首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Quantitative ultrastructural studies on the effects of visible and ultraviolet radiation on zooxanthellae in culture and in situ showed an inverse relationship between the volume fraction of chloroplast and irridiance. An independent effect of ultraviolet radiation was detected in cultured zooxanthellae only. The volume fraction of chloroplasts in cultured zooxanthellae and zooxanthellae in situ were the same, while the surface density of thylakoid lamellae relative to chloroplast volume in cultured zooxanthellae was less than in zooxanthellae in situ for all irradiances. Additionally, zooxanthellae in situ showed an effect of ultraviolet radiation on surface density of thylakoid lamellae. The response to different irradiances suggests a limit to photoadaptation by means of changing chloroplast volume, and that changes in thylakoid density are responsible for the continued photoadaptive plasticity observed. Flow cytometry and stereological studies show that the volume fraction of accumulation bodies within zooxanthellae increases with irradiance and ultraviolet radiation. Ultrastructurally, accumulation bodies do not resemble plant peroxisomes or glyoxysomes, while other inclusions observed in this stydy are suggestive of peroxisomes. This evidence suggests that accumulation bodies are not peroxisomes, but does support the previous assumptions concerning their role in autophagic processes.  相似文献   

2.
Fluorescence in situ hybridization has been used for the identification and analysis of populations of the dinoflagellate Symbiodinium that lives symbiotically in marine invertebrates. Conditions for in situ hybridization of Symbiodinium were optimized and used to identify the clade to which the isolate belongs using specific probes. The optimized in situ hybridization procedure used a combination of chlorophyll removal and permeabilization with hot ethanol. Incubation of the cells in 50% ethanol at 80 degrees C for 20 min rendered the cell wall permeable to Cy3-labeled probes. Symbiodinium clade-specific probes were designed based on 18S rRNA sequences. Symbiodinium A, B and C were distinguished by in situ hybridization with the specific probes SymA, SymB and SymC, respectively. The hybridization results using clade-specific probes corresponded with results obtained using restriction fragment length polymorphism (RFLP) analysis. Symbiodinium isolated from jellyfish Cassiopea sp. and sea anemone Aiptasia sp. were classified as belonging to clades A and B using the FISH procedure established in this study.  相似文献   

3.
4.
Coral bleaching is of increasing concern to reef management and stakeholders. Thus far, quantification of coral bleaching tends to be heavily reliant on the enumeration of zooxanthellae, with less emphasis on assessment of photosynthetic or physiological condition, these being often assessed separately by techniques such as liquid chromatography. Traditional methods of enumeration using microscopy are time consuming, subjected to low precision and great observer error. In this study, we presented a method for the distinction of physoiological condition and rapid enumeration of zooxanthellae using flow cytometry (FCM). Microscopy verified that healthy looking/live versus damaged/dead zooxanthellae could be reliably and objectively distinguished and counted by FCM on the basis of red and green fluorescence and light scatter. Excellent correlations were also determined between FCM and microscopy estimates of cell concentrations of fresh zooxanthellae isolates from Pocillopora damicornis. The relative intensities of chlorophyll and β-carotene fluorescences were shown to be important in understanding the results of increased cell counts in freshly isolated zooxanthellae experimentally exposed to high temperatures (34, 36, and 38°C) over 24 h, with ambient temperature (29°C) used as controls. The ability to simultaneously identify and enumerate subpopulations of different physiological states in the same sample provides an enormous advantage in not just determining bleaching responses, but elucidating adaptive response and mechanisms for tolerance. Therefore, this approach might provide a rapid, convenient, and reproducible methodology for climate change studies and reef management programs. ? 2012 International Society for Advancement of Cytometry.  相似文献   

5.
It has been 55 years since Hugo Freudenthal described Symbiodinium microadriaticum (Dinophyceae), the type species of this large and important dinoflagellate genus found commonly in mutualistic symbiosis with cnidarians, other invertebrates, and certain protists. However, no type specimen was designated by Freudenthal, thus S. microadriaticum was invalid, as was Symbiodinium and every species subsequently assigned to the genus. The original culture was lost, but since 1979, a different culture, CCMP2464/rt‐061, had been considered to represent S. microadriaticum. From this culture, a preserved specimen is herein designated the holotype of S. microadriaticum, validating the binomial and Symbiodinium. All binary designations previously considered to belong in Symbiodinium also are validated herein.  相似文献   

6.
7.
Coral-algal symbiosis has been a subject of great attention during the last two decades in response to global coral reef decline. However, the occurrence and dispersion of free-living dinoflagellates belonging to the genus Symbiodinium are less documented. Here ecological and molecular evidence is presented demonstrating the existence of demersal free-living Symbiodinium populations in Caribbean reefs and the possible role of the stoplight parrotfish (Sparisoma viride) as Symbiodinium spp. dispersers. Communities of free-living Symbiodinium were found within macroalgal beds consisting of Halimeda spp., Lobophora variegata, Amphiroa spp., Caulerpa spp. and Dictyota spp. Viable Symbiodinium spp. cells were isolated and cultured from macroalgal beds and S. viride feces. Further identification of Symbiodinium spp. type was determined by length variation in the Internal Transcribed Spacer 2 (ITS2, nuclear rDNA) and length variation in domain V of the chloroplast large subunit ribosomal DNA (cp23S-rDNA). Determination of free-living Symbiodinium and mechanisms of dispersal is important in understanding the life cycle of Symbiodinium spp.  相似文献   

8.
The dinoflagellate microalga Symbiodinium is the dominant algal symbiont in corals and related marine animals. To explore the incidence of mixed infections, methods employing real-time quantitative polymerase chain reaction (QPCR) and fluorescence in situ hybridization (FISH) were developed. In experiments focusing on Symbiodinium clades A and B, QPCR and FISH results were well correlated and generally more precise and sensitive than those from the endpoint PCR-restriction fragment length polymorphism analysis (PCR-RFLP) traditionally used for this application, thus increasing the detected incidence of mixed infections. For example, the prevalence of mixed infections in the sea anemone Condylactis gigantea was 40% by PCR-RFLP and 80%-90% by QPCR and FISH. However, the use of QPCR and FISH was limited by inter-host variation in the rRNA gene copy number per Symbiodinium cell, precluding any single conversion factor between QPCR signal and Symbiodinium cell number; and one FISH probe that gave excellent hybridization efficiency with cultured Symbiodinium yielded variable results with Symbiodinium from symbioses. After controlling for these caveats, QPCR studies revealed that field-collected hosts previously described as universally unialgal bore up to 1.6% of the alternative clade. Further research is required to establish the contribution that algal cells at low density in symbiosis and external to the symbiosis make to the minor clade.  相似文献   

9.
10.
The diversity of symbiotic dinoflagellates ( Symbiodinium ) in pocilloporid corals originating from various reef habitats surrounding Heron Island, southern Great Barrier Reef, was examined by targeting ribosomal, mitochondrial, and chloroplast genes using six methods that analyse for sequence differences. The ability of each of 13 genetic analyses to characterize eight ecologically distinct Symbiodinium spp. was dependent on the level of conservation of the gene region targeted and the technique used. Other than differences in resolution, phylogenetic reconstructions using nuclear and organelle gene sequences were complementary and when combined produced a well-resolved phylogeny. Analysis of the ribosomal internal transcribed spacers using denaturing gradient gel electrophoresis fingerprinting in combination with sequencing of dominant bands provided a precise method for rapidly resolving and characterizing symbionts into ecologically and evolutionarily distinct units of diversity. Single-stranded conformation polymorphisms of the nuclear ribosomal large subunit (D1/D2 domain) identified the same number of ecologically distinct Symbiodinium spp., but profiles were less distinctive. The repetitive sequencing of bacterially cloned ITS2 polymerase chain reaction amplifications generated numerous sequence variants that clustered together according to the symbiont under analysis. The phylogenetic relationships between these clusters show how intragenomic variation in the ribosomal array diverges among closely related eukaryotic genomes. The strong correlation between phylogenetically independent lineages with different ecological and physiological attributes establishes a clear basis for assigning species designations to members of the genus Symbiodinium .  相似文献   

11.
12.
Intra- and intercolony diversity and distribution of zooxanthellae in acroporid corals is largely uncharted. In this study, two molecular methods were applied to determine the distribution of zooxanthellae in the branching corals Acropora tenuis and A. valida at several reef locations in the central section of the Great Barrier Reef. Sun-exposed and shaded parts of all colonies were examined. Single-stranded conformational polymorphism analysis showed that individual colonies of A. tenuis at two locations harbour two strains of Symbiodinium belonging to clade C (C1 and C2), whereas conspecific colonies at two other reefs harboured a single zooxanthella strain. A. valida was found to simultaneously harbour strains belonging to two distinct phylogenetic clades (C and D) at all locations sampled. A novel method with improved sensitivity (quantitative polymerase chain reaction using Taqman fluorogenic probes) was used to map the relative abundance distribution of the two zooxanthella clades. At two of the five sampling locations both coral species were collected. At these two locations, composition of the zooxanthella communities showed the same pattern in both coral species, i.e. correlation with ambient light in Pioneer Bay and an absence thereof in Nelly Bay. The results show that the distribution of genetically distinct zooxanthellae is correlated with light regime and possibly temperature in some (but not all) colonies of A. tenuis and A. valida and at some reef locations, which we interpret as acclimation to local environmental conditions.  相似文献   

13.
Symbiodinium reside intracellularly in a complex symbiosome (host and symbiont‐derived) within cnidarian hosts in a specific host‐symbiont association. Symbiodinium is a diverse genus with variation greater than other dinoflagellate orders. In this paper, our investigation into specificity examines antigenic variation in the algal mucilage secretions at the host‐symbiont interface. Cultured Symbiodinium from a variety of clades were labeled with one of two antibodies to symbiont mucilage (PC3, developed using a clade B alga cultured from Aiptasia pallida; BF10, developed using a clade F alga cultured from Briareum sp.). The labeling was visualized with a fluorescent marker and examined with epifluorescence and confocal microscopy. PC3 antigen was found in cultured Symbiodinium from clades A and B, but not clades C, D, E and F. The correlation between labeling and clade may account for some of the specificity between host and symbiont in the field. Within clades A and B there was variation in the amount of label present. BF10 antigen was more specific and only found in cultures of the same cp23S‐rDNA strain the antibody was created against. These results indicate that the mucilage secretions do vary both qualitatively and quantitatively amongst Symbiodinium strains. Since the mucilage forms the host‐symbiont interface, variation in its molecular composition is likely to be the source of any signals involved in recognition and specificity.  相似文献   

14.
15.
The fine structure of four "species" of Amoeba   总被引:3,自引:0,他引:3  
  相似文献   

16.
The fine structure of the Gram-negative filamentous gliding bacterium, Herpetosiphon is described. The outer membrane of the cell envelope could not be resolved as a separate structure, probably because it is fused with the underlying dense (peptidoglycan) layer. There was an additional wall layer outside this membrane-peptidoglycan complex, but a sheath in the classical sense, as postulated in the definition of the genus, was lacking. On the cell surface a loose network of fibrils could be seen. Inside the cells 3 types of intracytoplasmic membranes were discernible: a) true mesosomes near cross walls; b) a system of coarser membranes which was not connected with the septa and formed networks or tubular complexes; c) degenerated septa within bulbs. the bulbs are swollen sections of filaments, occurred mainly in ageing cultures, and are probably a degeneration phenomenon. The filaments contained necridia, i.e. dead and empty cells, across which breaks may occur so that empty cell wall cylinders remain attached to the ends of the daughter filaments, falsely suggesting the presence of a sheath. The taxonomy of Herpetosiphon is discussed in detail: The organism has been described before as Flexibacter giganteus. It is proposed to abandon the species H. aurantiacus in favor of H. giganteus, but to retain the genus Herpetosiphon. An improved definition of the genus is given.  相似文献   

17.
18.
19.
20.
Microscopic and cytological evidence suggest that many dinoflagellates possess a haploid nuclear phase. However, the ploidy of a number of dinoflagellates remains unknown, and molecular genetic support for haploidy in this group has been lacking. To elucidate the ploidy of symbiotic dinoflagellates belonging to the genus Symbiodinium, we used five polymorphic microsatellites to examine populations harbored by the Caribbean gorgonians Plexaura kuna and Pseudopterogorgia elisabethae; we also studied a series of Symbiodinium cultures. In 690 out of 728 Symbiodinium samples in hospite (95% of the cases) and in all 45 Symbiodinium cultures, only a single allele was recovered per locus. Statistical testing of the Symbiodinium populations harbored by P. elisabethae revealed that the observed genotype frequencies deviate significantly from those expected under Hardy-Weinberg equilibrium. Taken together, our results confirm that, in the vegetative life stage, members of Symbiodinium, both cultured and in hospite, are haploid. Furthermore, based on the phylogenetics of the dinoflagellates, haploidy in vegetative cells appears to be an ancestral trait that extends to all 2,000 extant species of these important unicellular protists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号