首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using electron microscopy and optical diffraction, Ca2+-dependent binding of a glycolytic enzyme (aldolase) to thin filaments of isolated skeletal muscle I-disks have been revealed. On the micrographs of negatively stained I-disks the cross-striation determined by troponin-tropomyosin complex distribution has a period of about 38 nm. The width of troponin-tropomyosin stripes is 5-6 nm. On the optical diffraction patterns from isolated I-disks the meridional reflections measuring 38.5, 19.2, 12.8 nm are present. On the micrographs of isolated I-disks, treated with aldolase in the absence of Ca2+ (1 mM EGTA) the width of periodic transverse stripes (period approximately 38 nm) increases from 5-6 nm to 25-28 nm due to the interaction of aldolase with thin filaments. On the optical diffraction patterns from I-disks treated with aldolase in the absence of Ca2+ (1 mM EGTA) the strong meridional reflection equal to 38.5 nm is present, while the reflections equal to 19.2 nm are absent. The optical diffraction patterns from I-disks treated with aldolase in the presence of Ca2+ (greater than or equal to 10(-5) M) do not, as a rule, differ from those obtained from I-disks not treated with aldolase, i.e. they contain the three above reflections. The binding of aldolase to thin filaments in the absence of Ca2+ is the reason of disappearance of meridional reflections equal to 19.2 and 12.8 nm.  相似文献   

2.
Transversely split sarcomeres are seen in mouthpart muscles of the blue crab in the electron microscope. Sarcomeres split only at the H zone. Two new sarcomeres are formed by a Z disk which appears in the H zone of the splitting sarcomere. Splitting may involve breaking of the thick filaments in the H zone, elongation of these filaments, and formation of both new actin filaments and Z-disk materials, Sarcomere splitting would allow longitudinal growth of muscle cells without lengthening of sarcomeres and concomitant changes in contractile properties.  相似文献   

3.
Abstract. A light and electron immunohistochemical study was carried out on the body wall muscles of the chaetognath Sagitta friderici for the presence of a variety of contractile proteins (myosin, paramyosin, actin), regulatory proteins (tropomyosin, troponin), and structural proteins (α‐actinin, desmin, vimentin). The primary muscle (~80% of body wall volume) showed the characteristic structure of transversely striated muscles, and was comparable to that of insect asynchronous flight muscles. In addition, the body wall had a secondary muscle with a peculiar structure, displaying two sarcomere types (S1 and S2), which alternated along the myofibrils. S1 sarcomeres were similar to those in the slow striated fibers of many invertebrates. In contrast, S2 sarcomeres did not show a regular sarcomeric pattern, but instead exhibited parallel arrays of 2 filament types. The thickest filaments (~10–15 nm) were arranged to form lamellar structures, surrounded by the thinnest filaments (~6 nm). Immunoreactions to desmin and vimentin were negative in both muscle types. The primary muscle exhibited the classical distribution of muscle proteins: actin, tropomyosin, and troponin were detected along the thin filaments, whereas myosin and paramyosin were localized along the thick filaments; immunolabeling of α‐actinin was found at Z‐bands. Immunoreactions in the S1 sarcomeres of the secondary muscle were very similar to those found in the primary muscle. Interestingly, the S2 sarcomeres of this muscle were labeled with actin and tropomyosin antibodies, and presented no immunore‐actions to both myosin and paramyosin. α‐Actinin in the secondary muscle was only detected at the Z‐lines that separate S1 from S2. These findings suggest that S2 are not true sarcomeres. Although they contain actin and tropomyosin in their thinnest filaments, their thickest filaments do not show myosin or paramyosin, as the striated muscle thick myofilaments do. These peculiar S2 thick filaments might be an uncommon type of intermediate filament, which were labeled neither with desmin or vimentin antibodies.  相似文献   

4.
THE ULTRASTRUCTURE OF STRIATED MUSCLE AT VARIOUS SARCOMERE LENGTHS   总被引:2,自引:2,他引:0       下载免费PDF全文
1. Rest and equilibrium length muscle sarcomeres are composed of thin filaments (actin) which traverse the sarcomeres from the Z membranes up to the H band; at this level the filaments are considerably thicker and less numerous. 2. Shortening of muscle is associated with a transformation of thin into thick filaments in the A band. 3. These observations are discussed in terms of interaction of actin and myosin to form a supercoiled structure as the basis of contraction.  相似文献   

5.
The midgut muscularis of larvae of the mosquito Aedes aegypti takes the form of a grid of longitudinal and circular muscle bands. The longitudinal and circular bands overlap at near right angles at many areas of intersection. The longitudinal bands run the length of the midgut. However, some bands of circular muscle, located in the anterior midgut, pass only partway around the gut. An unusual feature was observed at some regions where longitudinal and circular bands of muscle intersect: filaments oriented at near right angles to one another were present in the same membrane-bound fiber. These cruciform regions send contractile elements into both circular and longitudinal bands. The muscularis was fixed in a contracted state, so most of the sarcomeres are represented by complete overlap of myosin and lighter staining actin filaments. Features characteristic of supercontracting muscle, including perforated Z-lines, were seen in sarcomeres of circular muscle bands. Small invaginations resembling transverse tubules were present but a sarcoplasmic reticulum was not observed. While occasional cells that may be neurons or neurosecretory cells were observed, a network that might serve to coordinate the segmentation and peristaltic movement of the muscularis was not apparent.  相似文献   

6.
To clarify the full picture of the connectin (titin) filament network in situ, we selectively removed actin and myosin filaments from cardiac muscle fibers by gelsolin and potassium acetate treatment, respectively, and observed the residual elastic filament network by deep-etch replica electron microscopy. In the A bands, elastic filaments of uniform diameter (6-7 nm) projecting from the M line ran parallel, and extended into the I bands. At the junction line in the I bands, which may correspond to the N2 line in skeletal muscle, individual elastic filaments branched into two or more thinner strands, which repeatedly joined and branched to reach the Z line. Considering that cardiac muscle lacks nebulin, it is very likely that these elastic filaments were composed predominantly of connectin molecules; indeed, anti-connectin monoclonal antibody specifically stained these elastic filaments. Further, striations of approximately 4 nm, characteristic of isolated connectin molecules, were also observed in the elastic filaments. Taking recent analyses of the structure of isolated connectin molecules into consideration, we concluded that individual connectin molecules stretched between the M and Z lines and that each elastic filament consisted of laterally-associated connectin molecules. Close comparison of these images with the replica images of intact and S1-decorated sarcomeres led us to conclude that, in intact sarcomeres, the elastic filaments were laterally associated with myosin and actin filaments in the A and I bands, respectively. Interestingly, it was shown that the elastic property of connectin filaments was not restricted by their lateral association with actin filaments in intact sarcomeres. Finally, we have proposed a new structural model of the cardiac muscle sarcomere that includes connectin filaments.  相似文献   

7.
Using a variety of preparative techniques for electron microscopy, we have obtained evidence for the disposition of actin and myosin in vertebrate smooth muscle. All longitudinal myofilaments seen in sections appear to be actin. Previous reports of two types of longitudinal filaments in sections are accounted for by technical factors, and by differentiated areas of opacity along individual filaments. Dense bodies with actin emerging from both ends have been identified in homogenates, and resemble Z discs from skeletal muscle (Huxley, 1963). In sections, short, dark-staining lateral filaments 15–25 A in diameter link adjacent actin filaments within dense bodies and in membrane dense pataches. They appear homologous with Z-disc filaments. Similar lateral filaments connect actin to plasma membrane. Dense bodies and dense patches, therefore, are attachment points and denote units analogous to sarcomeres. In glycerinated, methacrylate-embedded sections, lateral processes different in length and staining characteristics from lateral filaments in dense bodies exist at intervals along actin filaments. These processes are about 30 A wide and resemble heavy meromyosin from skeletal muscle. They also resemble heads of whole molecules of myosin in negatively stained material from gizzard homogenates. Intact single myosin molecules and dimers have been found, both free and attached to actin, even in media of very low ionic strength. Myosin can, therefore, exist in relatively disaggregated form. Models of the contraction mechanism of smooth muscle are proposed. The unique features are: (1) Myosin exists as small functional units. (2) Movement occurs by interdigitation and sliding of actin filaments.  相似文献   

8.
H Sosa  D Popp  G Ouyang    H E Huxley 《Biophysical journal》1994,67(1):283-292
We have set up a system to rapidly freeze muscle fibers during contraction to investigate by electron microscopy the ultrastructure of active muscles. Glycerinated fiber bundles of rabbit psoas muscles were frozen in conditions of rigor, relaxation, isometric contraction, and active shortening. Freezing was carried out by plunging the bundles into liquid ethane. The frozen bundles were then freeze-substituted, plastic-embedded, and sectioned for electron microscopic observation. X-ray diffraction patterns of the embedded bundles and optical diffraction patterns of the micrographs resemble the x-ray diffraction patterns of unfixed muscles, showing the ability of the method to preserve the muscle ultrastructure. In the optical diffraction patterns layer lines up to 1/5.9 nm-1 were observed. Using this method we have investigated the myofilament lengths and concluded that there are no major changes in length in either the actin or the myosin filaments under any of the conditions explored.  相似文献   

9.
Three-dimensional reconstruction of a simple Z-band in fish muscle   总被引:2,自引:0,他引:2       下载免费PDF全文
The three-dimensional structure of the Z-band in fish white muscle has been investigated by electron microscopy. This Z-band is described as simple, since in longitudinal sections it has the appearance of a single zigzag pattern connecting the ends of actin filaments of opposite polarity from adjacent sarcomeres. The reconstruction shows two pairs of links, the Z-links, between one actin filament and the facing four actin filaments in the adjacent sarcomere. The members of each pair have nearly diametrically opposed origins. In relation to one actin filament, one pair of links appears to bind along the final 10 nm of the actin filament (proximal site) and the other pair binds along a region extending from 5 to 20 nm from the filament end (distal site). Between one pair and the other, there is a rotation of approximately 80 degrees round the filament axis. A Z-link with a proximal site at the end of one actin filament attaches at a distal site on the oppositely oriented actin filaments of the facing sarcomere and vice versa. The length of each Z-link is consistent with the length of an alpha-actinin molecule. An additional set of links located 10-15 nm from the center of the Z-band occurs between actin filaments of the same polarity. These polar links connect the actin filaments along the same direction on each side of the Z-band. The three-dimensional structure appears to have twofold screw symmetry about the central plane of the Z-band. Only approximate twofold rotational symmetry is observed in directions parallel to the actin filaments. Previous models of the Z-band in which four identical and rotationally symmetrical links emanate from the end of one actin filament and span across to the ends of four actin filaments in the adjacent sarcomere are therefore incorrect.  相似文献   

10.
The organisation of structural proteins in muscle into highly ordered sarcomeres occurs during development, regeneration and focal repair of skeletal muscle fibers. The involvement of cytoskeletal proteins in this process has been documented, with nonmuscle gamma-actin found to play a role in sarcomere assembly during muscle differentiation and also shown to be up-regulated in dystrophic muscles which undergo regeneration and repair [Lloyd et al.,2004; Hanft et al.,2006]. Here, we show that a cytoskeletal tropomyosin (Tm), Tm4, defines actin filaments in two novel compartments in muscle fibers: a Z-line associated cytoskeleton (Z-LAC), similar to a structure we have reported previously [Kee et al.,2004], and longitudinal filaments that are orientated parallel to the sarcomeric apparatus, present during myofiber growth and repair/regeneration. Tm4 is upregulated in paradigms of muscle repair including induced regeneration and focal repair and in muscle diseases with repair/regeneration features, muscular dystrophy and nemaline myopathy. Longitudinal Tm4-defined filaments also are present in diseased muscle. Transition of the Tm4-defined filaments from a longitudinal to a Z-LAC orientation is observed during the course of muscle regeneration. This Tm4-defined cytoskeleton is a marker of growth and repair/regeneration in response to injury, disease state and stress in skeletal muscle.  相似文献   

11.
The vertebrate muscle Z-band organizes and tethers antiparallel actin filaments in adjacent sarcomeres and hence propagates the tension generated by the actomyosin interaction during muscular contraction. The axial width of the Z-band varies with fibre and muscle type: fast twitch muscles have narrow (approximately 30-50 nm) Z-bands, while slow-twitch and cardiac muscles have wide (approximately 100-140 nm) Z-bands. In electron micrographs of longitudinal sections of fast fibres like those found in fish body white muscle, the Z-band appears as a characteristic zigzag layer of density connecting the mutually offset actin filament arrays in adjacent sarcomeres. Wide Z-bands in slow fibres such as the one studied here (bovine neck muscle) show a stack of three or four zigzag layers. The variable Z-band width incorporating variable numbers of zigzag layers presumably relates to the different mechanical properties of the respective muscles. Three-dimensional reconstructions of Z-bands reveal that individual zigzag layers are often composed of more than one set of protein bridges, called Z-links, probably alpha-actinin, between oppositely oriented actin filaments. Fast muscle Z-bands comprise two or three layers of Z-links. Here we have applied Fourier reconstruction methods to obtain clear three-dimensional density maps of the Z-bands in beef muscle. The bovine slow muscle investigated here reveals a Z-band comprising six sets of Z-links, which, due to their shape and the way their projected densities overlap, appear in longitudinal sections as either three or four zigzag layers, depending on the lattice view. There has been great interest recently in the suggestion that Z-band variability with fibre type may be due to differences in the repetitive region (tandem Z-repeats) in the Z-band part of titin (also called connectin). We discuss this in the context of our results and present a systematic classification of Z-band types according to the numbers of Z-links and titin Z-repeats.  相似文献   

12.
PEVK domain of titin: an entropic spring with actin-binding properties   总被引:6,自引:0,他引:6  
The PEVK domain of the giant muscle protein titin is a proline-rich sequence with unknown secondary/tertiary structure. Here we compared the force-extension behavior of cloned cardiac PEVK titin measured by single-molecule atomic force spectroscopy with the extensibility of the PEVK domain measured in intact cardiac muscle sarcomeres. The analysis revealed that cardiac PEVK titin acts as an entropic spring with the properties of a random coil exhibiting mechanical conformations of different flexibility. Since in situ, titin is in close proximity to the thin filaments, we also studied whether the PEVK domain of cardiac or skeletal titin may interact with actin filaments. Interaction was indeed found in the in vitro motility assay, in which recombinant PEVK titin constructs slowed down the sliding velocity of actin filaments over myosin. Skeletal PEVK titin affected the actin sliding to a lesser degree than cardiac PEVK titin. The cardiac PEVK effect was partially suppressed by physiological Ca(2+) concentrations, whereas the skeletal PEVK effect was independent of [Ca(2+)]. Cosedimentation assays confirmed the Ca(2+)-modulated actin-binding propensity of cardiac PEVK titin, but did not detect interaction between actin and skeletal PEVK titin. In myofibrils, the relatively weak actin-PEVK interaction gives rise to a viscous force component opposing filament sliding. Thus, the PEVK domain contributes not only to the extensibility of the sarcomere, but also affects contractile properties.  相似文献   

13.
The vertebrate striated muscle Z-band connects actin filaments of opposite polarity from adjacent sarcomeres and allows tension to be transmitted along a myofibril during contraction. Z-bands in different muscles have a modular structure formed by layers of alpha-actinin molecules cross-linking actin filaments. Successive layers occur at 19 nm intervals and have 90 degrees rotations between them. 3D reconstruction from electron micrographs show a two-layer "simple" Z-band in fish body fast muscle, a three-layer Z-band in fish fin fast muscle, and a six-layer Z-band in mammalian slow muscle. Related to the number of these layers, longitudinal sections of the Z-band show a number of zigzag connections between the oppositely oriented actin filaments. The number of layers also determines the axial width of the Z-band, which is a useful indicator of fibre type; fast fibres have narrow (approximately 30-50 nm) Z-bands; slow and cardiac fibres have wide (approximately 100-140 nm) Z-bands. Here, we report the first observation of two different Z-band widths within a single sarcomere. By comparison with previous studies, the narrower Z-band comprises three layers. Since the increase in width of the wider Z-band is about 19 nm, we conclude that it comprises four layers. This finding is consistent with a Z-band assembly model involving molecular control mechanisms that can add additional layers of 19 nm periodicity. These multiple Z-band structures suggest that different isoforms of nebulin and titin with a variable number of Z-repeats could be present within a single sarcomere.  相似文献   

14.
Summary The structure of the Z disc has been studied in thin sections of striated muscle fibers from a wide variety of vertebrates. A common organization is found in all muscles examined. The disc shows a regular pattern made up of dense lines which seem to connect the actin filaments from adjacent sarcomeres. The lines are sometimes disposed to form a regular zigzag configuration; in other orientations with respect to the plane of the section the morphology is confused and, in still other images, the dense lines continuous with the actin filaments seem to go straight through the Z disc. In cross section this structure corresponds to a square pattern of considerable regularity. The intersections in the square pattern mark the location in the plane of the section of the actin filaments from adjacent sarcomeres. Dense lines form the edges of the squares and appear to represent condensations of Z-disc material, i.e., the lines in the zigzag. The possible origin of the structure as a product of the stretching of a membrane is discussed, together with functional interpretations of the Z disc.Postdoctoral fellow under USPHS Training Grant 2 G-707 to K. R. Porter.  相似文献   

15.
Striated muscle cells are characterised by a para-crystalline arrangement of their contractile proteins actin and myosin in sarcomeres, the basic unit of the myofibrils. A multitude of proteins is required to build and maintain the structure of this regular arrangement as well as to ensure regulation of contraction and to respond to alterations in demand. This review focuses on the actin filaments (also called thin filaments) of the sarcomere and will discuss how they are assembled during myofibrillogenesis and in hypertrophy and how their integrity is maintained in the working myocardium.  相似文献   

16.
The Z-band in vertebrate striated muscle links actin filaments of opposite polarity in adjacent sarcomeres to form a regular structure based on a tetragonal lattice. In transverse sections there are two commonly observed appearances of the Z-band seen in different muscles, namely, the small-square lattice and the basketweave forms. A clear example of the latter occurs in the fin muscle of the flatfish plaice and its symmetry is described here. Improved methods over previous work include fast freezing/freeze-substitution and lattice straightening of the scanned images. It is demonstrated here that when a longitudinal section is tilted in the electron microscope about the myofibril axis, the 10 and 01 projections are mirror images of each other about the centre of the Z-hand. By examining the symmetry relationships between these views and a longitudinal 11 projection and a transverse view, it is concluded that the symmetry is best described by the two-sided plane group c12. The twofold axis lies in the central plane of the Z-band along the diagonal of the primitive lattice and runs normal to the actin filaments. In contrast, the symmetry of the simple Z-band in fish myotomal white muscle, which in longitudinal sections has the appearance of a single zigzag structure, is p121 (Luther, P. K. (1991), J. Cell Biol. 113, 1043-1055).  相似文献   

17.
Rapid freezing followed by freeze-substitution has been used to study the ultrastructure of the myosin filaments of live and demembranated frog sartorius muscle in the states of relaxation and rigor. Electron microscopy of longitudinal sections of relaxed specimens showed greatly improved preservation of thick filament ultrastructure compared with conventional fixation. This was revealed by the appearance of a clear helical arrangement of myosin crossbridges along the filament surface and by a series of layer line reflections in computed Fourier transforms of sections, corresponding to the layer lines indexing on a 43 nm repeat in X-ray diffraction patterns of whole, living muscles. Filtered images of single myosin filaments were similar to those of negatively stained, isolated vertebrate filaments and consistent with a three-start helix. M-line and other non-myosin proteins were also very well preserved. Rigor specimens showed, in the region of overlapping myosin and actin filaments, periodicities corresponding to the 36, 24, 14.4 and 5.9 nm repeats detected in X-ray patterns of whole muscle in rigor; in the H-zone they showed a disordered array of crossbridges. Transverse sections, whose Fourier transforms extend to the (3, 0) reflection, supported the view, based on X-ray diffraction and conventional electron microscopy, that in the overlap zone of relaxed muscle most of the crossbridges are detached from the thin filaments while in rigor they are attached. We conclude that the rapid freezing technique preserves the molecular structure of the myofilaments closer to the in vivo state (as monitored by X-ray diffraction) than does normal fixation.  相似文献   

18.
The three-dimensional structure of the central region of the Z disk of honeybee flight muscle has been determined to a resolution of 70 A by three-dimensional reconstruction from electron micrographs of tilted thin sections. The reconstructions show a complex assembly in which actin filaments terminate and are cross-linked together; a number of structural domains of this network are resolved in quantitative three-dimensional detail. The central region of the Z disk contains two sets of overlapping actin filaments of opposite polarity, which originate in the sarcomeres adjacent to the Z disk, and connections between these filaments. The filaments are deflected by the attachment of cross-links; spacing between filaments change by greater than 100 A during their passage through the Z disk. Each actin filament is linked by connecting structures to four filaments of opposite polarity and two filaments are of the same polarity. Four types of connecting density domain are observed in association with pairs of filaments of opposite polarity: C1, C2, C3, and C5. Two of these, C3 and C5, are associated with the ends of actin filaments. Another connection, C4, is associated with three filaments of the same polarity; C4 is threefold symmetric.  相似文献   

19.
Balogh J  Li Z  Paulin D  Arner A 《Biophysical journal》2005,88(2):1156-1165
Intermediate filaments composed of desmin interlink Z-disks and sarcolemma in skeletal muscle. Depletion of desmin results in lower active stress of smooth, cardiac, and skeletal muscles. Structural functions of intermediate filaments in fast (psoas) and slow (soleus) skeletal muscle were examined using x-ray diffraction on permeabilized muscle from desmin-deficient mice (Des-/-) and controls (Des+/+). To examine lateral compliance of sarcomeres and cells, filament distances and fiber width were measured during osmotic compression with dextran. Equatorial spacing (x-ray diffraction) of contractile filaments was wider in soleus Des-/- muscle compared to Des+/+, showing that desmin is important for maintaining lattice structure. Osmotic lattice compression was similar in Des-/- and Des+/+. In width measurements of single fibers and bundles, Des-/- soleus were more compressed by dextran compared to Des+/+, showing that intermediate filaments contribute to whole-cell compliance. For psoas fibers, both filament distance and cell compliance were similar in Des-/- and Des+/+. We conclude that desmin is important for stabilizing sarcomeres and maintaining cell compliance in slow skeletal muscle. Wider filament spacing in Des-/- soleus cannot, however, explain the lower active stress, but might influence resistance to stretch, possibly minimizing stretch-induced cell injury.  相似文献   

20.
Muscle contraction depends on interactions between actin and myosin filaments organized into sarcomeres, but the mechanism by which actin filaments incorporate into sarcomeres remains unclear. We have found that, during larval development in Caenorhabditis elegans, two members of the actin-assembling formin family, CYK-1 and FHOD-1, are present in striated body wall muscles near or on sarcomere Z lines, where barbed ends of actin filaments are anchored. Depletion of either formin during this period stunted growth of the striated contractile lattice, whereas their simultaneous reduction profoundly diminished lattice size and number of striations per muscle cell. CYK-1 persisted at Z lines in adulthood, and its near complete depletion from adults triggered phenotypes ranging from partial loss of Z line-associated filamentous actin to collapse of the contractile lattice. These results are, to our knowledge, the first genetic evidence implicating sarcomere-associated formins in the in vivo organization of the muscle cytoskeleton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号