was investigated in live cells by use of Galpha and Ggamma subunits tagged with spectral mutants of green fluorescent protein. Unlike Ras proteins, Gbetagamma contains a single targeting signal, the CAAX motif, which directed the dimer to the endoplasmic reticulum. Endomembrane localization of farnesylated Ggamma(1), but not geranylgeranylated Ggamma(2), required carboxyl methylation. Targeting of the heterotrimer to the plasma membrane (PM) required coexpression of all three subunits, combining the CAAX motif of Ggamma with the fatty acyl modifications of Galpha. Galpha associated with Gbetagamma on the Golgi and palmitoylation of Galpha was required for translocation of the heterotrimer to the PM. Thus, two separate signals, analogous to the dual-signal targeting mechanism of Ras proteins, cooperate to target heterotrimeric G proteins to the PM via the endomembrane.  相似文献   

19.
Diacylglycerol kinase (DGK) phosphorylates the second messenger diacylglycerol (DAG) to phosphatidic acid. We previously identified DGK as one of nine mammalian DGK isoforms and reported on its regulation by interaction with RhoA and by translocation to the plasma membrane in response to noradrenaline. Here, we have investigated how the localization of DGK, fused to green fluorescent protein, is controlled upon activation of G protein-coupled receptors in A431 cells. Extracellular ATP, bradykinin, or thrombin induced DGK translocation from the cytoplasm to the plasma membrane within 2-6 min. This translocation, independent of DGK activity, was preceded by protein kinase C (PKC) translocation and was blocked by PKC inhibitors. Conversely, activation of PKC by 12-O-tetradecanoylphorbol-13-acetate induced DGK translocation. Membrane-permeable DAG (dioctanoylglycerol) also induced DGK translocation but in a PKC (staurosporin)-independent fashion. Mutations in the cysteine-rich domains of DGK abrogated its hormone- and DAG-induced translocation, suggesting that these domains are essential for DAG binding and DGK recruitment to the membrane. We show that DGK interacts selectively with and is phosphorylated by PKCepsilon and -eta and that peptide agonist-induced selective activation of PKCepsilon directly leads to DGK translocation. Our data are consistent with the concept that hormone-induced PKC activation regulates the intracellular localization of DGK, which may be important in the negative regulation of PKCepsilon and/or PKCeta activity.  相似文献   

20.
Heterotrimeric G-proteins localized in the plasma membrane convey the signals from G-protein-coupled receptors (GPCRs) to different effectors. At least some types of G-protein α subunits have been shown to be partly released from plasma membranes and to move into the cytosol after receptor activation by the agonists. However, the mechanism underlying subcellular redistribution of trimeric G-proteins is not well understood and no definitive conclusions have been reached regarding the translocation of Gα subunits between membranes and cytosol. Here we used subcellular fractionation and clear-native polyacrylamide gel electrophoresis to identify molecular complexes of G(q/11)α protein and to determine their localization in isolated fractions and stability in na?ve and thyrotropin-releasing hormone (TRH)-treated HEK293 cells expressing high levels of TRH receptor and G(11)α protein. We identified two high-molecular-weight complexes of 300 and 140 kDa in size comprising the G(q/11) protein, which were found to be membrane-bound. Both of these complexes dissociated after prolonged treatment with TRH. Still other G(q/11)α protein complexes of lower molecular weight were determined in the cytosol. These 70 kDa protein complexes were barely detectable under control conditions but their levels markedly increased after prolonged (4-16 h) hormone treatment. These results support the notion that a portion of G(q/11)α can undergo translocation from the membrane fraction into soluble fraction after a long-term activation of TRH receptor. At the same time, these findings indicate that the redistribution of G(q/11)α is brought about by the dissociation of high-molecular-weight complexes and concomitant formation of low-molecular-weight complexes containing the G(q/11)α protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号